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Intragravidic and perinatal infections, acting through either direct viral

effect or immune-mediated responses, are recognized causes of liability for

neurodevelopmental disorders in the progeny. The large amounts of epi-

demiological data and the wealth of information deriving from animal

models of gestational infections have contributed to delineate, in the last

years, possible underpinning mechanisms for this phenomenon, including

defects in neuronal migration, impaired spine and synaptic development,

and altered activation of microglia. Recently, dysfunctions of the neurovas-

cular unit and anomalies of the brain vasculature have unexpectedly

emerged as potential causes at the origin of behavioral abnormalities and

psychiatric disorders consequent to prenatal and perinatal infections. This

review aims to discuss the up-to-date literature evidence pointing to the

neurovascular unit and brain vasculature damages as the etiological mecha-

nisms in neurodevelopmental syndromes. We focus on the inflammatory

events consequent to intragravidic viral infections as well as on the direct

viral effects as the potential primary triggers. These authors hope that a

timely review of the literature will help to envision promising research

directions, also relevant for the present and future COVID-19 longitudinal

studies.

Introduction

Gestational stress can be produced by social and psy-

chological adversities as well as by environmental fac-

tors, which primarily include prenatal infections. While

the latter can directly cause a congenital fetal infec-

tion, all the above conditions pose a threat to the

health of both the mother and the fetus through the

action of immune factors. Long-term consequences of

gestational stress on offspring’s mental health have

been studied for almost 80 years now. The hongerwin-

ter, the Hollands famine winter that took place right

after WWII, represents the first documented testimony

of how maternal prenatal stress has an impact on the
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occurrence of psychiatric disorders in the progeny

[1,2]. Moreover, in the following years, several authors

noted a link between the increased risk of neuropsychi-

atric disorders and winter-born babies, thus raising the

attention on intragravidic infections as the underlying

cause [3–5]. Nowadays, maternal influenza infection is

one of the most well-replicated risk factors for

schizophrenia—increasing the odds ratio by 3 [5]—and

substantial epidemiological evidence exists to sustain a

causal link for prenatal and perinatal infections to

increase, later in life in the progeny, the susceptibility

to neurodevelopmental disorders such as autism spec-

trum disorder (ASD) [6–8] and bipolar disorder [9,10],

in addition to schizophrenia [11–13].
Recent studies have highlighted the activation of the

immune system as a risk-shared mechanism in gesta-

tional stress-induced long-term newborn outcomes.

Evidence span from findings of increased C-reactive

protein, interleukin (IL)-6 plasma levels [14], and

enhanced expression of various cytokines at the umbil-

ical cord in the offspring of psychologically and

socially stressed mothers [15] to the observations col-

lected in translational animal models, collectively

called maternal immune activation (MIA) models [16].

Together, these findings indicate that the physiological

role of cytokines and immune factors in the govern-

ment of brain development is likely to be disrupted

upon stress and maternal immune responses. MIA

models, mostly represented by rodents exposed to

Toll-like receptors’ agonists (mainly lipopolysaccharide

—LPS and polyinosinic:polycytidylic acid—PolyI:C)

during the gestational periods to mimic an inflamma-

tory response to a pathological agent, are crucial to

shed light on the underpinning molecular mechanisms

which link the maternal–prenatal stress with the

increased risk of psychiatric disorders in the progeny

[17,18]. Of note, MIA has proved the non-necessity of

congenital infections, of which there is limited evidence

for influenza virus infections [19]. The latter are mostly

due to the so-called ‘TORCH’ pathogens, a cluster of

microbes that include Toxoplasma gondii, rubella

virus, cytomegalovirus (CMV), and herpes simplex

virus (HSV), known for their different ability to

directly infect the fetus during gestation [20,21].

Potentially dangerous viruses have a distinctive spot

in the world of microbes. They are high in number

[22] and, differently from bacteria, have been associ-

ated with a twofold increased risk of adult diagnosis

for nonaffective psychosis and schizophrenia [23]. In

recent years, several viral outbreaks have affected large

areas of the world. In < 20 years we have faced the

coronavirus SARS-CoV (2002/2003)—named after the

severe acute respiratory syndrome (SARS) that it

causes, the ‘swine flu’ caused by the influenza virus

H1N1 (2009), the MERS-CoV (2012)—another coron-

avirus that prevalently spread in the Middle East area,

the mosquito-borne Zika virus (ZIKV) (2015) and

since December 2019, the worst global pandemic since

1918 ‘Spanish’ influenza, caused again by another

coronavirus: the SARS-coronavirus-2 (CoV-2).

Till now, 88 880 pregnant women have been found

positive to COVID-19 just in the United States

(CDC’s data). At present, data are mostly available

from third-trimester infections and there is a growing

list of associated neonatal complications [24,25]. Major

aspects, including the timing of the infection and the

presence/absence of symptoms in the mothers-to-be,

are being collected and will be evaluated. Still, mar-

ginal attention has been paid to the fetus as a patient

during the pandemic and is too soon to understand

the long-term effects of SARS-CoV-2 infection on pro-

geny’s mental and neurological disability. The average

onset for schizophrenia coincides with adolescence-

early twenties [26,27] while the diagnosis among chil-

dren with ASD comes around 3.1 years of age [28]. In

the context of gestational COVID-19 infections, if and

how the virus can influence progeny neural system

development will emerge in the next years.

Presently, we possess an extensive quantity of data

on viral intragravidic infections and numerous MIA

models. These data are being exploited to unveil the

mechanisms which link the activation of the maternal

immune system with the behavioral abnormalities in

the offspring. These aspects, which are still not clari-

fied, are of crucial relevance also for predicting the

possible impact of the current pandemics in the neu-

rodevelopmental trajectories of the next generation.

Different processes have been brought into play to

explain the effect of MIA on the offspring neurodevel-

opment, including (but not limited to) the altered

expression of genes involved in neuronal migration

[29] and the generation of an abnormal cortical pheno-

type [30], changes in the intrinsic excitability of neu-

rons [18,31], impaired spine and synaptic development

[32–34], and altered activation of microglia [35,36].

Notably, disturbances of the neurovascular unit

(NVU) physiology and brain vasculature morphology

have been identified as one of the leading causes of

several neurological diseases, both in developing and

aged brain. Moreover, multiple evidences indicate a

key involvement of the vasculature in SARS-CoV-2

pathological manifestations [37]. The spike protein has

recently been proved to alter the blood–brain barrier

(BBB) function and integrity in an in vitro model with

human brain microvascular endothelial cells (ECs)

derived from fetal brains [38]. This review seeks to
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discuss state-of-art evidence indicating that NVU and

brain vasculature damages may represent the etiologi-

cal mechanism in neurodevelopmental syndromes. We

specifically focus on inflammation, deriving from intra-

gravidic viral infections, as well as on direct viral

effects on the embryo, as potential primary triggers

(Fig. 1). These authors hope that a timely review of

the literature will help to envision research promising

directions, also relevant for the present and future

COVID-19 longitudinal studies.

Neurovascular unit dysfunctions
result in pathological behavioral
phenotypes

The NVU is a relatively recent concept that encloses

highly dynamic and interactive cell types at the inter-

face of brain parenchyma with the peripheral blood.

Including both cellular and acellular components

wrapped around the ECs that form the vasculature of

the brain [39], the NVU controls the trafficking of

blood-borne molecules and cells for homeostasis con-

servancy. The NVU starts to be formed early during

brain development. Vascularization is then rapidly fol-

lowed by the expression of tight junction proteins and

transporters [40], allowing the brain protection from

vasogenic edema, the passage of toxic substances, and

microbe’s invasion [41,42]. NVU development is a

step-by-step process in which temporal and regional

differences play a critical role in the functioning of the

mature adult brain [43].

Many reviews have been published about NVU

impairments and neurovascular anomalies in associa-

tion with neurodevelopmental disorders [44–47]. BBB

breakdown is considered an early marker for later cog-

nitive dysfunctions [48]; further, neurovascular prob-

lems due to perinatal brain injuries—including

inflammation, hypoxic-ischemia, or hemorrhagic

events—are recognized as one of the leading causes of

long-term mental disabilities [49–51]. Blood oxygen

SARS-CoV-2

HSV

H1N1

HIV

ZIKV

CMV

TNF
IL-6

IL-17

IL-1β

Fig. 1. Schematic representation of how

viral infections affect the fetal NVU and the

brain vasculature during pregnancy. Viruses

can influence vessel development by both

direct (i.e., congenital infection) and

immune-mediated (i.e., inflammatory state)

processes.
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level–dependent fMRI in ASD patients shows a

reduced signal that correlates with symptoms severity,

possibly indicating a faulty neurovascular coupling

process [52]. Consistently, persistent angiogenesis (i.e.,

the growth of new vessels from the preexisting vascula-

ture) has been recently observed in the brain of post-

mortem ASD patients [53], while several

neurodevelopmental disorders, including autism [54],

schizophrenia, depression [55], cerebral palsy [56], and

bipolar disorder [57], have been epidemiologically

associated with prenatal cerebral bleeding.

Here, we will analyze the direct impact of brain vas-

culature and NVU dysfunctions on behavioral disor-

ders phenocopying, focusing on the lines of evidence

that directly imply NVU/vasculature early damages as

etiopathological in autism, schizophrenia, and depres-

sion (Fig. 2 and Table 1).

The case of pericytes

Pericytes, differently from astrocytes [58], are recruited

by the ECs of the brain early during development,

specifically by E10 in mice [59–61] and by the 8–10th
week of gestation in humans [62–64]. Pericytes pro-

mote vascular structural stability and protect the brain

from blood-borne elements and bleeding phenomena

[59]. Anomalies involving pericytes biology have been

proven to play key roles in the etiopathogenesis of dif-

ferent genetic diseases characterized by psychiatric

comorbidities, including the Hereditary Hemorrhagic

Telangiectasia [65,66], a vascular dysplasia condition

affecting one in 5000 people worldwide, and the cere-

bral autosomal dominant arteriopathy with subcortical

infarcts and leukoencephalopathy [67,68], the most

commonly inherited small-vessel disease. Furthermore,

pericytes paucity has been recently found associated

with intraventricular hemorrhage of the germinal

matrix (GH-IVH), both in premature humans and in a

rabbit premature pup model [69]. GH-IVH affects

12 000 premature babies every year just in the United

States [70] and nearly 45% of all extremely premature

infants [71], leading to seizures, mental retardation,

cerebral palsy, and death [70,72]. Early treatments with

angiogenesis inhibitors have been found to ameliorate

pericytes coverage [69] and decrease bleeding incidence

in a premature animal model [73].

Among pericytes paucity models, the PdgfrbF7/F7

which bear homozygous F7 hypomorphic mutations of

Pdgfrb, and the Pdgfrb+/�, heterozygous null Pdgfrb
mice, are well-characterized models which show a

leaky NVU [59,74,75]. In details, the PdgfrbF7/F7 mice

display a progressive functional deficit of the white

matter, manifesting as impaired spatial working

memory and reduced maximum velocity on the com-

plex running test [74]. Only later in life (i.e., 36–
48 weeks), PdgfrbF7/F7 mice display hippocampus-

dependent behavioral defects [74]. On the other hand,

the Pdgfrb+/� mice show a 20% loss in pericyte cover-

age by 1 month of age, which is sufficient to initiate

progressive vascular damage [75]. By the age of 6–
8 months, also Pdgfrb+/� mice show hippocampal-

dependent impairments in learning and spatial mem-

ory, although age-matched PdgfrbF7/F7 mutants have

worse performance [75]. The PdgfrbF7/F7 and the

Pdgfrb+/� mice are considered good models of vascular

age-dependent degenerative diseases resulting in neu-

rodegeneration, memory, and learning impairments as

Alzheimer’s disease [76–78] and mild dementia [79].

Both Pdgfrb+/� and PdgfrbF7/F7 mice show a signifi-

cant reduction in pericytes (i.e., 35–75%) in the neural

tube already at E14.5 [80]. At present, to the best of

our knowledge, no literature data describe the behav-

ioral phenotype resulting from a pericyte loss restricted

to the embryonic time window. Therefore, whether

pericyte loss during fetal development contributes to

the observed behavioral consequences is presently

unknown. Recently, Cuervo et al. [81] developed a

new tamoxifen-inducible Cre-model targeting pericyte,

called PDGFRb-P2A-CreERT2, which will likely offer

the opportunity for more detailed studies on this mat-

ter in the future. Of note, animal models of GH-IVH,

as the collagenase-induced hemorrhage neonatal rat

model, display a delay in motor abilities development

and cognitive deficits [82].

Autism spectrum disorder

Recent studies have investigated the vascular contribu-

tion to ASD using autism mouse models (Fig. 2 and

Table 1). This is the case for the 16p11.2 microdeletion

[83], which approximately involves 2% of all ASD

diagnosed cases [84] leading prevalently to large head

size, intellectual disabilities, and language-related prob-

lems in humans [85]. The 16p11.2df/+ mouse model

shows alterations of the basal ganglia and synaptic

defects beyond behavioral abnormalities that include

stereotypic movements and hyperactivity [86]. Ouellette

et al. [83] demonstrated that 16p11.2df/+ adult males

are affected by a form of endothelium-dependent neu-

rovascular uncoupling. In particular, they evidenced in

postnatal day 50 (P50) females and males, the occur-

rence of a reduced vessel relaxation in response to

acetylcholine or adenosine, and a poor vessel constric-

tion in response to nitric endothelial oxide synthase

inhibition. Furthermore, isolated 16p11.2df/+ ECs har-

vested at P14—but not at P50—exhibited a scant
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Hemorrhage
LPA and serum ICV
(Mirendil et al. 2015)

Tie2-Cre; Slc7a5fl/fl  mouse model
(Tărlumgeanu et al. 2016)

Pericyte

Endothelial cell

Astrocyte endfeet

Basal lamina

Claudin-5 knockdown

AVV-shRNA-cldn5 mice
(Menard et al. 2017; Green et al. 2017)

Inducible claudin-5 knockdown (Green et al. 2017)

16p11.2df/+ mouse model (Ouellette et al. 2020)

Cdh5-Cretg/+ and 16p11.2flox/+ mouse model
(Ouellette et al. 2020)

PdgfrβF7/F7 mice (Montagne et al. 2018)

PdgfrβF7/F7 and Pdgfrβ+/− mice (Bell et al. 2010)

Pericyte
  paucity 

LUMEN
LAT1

LAT1

BCAA
absence

Fig. 2. Research tools for the study of behavioral phenotypes consequent to the NVU dysfunctions. Pericyte paucity and reduced vascular

coverage, hemorrhages, downregulation of the tight junction protein claudin-5, and lack of BCAAs into the brain parenchyma result in ASD-

and schizophrenia-like behaviors, as well as depression and dementia.
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capacity of network formation compared with WT.

This phenomenon was recapitulated by ECs derived

from human induced pluripotent stem cells obtained

from donors carrying the 16p11.2 deletion. The

authors excluded a contribution of smooth muscle cells

by testing vasorelaxation in response to sodium nitro-

prusside and phenylephrine and by replicating most of

their observations using an endothelial-specific 16p11.2

(7qF3) deletion mouse model [83]. The paper estab-

lishes a solid and direct link between neurovascular

abnormalities and autistic phenotypes. Of note, many

of the observed defects were sex- and age-specific.

Another mutation, accountable for patients affected

by ASD, but also found in cases of intellectual disabil-

ity or epilepsy, is located in the gene branched-chain

keto-acid dehydrogenase (BCKDK) [87]. The primary

consequence of the mutation is the lack of branched-

chain amino acids (BCAAs), for which the brain

depends on supply from the periphery. T�arlungeanu

et al. [88] studied a mouse model that mimics BCKDK

absence by the deletion of Slc7a5, a gene responsible

for the encoding of the large amino acid transporter 1,

at its physiological site of expression: the BBB. The

deletion of Slc7a5 from ECs, using a Tie2Cre line, led

to neuronal activity imbalance and behavioral abnor-

malities in the mice, mostly revertible in adults by a 3-

week long intracerebroventricular BCAAs administra-

tion. The observed behavior phenotypes spanned from

motor coordination and locomotion difficulties to

more typical autistic tracts, including reduced explo-

rative behavior, limited social interactions, decreased

play activity, and reduced amount of isolation-induced

ultrasonic vocalization [88]. Interestingly, BCAAs seem

to be transported into the developing brain at higher

levels than in the adult one [89,90]. T�arlungeanu et al.

demonstrated that brain BCAA homeostatic concen-

trations—which are regulated at the BBB level—are

critical for brain functioning and need to be taken into

account in the context of ADS pathology.

Schizophrenia

Perinatal brain hemorrhages are a well-recognized risk

factor for schizophrenia [91,92]. Still, very few authors

have directly addressed the behavioral tracts resulting

from developmental intracranial hemorrhages or

increased permeability of serum elements into the brain

(Fig. 2 and Table 1). Mirendil et al. [93] developed an

animal model of prenatal hemorrhages by intraventricu-

lar injections of the bioactive phospholipid lysophos-

phatidic acid (LPA) in the fetus. LPA in vivo

administration is known to induce bleedings and inflam-

mation [94,95]. Fetuses intraventricularly treated with

LPA or serum at E13.5 displayed schizophrenic-like

behaviors in adulthood; in particular, the authors found

a female-specific prepulse inhibition (PPI) deficit and

Table 1. Animal models of NVU dysfunctions, resulting in behavioral phenotypes. A, anxiety-related; D, depression-related; LC, locomotor

competence; LM, learning and memory; NS, not specified; S, schizophrenia-related; SL, sensory/locomotor.

Mouse model Target

Age of

treatment Vascular phenotype

Age of

assessment

Analyzed

behavioral

category Behavioral profile Sex Reference

16p11.2df/+ All cells Constitutive Neurovascular uncoupling P14, P50 A, SL, LM, LC ASD M [83]

Cdh5-Cretg/+;

16p11.2flox/+
ECs constitutive ↓cortex vascular density

↓cortex vascular

branching

P0, P50 A, SL, LM, LC ASD Both [83]

Tie2-Cre;

Slc7a5fl/fl
ECs Constitutive BCAA absence E14.5, P2-

65

A, LM, LC ASD both [88]

LPA and

serum ICV

none E13.5 Prenatal cerebral

hemorrhage

P70 S, A, LM, LC Schizophrenia-like F [93]

inducible

claudin-5

knockdown

ECs P56-84 ↓claudin-5 P56-84 S, A, LM, LC,

D

Schizophrenia-like NS [97]

AVV-shRNA-

cldn5

HP,

PFC

P56-84 ↓claudin-5 P56-84 S, A, LM, LC,

D

Schizophrenia-

like/Stress

resistance

NS [97]

AVV-shRNA-

cldn5

HP,

NAc

P56-70 ↓claudin-5 P56-70 A, D, LC Depression M [103]

PdgfrbF7/F7 Pericyte Constitutive Pericyte paucity and low

vessel coverage

P14-336 A, SL, LM, LC Dementia Both [74]

PdgfrbF7/F7 and

Pdgfrb+/�
Pericyte Constitutive Pericyte paucity and low

vessel coverage

P7-112 LM Dementia NS [75]
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anxiety-related exploratory patterns [93]. Prenatal cere-

bral bleeding or diffusion of blood derivates (i.e., serum

or LPA) are sufficient to induce schizophrenia symp-

toms in mice; if the observed sex-specific effect was due

to the developmental stage chosen for the hemorrhagic

hit, remains to be addressed.

Paracellular diffusion of serum proteins at the BBB is

physiologically restrained by the means of occluding

junctions, which seal the adjoining ECs. Claudin-5,

encoded by the chromosomal region 22q11.21 is one of

the most enriched tight junction proteins at the BBB

and has been implicated in many neurological disorders,

including depression and schizophrenia [44]. Deletions

of the chromosomal region 22q11 confer the carrying

individuals (i.e., ~ 1 in 4000) with a 30-fold increase risk

for schizophrenia and other neuropsychiatric conditions

[96]. Green et al. [97] generated an inducible ECs-

specific claudin-5 knockdown mouse demonstrating that

the prolonged suppression of claudin-5 at the BBB pro-

duces psychosis-like behaviors. Claudin-5 knocked-

down animals showed a schizophrenia-like behavioral

phenotype, consisting of altered spontaneous alternated

Y-maze and T-maze performances, and reduced acous-

tic PPI response. The paper suggests the direct implica-

tion of claudin-5 anomalies in psychiatric disorder

symptomatology, a concept strengthened by the fact

that antipsychotic treatments (i.e., lithium, haloperidol,

and chlorpromazine), among others, induce an

increased expression of claudin-5 protein both in vivo

and on EC cultures [97].

Depression

About 50 years are passed since the first vascular

hypothesis on the origin of depression was formulated

[98]. Today, multiple pieces of evidence indicate

increased NVU permeability in both depressed patients

[45,99] and animal models of depression [100–103]
(Fig. 2 and Table 1). Menard et al. [103] recently

proved that the sole downregulation of claudin-5 in

the nucleus accumbens (NAc), which allows the pas-

sage of molecules till 800 Da through the BBB [104], is

sufficient to induce depression-like behaviors in mice.

The authors employed an inducible AVV-shRNA

against claudin-5 to assess the behavioral phenotype

resulting from the region-specific downregulation of

the gene. Intra-NAc injections followed by doxycycline

treatment effectively inhibited claudin-5 expression and

resulted in stress-triggered depression-like behaviors.

Specifically, mice subjected to a subthreshold micro-

defeat routine showed anhedonia and significantly

reduced their performances in the forced swim test

[103]. Furthermore, mice displayed social avoidance,

compared with unstressed control and unstressed

AAV-shRNA mice. Differently, mice subjected to the

virus-mediated conditional knockdown of claudin-5 in

the hippocampus—another brain region that showed

claudin-5 downregulation following depression induced

by chronic social defeat stress (CSDS)—still spent

more time immobile in the forced swim test, but dis-

played no anhedonia [103]. These results suggest a

region-specific effect of claudin-5 expression levels on

behavior (Table 1). This concept was strengthened by

the fact that CSDS-induced depression does not lead

to a ubiquitous claudin-5 downregulation throughout

the brain. In particular, the mice prefrontal cortex

(PFC) does not show variations of claudin-5 expres-

sion upon CSDS [103]; on the same line, the AVV-

shRNA mediated downregulation of claudin-5 in the

PFC leads to impairments of recognition memory and

working spatial memory but results in enhanced per-

formances in the forced swim test [97]. These data

indicate that the PFC is resilient to stress-induced

NVU breakdown and that the experimental downregu-

lation of claudin-5 in this region results in memory

deficits accompanied by stress resistance. As a proof of

concept for the relevance of claudin-5 homeostasis in

brain physiology [44], only a chronic treatment with

the antidepressant imipramine, known to reverse

CSDS-induced depression-like behaviors [105], was

able to normalize claudin-5 mRNA levels and behav-

ioral phenotypes in the NAs-AVV-shRNA-cldn5 mice,

while an acute administration of the same drug did

not affect either [103].

Do viral infections cause
neurovascular unit dysfunctions
linked to neurodevelopmental
diseases?

The above data support the concept that alterations of

the NVU result in pathological behavioral phenotypes.

Consistently, NVU defects are detectable in several

neurodevelopmental diseases. In the next section, we

will analyze the results of studies investigating the

direct effects of the mother-to-embryo vertical viral

infection and the indirect effect caused by inflamma-

tion consequent to prenatal infections.

Direct effects of congenital infections on the

NVU and the brain vasculature

During pregnancy, viruses can reach and infect the

fetus mainly through intrapartum or in utero (i.e.,

ascending or transplacental) pathways [21]. Both

routes result in the vertical transmission of the
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infection from the mother to the child, which poses an

immediate threat to the newborn’s immature immune

system [106]. Of particular concern are in utero infec-

tions, which can occur at any time during the preg-

nancy and therefore interfere with the specific time

schedule of development. Different viruses and

TORCH infectious agents are known to target the

fetal nervous system; some possess tropism for NVU

components [107,108] and can induce prenatal brain

vasculopathies and hemorrhages (Table 2) [109–111].
These complications constitute a common event in pre-

mature babies which can evolve in cerebral palsy, epi-

lepsy, cognitive deficits, and/or behavioral difficulties

in the adult [112–114]. Here, we will summarize recent

findings of direct-viral-effects producing brain vascular

anomalies and faulty NVU establishment, in the con-

text of intragravidic infections.

Of interest is the case of a patient infected by CMV

during the first 16 weeks of gestation, an important

time window for brain vasculature development, who

gave birth (at 21 weeks) to a child affected by cerebral

hemorrhagic infarction [115]. This report is suggestive

of a direct effect of CMV on the developing vascula-

ture; in fact, even if the most frequent outcomes of

CMV congenital infections are polymicrogyria, cortical

dysplasia, and neuronal migration disorders [116,117],

the occurrence of neonatal brain bleedings has been

reported [118]. CMV can infect ECs of the brain [108]

and induce in the fetus vasculitis that can evolve and

manifest as thrombosis, coagulopathy, or hemorrhage

even in the absence of thrombocytopenia

[111,119,120]. Vasculopathies are also a common com-

plication associated with human immunodeficiency

virus (HIV) infections [121], for which the NVU is

believed to constitute the main brain route access.

HIV, through a Tat-mediated downregulation of the

BBB tight junctions, has been demonstrated to induce

a loose NVU and an increase in vitro paracellular per-

meability [122,123]. Of particular interest, is the case

report of hemorrhagic Moyamoya syndrome in a child

with congenital HIV-1 infection [110], an uncommon

manifestation in pediatric age, probably due to the

HIV-mediated vascular damage. A higher amount of

data is available on ZIKV congenital infections, which

is known to have a huge impact on the cerebrovascu-

lar structure and functional development. Zika intra-

gravidic infections can produce ischemic infarcts in

human fetuses [124], encephalomalacia due to chronic

infarction [125], and brain calcification in neonates

[126,127]. All these outcomes are reproduced in the

offspring of ZIKV-infected pregnant monkeys, adding

to frequently occurring fetal loss, small brain size,

hemorrhage, necrosis, vasculitis, and apoptosis of

neuro-progenitor cells [128]. Moreover, offspring dis-

play more severe cerebrovascular signs if born from

female monkeys challenged with viral particles at early

(i.e., 6–7 weeks) relative to late gestation (i.e., 12–
14 weeks) [128]. Similar anomalies are also detectable

in the offspring of murine models of congenital Zika

infection. For example, intra-amniotic administration

of Zika particles at E15.5 leads to intracranial calcifi-

cations in the adult progeny [129], while the direct

intracerebral inoculation of the virus at E14.5 induces

enlargement of the brain’s vessels accompanied by

higher vascular density and increased permeability

[130]. Furthermore, ZIKV has been shown to infect

fetal brain ECs (IB4-positive vessels) in the study of

Garcez et al., where an E12.5-infected type 2

interferon-deficient pregnant mice model was used. In

detail, at E15.5 the progeny of the infected mice

showed a reduction in the vasculature percentage area

and vessel branching, while by birth (i.e., at P2), pups

showed only a significant decrease in branches length

[131], a phenomenon possibly due to a virus-induced

delayed vascular development.

Different from the above cases, we are still experi-

encing a lag in information about SARS-CoV-2. The

huge global effort of clinicians and researchers in the

last year provided a clear description of COVID-19

acute manifestations and cerebrovascular comorbidi-

ties, but our understanding of the long-COVID neuro-

logical implications is still in its infancy. Even more

complex will be the analysis of possible neurological

and psychiatric sequelae due to intragravidic SARS-

Table 2. Brain vascular outcomes in vertically transmitted

infections.

Virus Species Vascular phenotype References

CMV Humans Cerebral hemorrhagic

infarction

[115]

Humans Brain bleeding [118]

Humans Fetus vasculitis [111,119,120]

HIV Humans Infant hemorrhagic

Moyamoya Syndrome

[110]

Zika

virus

Humans Ischemic infarcts [124]

Humans Encephalomalacia [125]

Humans Brain calcification [126,127]

Monkey Hemorrhage and

vasculitis

[128]

Monkey Intracranial calcification [129]

Monkey Increased vascular

density and increased

permeability

[130]

Mice (type 2

interferon-

deficient)

Delayed vascular

development

[131]
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CoV-2 infections in the progeny. Gestational COVID-

19 infections could impact the developing brain, with

possible consequences for behavioral impairment later

in life, through several mechanisms. For example, IL-

6, the major cytokine elevating during SARS-CoV-2

infections [132], has been shown to boost, during intra-

gravidic infections, the excitatory synaptogenesis in the

offspring, with consequences on brain connectivity

[133]. Maternal T helper 17 cells have been implicated

in cortical and behavioral abnormalities in MIA off-

spring [30]. Also, maternal infections have been found

to reduce brain offspring’s potassium-chloride co-

transporter 2 expression, thus delaying the excitatory-

to-inhibitory GABA switch [17,18]. Nevertheless, the

NVU could directly play a role: We know that SARS-

CoV-2 can directly affect the brain microvascular

endothelium and thus force its way to the brain par-

enchyma [37]. MRI and autoptic studies showed

endothelial activation, loss of cerebral vascular integ-

rity, and multifocal hemorrhage in adult COVID-19-

infected patients [134], while in children cases of

Kawasaki-like disease vasculitis have been reported

[135]. Furthermore, in vitro studies recently proved

that the spike protein, and even just subunits of it, is

sufficient to alter the BBB integrity [38]. Current data

indicate that SARS-CoV-2 vertical transmission is rela-

tively uncommon, occurring in about 3.2% of preg-

nant women who contracted COVID-19, while it is

over 10% for ZIKV and roughly 30% for CMV

[24,25,136]. Although it is too early to draw final con-

clusions, current reports on newborn outcomes show

no increased risk of congenital anomalies [137]; also,

cases of hypoxic-ischemic encephalopathy [138] and

birth asphyxia [139] seem extremely rare. Nonetheless,

the background knowledge about TORCH and other

respiratory viruses suggests that SARS-CoV-2 might

induce permanent neurological sequelae through dam-

age of the NVU, so further studies are needed. Besides

the possible direct effect of the virus on the NVU

development and structural integrity, other elements

need to be considered, including the proinflammatory

state induced by the infection and the high rate of pre-

mature delivery (i.e., 12.9%) correlated with COVID-

19 [137] which, by themselves, are known to be risk

factors for NVU later malfunctions [49,140].

Inflammatory-mediated effects of gestational

infections on the NVU and the brain vasculature

Tightly regulated changes in immune cell composition

and cytokine expression at the maternal–fetal interface
sustain and drive pregnancy. Longitudinal analysis of

peripheral blood, decidua, and amniotic fluid

demonstrated that the first trimester is characterized

by the establishment of a mild proinflammatory envi-

ronment and accumulation of immune cells at the

decidua which allow trophoblast invasion, implanta-

tion, and placenta formation [141]. On the opposite,

the second and third trimesters present a shift toward

an anti-inflammatory phenotype [142–146] which facili-

tates fetal growth and immune tolerance [141]. Lastly,

parturition display a proinflammatory bias: IL-6,

tumor necrosis factor-alpha (TNF-a), and IL-1

increase at term, suggesting a role for these cytokines

in normal labor [147]. Despite their relevant role in

physiological pregnancy, inflammatory states can also

be dangerous for the developing fetus as demonstrated

by the harmful effects of late-pregnant serum on brain

tissue, which promotes neuronal hyperexcitability and

seizures, activating microglia cells, and promoting

TNF-a production [148,149]. NVU formation and

maturation during in utero development act therefore

as a key brain shield to avoid these dangerous effects

[150].

Upon maternal immune response to infection, acute

or chronic disturbances can undermine these highly

regulated immune adaptations and disrupt placental

and NVU barriers ultimately affecting fetal develop-

ment, pregnancy outcomes, and long-term progeny

neurodevelopment (Table 3). Adinolfi was the first to

propose that MIA during the course of infection may

be harmful to the developing brain of the unborn

infant [151]. Leviton further extended this hypothesis,

suggesting that cytokines, such as TNF-a, may con-

tribute to both preterm birth and periventricular white

matter damage [152]. Nowadays, several maternal-

derived cytokines have been identified as critical medi-

ators of MIA on disease-related phenotypes in the off-

spring, including TNF-a, IL-1b, IL-6, and IL-17a

[153]. Proinflammatory cytokines and their respective

receptors are expressed in the brain and on the luminal

side of cerebral ECs or NVU-associated cells, making

the NVU a sensory organ for neuro-immune crosstalk

[154–156].
Cytokines may have access to the fetal brain either

by crossing the intact NVU [157–159] or by mediating

NVU alteration and breakdown [160–162]. Activation

of maternal immunity also presents a risk of develop-

ing autoantibodies, which have been implicated mainly

in autism (i.e., maternal autoantibody-related autism)

[163], and of local immune response activations in the

fetal brain, which may lead to secondary cytokines

production by microglia and astrocytes and, in turn,

have cell damaging properties [154,164–168].
In the case of intragravidic infections, although the

viruses are usually not transmitted to the fetus during
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pregnancy thanks to effective multiple defense mecha-

nisms specialized to protect the mother and the fetus

[42,44], inflammatory responses in the placenta or

infection-induced systemic changes in the pregnant

mother might result in more severe or prolonged dis-

ease for the mother and long-term consequences for

her newborn [43]. Viral infections modeled by the

usage of PolyI:C (5 or 10 mg�kg�1) intraperitoneal

injections in pregnant mice (GD15.5) acutely elevate

IL-6 concentration in the maternal plasma, concomi-

tantly increasing fetal brain accumulation of P-

glycoprotein (P-gp) substrates, an efflux transporter

that protects the brain by limiting the transfer of sub-

strates across the BBB [169]. The resulting BBB alter-

ation and P-gp decreased activity may expose the

developing brain to xenobiotics and environmental

toxins present in the maternal circulation.

Yan et al. [170] demonstrated an increased perme-

ability of the NVU to albumin just 24 h after LPS

0.1 µg�kg�1 intravenous injection in 133-day gestation

fetal sheep, suggesting that this is the result of prosta-

glandin production as indicated by cyclooxygenase

(COX-2) expression in the fetal brain small vessels.

Similarly, injections of LPS into the uterine artery of

pregnant ewes resulted in extravasation of plasma

albumin into the cerebellar parenchyma of the fetus

[171], suggesting that both direct and maternal expo-

sure to endotoxin inflammatory insults can compro-

mise the fetal NVU tightness [170,171]. Dysregulation

of NVU components was also demonstrated in a

Table 3. Brain vascular outcomes in MIA models. A, anxiety-related; E, embryonic day; GD, gestational day; LC, locomotor competence;

LM, learning and memory; NA, not assessed; S, schizophrenia-related.

Inflammatory

Agent Dose

Target

(species)

Age of

treatment

Systemic

features

Age of

assessment

Vascular

phenotype

Behavioral

profile References

PolyI:C 5 or 10 mg�kg�1 Pregnant

(mice)

GD14.5 � 1 ↑ IL-6

concentration

in the

maternal

plasma after

4 h

+4/24 h Accumulation

of P-gp

substrates

NA [169]

LPS 0.1 µg�kg�1 Fetus

(sheep)

GD133�1 – +24 h ↑ albumin

permeability

NA [170]

30–60 µg Uterine

artery

(sheep)

GD134-136 – +72 h ↑ albumin

permeability

LM [171]

100 ng�kg�1 over

24 h, followed

by 250 ng�kg�1/

24 h for 96 h

plus boluses of

1 lg LPS at 48,

72, and 96 h

Fetus

(sheep)

GD103/104 – +10 days ↓vessel
density, ↓
pericyte and

astrocyte

microvascular

coverage

NA [172]

0.2–10 mg�kg�1 Postnatal

(rats and

opossum)

P0, P2, P4,

P6, P8 and

adult rats;

P15,P20,

P35, P50,

P60 and

adult

opossum

↑ IL-1b and

TNF-a plasma

levels

P20 and

adults

↑ permeability

adulthood,

preceded by

claudin-5

altered

distribution

S, A [173–175]

0.25 mg�kg�1 pregnant

(rat)

GD15 ↑ cytokines

and reactive

oxygen

species in the

fetal brain

+6 h, 12 h

and 24 h

↓ BBB and

placental

barrier

integrities

LM, S, LC [177]

IL-1b 0, 0.1, 0.5, 1 µg Pregnant

(mice)

E14-E17 – +6 h ↓ placental

ECs, red

blood cells

clumping

NA [176]
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model of prolonged in utero inflammation, exposing

103/104-day gestation fetal sheep (approximately simi-

lar to the preterm human brain between 28 and

32 weeks) to a low-dose LPS regimen [172]. This para-

digm results in a significant decreased cortical and

white matter microvascular density (measured by colla-

gen type IV morphometric analysis) and reduced peri-

cyte microvascular coverage (detected as desmin area

overlapping with the vessel basal lamina) of the ovine

fetal brain. Furthermore, the authors report increased

astrogliosis and decreased astrocytes’ end-foot cover-

age of the microvasculature in the white matter, sug-

gesting an impaired gliovascular coupling. Prolonged

in utero inflammation adversely affected multiple com-

ponents of cortical and white matter cerebral NVU in

the preterm ovine fetus, potentially predisposing to

impaired brain development.

Stolp et al. were the first to demonstrate that

changes in blood vessel tight junction distribution,

caused by systemic inflammatory insults during early

life, precede long-term alterations in both NVU perme-

ability and behaviors. In particular, they conducted

longitudinal studies in neonatal, adolescent, and adult

rats exposed to intraperitoneal injections of

0.2 mg�kg�1 LPS during the early postnatal period

[i.e., on postnatal day (P) 0, P2, P4, P6, and P8]. The

systemic inflammatory response to LPS treatment—
confirmed by increased IL-1b and TNF-a plasma

levels—resulted in increased NVU permeability only in

adulthood, preceded by claudin-5 altered distribution

at an earlier time point [173,174]. Stolp et al. [173,175]

demonstrated that NVU alterations due to inflamma-

tion during brain development can occur in several

phases, each one leading to different behavioral modi-

fications: at short-term, juvenile animals showed alter-

ation in the PPI paradigm, while in the long-term,

changes in NVU permeability (as shown by the

sucrose permeability test) were correlated with anxiety-

related behaviors (as shown by altered responses to

the dark/light test).

Maternal immune activation can alter the permeabil-

ity of the NVU and placental barriers [176] and so

increase the circulation of inflammatory mediators to

the fetal brain, such as cytokines and reactive oxygen

species, ultimately leading to behavioral changes in

offspring’s adult life [177]. Altogether, animal experi-

mental studies using models of MIA (Table 3), espe-

cially LPS and PolyI:C, suggest that maternal

inflammatory response induced during the early post-

natal period—hallmarked by excessive cytokine secre-

tion and signal transduction, cellular immune

activation, and recruitment—has been associated with

altered NVU permeability, acting as mediator of

abnormal brain development, leading to long-term

behavioral as well as neurochemical changes in adult

offspring [178]. Brain injuries in the setting of systemic

inflammatory processes can act as pathogenic media-

tor, not as a single hit in time [179], but holding for

months or even for years and finally contributing to

postinsult neuronal deficits as long-term ongoing pro-

cess and lifelong disability, including cerebral palsy,

seizure disorders, sensory impairment, and cognitive

limitations.

Conclusions

Neurovascular interrelationship is essential for the

proper functioning and development of the brain.

Many animal models of NVU dysfunctions have been

shown to be lethal, as for both the PDGFR-b�/� and

the PDGF-B�/� mice, for which the loss of pericytes

results in perinatal lethality caused by microa-

neurysms, mostly in the brain and kidneys [80,180]

and the claudin-5-deficient mice, which exhibit a selec-

tive increased permeability for molecules under 800 Da

[104]. Moreover, the cerebrovascular system serves as

structural track and guide for the migration of various

cell types. This is the case for oligodendrocyte precur-

sors—which use vessels to migrate and finally engage

neuronal axons to be enveloped with myelin sheaths

[181]—and neurons—which rely on EC cues in order

to find their final position [182]. Not only does the

brain vasculature influence neuronal activity, but also

the opposite occurs. Neural activity can indeed pro-

mote the formation of new vessels and ultimately mod-

ify vessel density and branching [183]. Furthermore,

detrimental NVU events are consistently accompanied

by microglia recruitment and enhanced release of

cytokines, which in turn directly affect synapse func-

tion and cognitive processes [18,168,184]. For all these

reasons, modifications of the NVU may have long-

lasting effects on behavior, even resulting in psychi-

atric conditions. The undergoing SARS-CoV-2 pan-

demic stresses the need to build a solid net of clinical

data and preclinical research evidence to understand

not only the impact of intragravidic infections on the

offspring’s mental health, but also the underpinning

mechanisms. Various registries, as the Pregnancy CoR-

onavIrus Outcomes RegIsTrY—a US study led by the

University of California—or the International Registry

of Coronavirus Exposure in Pregnancy—an interna-

tional cohort—collect data on pregnancies and longitu-

dinal birth outcomes, representing a valuable

opportunity to collect information on possible NVU

dysfunctions in the context of intragravidic infections.

Therapies aimed at lowering intraventricular pressure,
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distortion, free iron concentration, and cytokine levels

in cases of posthemorrhagic brains have been already

exploited. Recently, a 10-year follow-up study using

the Drainage, Irrigation, and Fibrinolytic Therapy

therapeutic approach on preterm babies presenting

GH-IVH has shown improvements in child develop-

mental profiles, cognitive ability, and global cerebral

function, reducing the overall neurodevelopmental dis-

ability [185,186]. The future challenge will be to better

understand the mechanisms through which the devel-

opment of NVU and brain vasculature can shape our

behavior, particularly when under the influence of

inflammatory and viral hits.
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