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Mitochondria-related metabolic reprogramming plays a major role in the occurrence,
development, drug resistance, and recurrence of acute myeloid leukemia (AML).
However, the roles of mitochondria-related genes (MRGs) in the prognosis and immune
microenvironment for AML patients remain largely unknown. In this study, by least
absolute shrinkage and selection operator (LASSO) Cox regression analysis, 4 MRGs’
(HPDL, CPT1A, IDH3A, and ETFB) signature was established that demonstrated good
robustness in TARGET AML datasets. The univariate and multivariate Cox regression
analyses both demonstrated that the MRG signature was a robust independent
prognostic factor in overall survival prediction with high accuracy for AML patients.
Based on the risk score calculated by the signature, samples were divided into high-
and low-risk groups. Gene set enrichment analysis (GSEA) suggested that the MRG
signature is involved in the immune-related pathways. Via immune infiltration analysis and
immunosuppressive genes analysis, we found that MRG risk of AML patients was
strikingly positively correlated with an immune cell infiltration and expression of critical
immune checkpoints, indicating that the poor prognosis might be caused by
immunosuppressive tumor microenvironment (TME). In summary, the signature based
on MRGs could act as an independent risk factor for predicting the clinical prognosis of
AML and could also reflect an association with the immunosuppressive
microenvironment, providing a novel method for AML metabolic and immune therapy
based on the regulation of mitochondrial function.

Keywords: acute myeloid leukemia, prognostic signature, mitochondria-related genes, The Cancer Genome Atlas,
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INTRODUCTION

Acute myeloid leukemia (AML) is a common hematological cancer,
characterized by the accumulation of undifferentiated myeloid
progenitor in the hematopoietic system, leading to normal blood
component decrease, severe infections, anemia, and hemorrhage (1).
AML patients’ genomes carry the fewest mutations discovered in
mostothercancers,withabout13codingmutations foundperpatient
(2). Accumulating research reported potential driver mutation and
epigenetic abnormalities related to AML pathogenesis; however, the
therapeutic strategy for AML patients has remained chemotherapy
with or without stem cell transplantation for many years (2–4).
Despite advanced progress in early diagnosis, drug mining, and
multidisciplinary tumor management, the long-term overall
survival (OS) of AML patients remains poor (5–7). Therefore, it is
urgent to identify novel and effective potential biomarkers and
prognostic models to improve treatment allocation by identifying
patients at high risk of a poor prognosis.

Mitochondria are at the center of energy production and are
important for cell growth, proliferation, differentiation, and death
(8). Therefore, mitochondria are fundamentally involved in cancer-
related biological processes, including cancer initiation, development,
invasion, recurrence, and drug resistance (9). Many studies reported
that epigenetic modulation and mutation of mitochondria-related
genes (MRGs) and bio-energetic reprogramming are important in
cancer pathogenesis (9, 10). Moreover, studies have found that the
mitochondria-related biology process is a potential cancer therapy (11,
12).Recent studieshave reported thatAMLcells have adependencyon
mitochondrial function, especially leukemia stem cells. Targeting
mitochondrial respiration became a novel treatment of AML (13).
Thus, exploration of underlying mitochondria-related alterations in
AML patients may bring out some novel insights to promote
the prognosis.

In this study, by differential expression analysis, univariate Cox
regression, and 10-fold least absolute shrinkage and selection
operator (LASSO) Cox regression analysis, an MRG signature
was established to predict the prognosis of AML patients. Gene
set enrichment analysis (GSEA) has been performed to explore the
functional change in the high-risk group. Single-sample GSEA
(ssGSEA) immune infiltration analysis and immunosuppressive
genes analysis were applied to investigate immune cell infiltration
and immunosuppressive condition of AML. In summary, our
results demonstrate that the signature based on MRGs could act
as a reliable independent biomarker for predicting the clinical
prognosis of AML, and high MRG risk AML patients were closely
associated with an immunosuppressive microenvironment.
Therefore, our study may provide a novel method for AML
metabolic and immune therapy based on the regulation of
mitochondrial function.
MATERIALS AND METHODS

Data Acquisition
RNA-seq data and clinical data (149 AML samples) from TCGA-
AML cohorts combined with whole blood cohorts (337 normal
Frontiers in Oncology | www.frontiersin.org 2
whole blood samples) from GTEx were downloaded from the
UCSC Xena database (https://xenabrowser.net/datapages/). We
also obtained clinical and expression data of AML patients from
the Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) database (https://ocg.cancer.gov/
programs/target) as the validation set to validate our
prognostic model. All eligible samples from The Cancer
Genome Atlas (TCGA) and validation sets were collected
according to the following inclusive criteria: 1) diagnosed AML
specimen; 2) availability of transcriptome data; and 3) availability
of general survival information and related clinical data. The
corresponding information of AML samples is shown in Table 1.
Identification of Differentially Expressed
Mitochondria-Related Genes
MRGs in the present study were defined as the coding genes of
mitochondria-located proteins, including all proteins located in
the mitochondrial membrane, matrix, cristae, and mitochondria-
associated endoplasmic reticulum membranes. Depending on
subcellular localization, a total of 1,136 mitochondria-located
genes were downloaded from MitoCarta3.0 (14) (https://www.
broadinstitute.org/) (Supplementary Table 1). Then, we
extracted the MRG expression data from TCGA-GTEx gene
expression dataset (337 normal blood samples and 149 AML
samples). All the RNA-seq data have been pre-normalized by
GDC mRNA analysis pipeline. The differentially expressed
MRGs (DE MRGs) between the AML samples and normal
controls were identified using the combination of DESeq2,
EdgeR, and Limma (voom). Log2 |Fold Change| > 1 and
adjusted p < 0.05 were used as the cutoff to screen DE MRGs.
Bio-Functional Analysis of the Acute
Myeloid Leukemia-Related Mitochondria-
Related Genes
The bio-functional enrichment analysis of DE MRGs, including
Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses, was
conducted using the clusterProfiler and enrichplot packages
(15, 16), using MRGs as background genes and p < 0.05 as the
cutoff. To find out whether bio-function differed between low-
and high-risk patients, we also performed KEGG pathways and
AML-related GSEA using the GSEA software (GSEA 4.0.3) (17,
18). For each analysis, the permutations of the gene set were all
performed 1,000 times.
Establishment of Prognostic Classifiers
A univariate Cox regression was performed for all DE MRGs,
and the genes with p < 0.05 were identified as prognostic MRGs.
Then the 10-fold LASSO cross-validation Cox regression analysis
was applied to all prognostic MRGs for selection of the most
useful biomarkers and to build a survival predicting classifier.
LASSO is a popular prognostic model-building method of
compression estimation, which can automatically remove
unnecessary features and only keep the most important
March 2022 | Volume 12 | Article 823831
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variables in the final model (19). The predicting risk scores were
calculated based on the following formula:

Risk Score = S(Cox coefficient� Genes expression levels)

The low- and high-risk groups of AML patients were divided
by the median risk score. The predictive ability of the model for
training and validation cohorts was evaluated using the receiver
operating characteristic (ROC) curve analysis, Kaplan–Meier
(KM) log-rank test, and univariate and multivariate Cox
regression analyses.

Estimation of Immune Cell Type
Proportion
In order to further study the relationship between model
predicting risk and immune cell infiltration, the ssGSEA
algorithm was used to estimate the abundances of 28 immune
cell types obtained from Charoentong et al. (20). To avoid the
blast cell signal from overwhelming the immune environment
cell signals, we extract samples with <70% blast for the immune
environment analysis. The abundance of immune cells was
calculated according to the expression of the reference gene
within the gene set from transcriptomic data, using the GSVA
package via R software (21).

Statistical Analysis
All statistical analysis and figure construction were conducted by
R version 4.1 (http://www.R-project.org) and GraphPad Prism
8.0 statistical software (GraphPad Software, Inc., La Jolla, CA,
USA). The KM survival analysis was performed and analyzed
using a log-rank test. The correlation between risk score and
clinicopathological characteristics was analyzed by the chi-
square test. The Wilcoxon test was used to compare the
Frontiers in Oncology | www.frontiersin.org 3
difference between groups. In all the statistical analyses, p-
value <0.05 was considered statistically significant.
RESULTS

The Differential Expression of
Mitochondria-Related Genes in Acute
Myeloid Leukemia
It has been reported that mitochondrial alterations led to
metabolic vulnerabilities in AML cells and participated in
AML development in various ways (22, 23). To find out the
DE MRGs in AML, 149 AML samples and 337 normal whole
blood samples were extracted from TCGA-GTEx datasets. First,
principal component analysis (PCA) was performed to check the
quality of the expression data, showing good separation between
normal and AML groups (Figure 1A). Then, 3 differential
expression analyses were performed to identify DE MRGs
(Supplementary Figures 1A–F). A total of 415 common DE
MRGs were identified, while 184 of these were upregulated and
231 were downregulated (Figures 1B–D). Detailed information
on DEMRGs is given in Supplementary Table 2. GO and KEGG
were performed to explore the biology function change related to
mitochondria. GO biological process analysis showed that the
upregulated MRGs were associated with the DNA replication
and DNA repair, which was closely related to AML cell
proliferation (Figure 1E), and the downregulated MRGs were
associated with the apoptotic process and apoptosis pathways,
which showed an anti-apoptosis ability in AML cells (Figure 1F).
Moreover, according to KEGG enrichment analysis, upregulated
MRGs were enriched in organic molecule degradation and
TABLE 1 | Clinical information of samples.

Clinical features TCGA-AML dataset (n = 149) p-Value Clinical Features TARGET-AML dataset (n = 187) p-Value

High-risk group Low-risk group High-risk group Low-risk group

Vital status 0.004 Vital status 0.002
Alive 19 37 Alive 35 56
Dead 55 38 Dead 59 37

Gender 0.363 Gender 0.943
female 31 38 Female 49 47
male 43 37 Male 45 46

BM blast 0.211 BM blast 0.136
<70% 63 55 <70% 30 40
≥70% 12 19 ≥70% 62 50

Age class 0.036 Age class 0.947
<55 24 38 <10 53 51
≥55 50 37 ≥10 41 42

FAB category <0.001 FAB category <0.001
M0 5 8 M0 12 11
M1 16 17 M1 10 11
M2 13 22 M2 15 30
M3 1 12 M3 0 0
M4 19 14 M4 23 29
M5 16 1 M5 30 5
M6 2 0 M6 2 1
M7 2 1 M7 2 6
March 2022 | Volume 12 | Article
BM, bone marrow.
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FIGURE 1 | Differentially expressed MRG analysis. (A) PCA and (B) DE MRG heatmap. (C, D) Venn plots of 3 different DE analyses. (E, F) Bubble plots of GO
enrichment analysis of DE MRGs. BP, biological process. (G, H) Bubble plots of KEGG pathway enrichment analysis of DE MRGs. MRG, mitochondria-related gene;
PCA, principal component analysis; DE MRGs, differentially expressed MRGs; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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metabolism (Figure 1G), and downregulated MRGs were also
connected with apoptosis (Figure 1H). The functional
enrichment analysis above suggested that AML was associated
with promoting proliferation and anti-apoptosis.

Construction of a Prognostic Models
Composed of 4 Mitochondria-Related
Genes’ Signature
In order to further explore the prognostic value of MRG in AML,
univariate Cox regression analysis was performed to identify the
clinically relevant MRGs from 415 differentially expressed genes
(DEGs), and 76 of them were significantly associated with OS
(Supplementary Table 3). To minimize model over-fitting,
LASSO regression was applied to construct the prognostic model.
Thus, the independent variable’s trajectory was explored in
Figure 2A, and 10-fold cross-validation was used to analyze the
CI under each lambda, as shown in Figure 2B. We finally established
a mitochondria-related prognostic signature with 4MRGs, including
HPDL, CPT1A, IDH3A, and ETFB. The LASSO correlation
coefficient of each MRG is shown in Table 2. Risk scores were
calculated according to the expression level of the sample, and the
risk score distribution is explored in Figures 2C–E, showing that the
proportion of death with a high-risk score is significantly higher than
that of samples with a low-risk score and expressions of 4 MRGs all
upregulated as the risk score went up (Supplementary Figure 2).
ROC was applied to evaluate the predictive classification efficiencies
of the LASSO model, as shown in Figure 2F. The area under the
curve (AUC) values of the model were 0.75, 0.71, and 0.79 at 1, 3,
and 5 years. A KM plot was drawn using samples divided into the
high- and low-risk groups by median risk score, showing the high-
risk group had a poorer prognosis with significant difference (p <
0.0001) (Figures 2G, H). Finally, the KM plots of the 4 MRGs
showed significantly predictive ability for the prognosis of patients in
high- and low-expression groups (Figures 2I–L).

Robust Validation of Mitochondria-Related
Gene Risk Signature in Different Cohorts
To determine the model’s robustness, TARGET-AML datasets were
introduced as an independent validation cohort. The risk score of
each sample was calculated and explored according to the same
LASSO coefficients and the expression level of 4MRGs (Figures 3A–
C). In accordance with TCGA training set, the samples with high-
risk scores had a higher death proportion than those with low-risk
scores. Moreover, in the TARGET-AML cohort, the ROC for 1, 3,
and 5 years was 0.7, 0.64, and 0.63, respectively (Figure 3D). The
KM plot also showed that the high-risk group had a poorer
prognosis with significant difference (p = 0.001) (Figures 3E, F).
The above results show that the MRG model had good robustness
with prognostic predictive ability in different cohorts.

Relationship Between Mitochondria-
Related Genes’ Expression and
Cytogenetic Risk in Acute Myeloid
Leukemia
Clinically, AML patients are often divided into different groups
according to their clinical characteristics and morphology,
Frontiers in Oncology | www.frontiersin.org 5
immunology, cytogenetics and molecular biology (MICM)
feature, which is known as cytogenetic risk stratification (24,
25). The relationship between AML cytogenetic risk stratification
and the expression level of 4 MRGs was analyzed. The heatmap
demonstrated 4 MRGs’ expression distribution along with AML
cytogenetic risk stratification in TCGA cohort (Figure 4A),
showing that the expression of 4 MRGs significantly went up
in the higher cytogenetic risk group. Quantitative statistics
further confirmed the significant difference of MRG expression
levels in different risk stratification (Figure 4B), showing that the
4 MRGs’ expression levels went up along with the increased risk
stratification. The expression trend of the 4 MRGs was further
confirmed by the TARGET-AML cohort, showing the same
pattern of the AML patients in TCGA (Figures 4C, D).

Clinical Independence of Mitochondria-
Related Gene Signature
To assess the independence of MRG signature in clinical application,
we performed univariate and multivariate Cox regression analyses in
TCGA-AML dataset. The risk scores and clinicopathological
characteristics, including age, gender, bone marrow blast cell,
peripheral leukocyte, peripheral monocyte, hemoglobin, and
cytogenetics risk category, were used as covariates. The univariate
and multivariate Cox regression analyses revealed that both age and
risk score were independent prognostic factors of OS, and risk score
is superior to age (Figures 5A, B). These results indicated that the
prognostic signature could be an independent unfavorable
prognostic model for AML patients. With the use of multivariable
Cox regression analysis, a nomogram (1, 3, and 5 years) was
established to visualize the MRG risk model (Figure 5C). The
corresponding calibration line for the nomogram showed good
precise prediction (Figures 5D–F).

Identification of Mitochondria-Related
Gene−Related Signaling Pathways With
Gene Set Enrichment Analysis
GSEA was applied to compare the two MRG risk groups to explore
which signaling mechanisms were triggered in the high-risk group,
showing that higher-risk groups were found enriched in signaling
molecule interaction, immune system, and immune diseases, such as
cytokine–cytokine receptor interaction, cell adhesion, intestinal
immune network for IGA production, autoimmune thyroid disease,
and systemic lupus erythematosus (Figures 6A–F). Besides, as shown
in Figures 6G–I, several AML-related gene sets from C2 curated gene
sets in MSigDB were also enriched in the high-risk groups, which
included Verhaak’s AML with NPM1 mutated upregulation, Valk’s
AML cluster 5, and Yagi’s AML FAB markers. Therefore, the above
results suggested that MRG−related classification is highly related to
immune response and AML progress.

Immune Landscape Between High and
Low Mitochondria-Related Gene-Related
Risk Groups of Acute Myeloid Leukemia
Patients
Accumulating studies have shown that the mitochondria-related
biological process such as mitophagy could protect tumor cells
March 2022 | Volume 12 | Article 823831
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FIGURE 2 | Construction of MRG-based prognostic classifier. (A) Each gene’s trajectory. The horizontal axis represents the log value of the gene lambda, and the
vertical axis represents the independent gene’s coefficient. (B) CIs with different values of lambda, (C–E) Distribution of risk score, survival status, and expression of
4 MRGs in TCGA-AML cohort. (F) ROC curve of 4 MRGs’ signature prediction. (G, H) KM survival curves between two risk groups based on 8-gene signature
classification. (I–L) The KM survival plots of 4 MRGs. MRG, mitochondria-related gene; ROC, receiver operating characteristic; KM, Kaplan–Meier.
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from antitumor immune responses, therefore promoting
immune escape (26, 27). Also, the GSEA showed that many
immune-related pathways were enriched in the high-risk group
(Figure 6A). So the function of the MRG risk classification in the
immune landscape was further explored. Thus, we estimated the
differences in the 28 immune cell types’ immune penetration
between low- and high-risk AML patients using the ssGSEA
algorithm. The results of the immune landscape of AML patients
are summarized in Figure 7A, showing that AML patients with
high MRG risk had significantly higher proportions in memory
CD4+ T cell, neutrophils, macrophages, monocyte, dendritic cell,
natural killer (NK) cells, myeloid-derived suppressor cell
(MDSCs), regulatory T cells, and immature B cells. However,
Frontiers in Oncology | www.frontiersin.org 7
there was no significant difference between the 2 groups in the
activated CD4+, CD8+ T cell, CD56 bright NK cell, and activated
B cell (Figure 7B). Therefore, MRG classification might be
highly related to an immunosuppressive microenvironment.

Immunosuppressive Microenvironment in
High Mitochondria-Related Gene Risk
Group
Cancer-Immunity Cycle manages the delicate balance between the
recognition of cancer and the prevention of autoimmunity. Immune
escape of cancer cells is largely achieved by disrupting certain steps in
the tumor immune cycle (28, 29). This cycle is often suppressed by
several genes, which could induce the immunosuppressive
TABLE 2 | The MRGs in the prognostic classifier.

Gene Univariate Cox regression analysis LASSO coefficient

HR 95% CI p-Value

HPDL 1.43 1.11–1.83 0.0049 0.019734
CPT1A 1.69 1.26–2.26 5.00E−04 0.027628
IDH3A 1.79 1.35–2.38 1.00E−04 0.170339
ETFB 1.87 1.42–2.45 0 0.245829
March 2022 | Volume
MRGs, mitochondria-related genes; HR, hazard ratio; LASSO, least absolute shrinkage and selection operator.
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FIGURE 3 | Validation of MRG-based prognostic classifier. (A–C) Distribution of risk score, survival status, and expression of 4 MRGs along with risk score in
TARGET-AML cohort. (D) ROC curve of 4 MRGs’ signature classification in TARGET-AML cohort. (E, F) Survival curves between two risk groups based on 4 MRGs’
signature classification in TARGET-AML cohort. MRG, mitochondria-related gene; ROC, receiver operating characteristic.
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microenvironment of cancer (30). Thus, in this study, 42
immunosuppressive genes involved in seven-step anticancer
immunity were obtained from the Tracking Tumor
Immunophenotype database (TIP; http://biocc.hrbmu.edu.cn/TIP/
index.jsp) (31). Then the expression level of immunosuppressive
genes in high and low MRG risk groups was explored. As shown in
the heatmaps, most of these immunosuppressive genes were found
significantly upregulated in the high MRG risk group in both TCGA
and TARGET AML cohorts (Figures 8A, B). Immune checkpoint
genes are essential for immune escape and immunotherapy of AML
(32, 33). In this study, 5 common immune checkpoints genes,
including PD1(PDCD1), PDL1(CD274), PDL2(PDCD1LG2),
LAG3, and CTLA4, were found to be significantly upregulated in
the high MRG risk group and positively associated with MRG risk
score in both TCGA cohort and TARGET cohort (Figures 8C–V).
Moreover, other than immune checkpoint genes, 12
immunosuppressive genes including VTCN1, CD160, TIGIT,
NOS3, IDO2, SMC3, VSIR, EDNRB, LGALS9, LAIR1, DNMT1,
Frontiers in Oncology | www.frontiersin.org 8
and TGFB1 were found significantly higher in the high-risk groups in
both TCGA cohort and TARGET cohort (Supplementary Figure 3).
DISCUSSION

More and more evidence suggests that a mitochondrion plays a key
role in regulating cell energy level, apoptosis, andmetabolism, which
in turn could influence cell proliferation and differentiation, leading
to the accumulation of immature myeloid progenitor in the
hematopoietic system, which is the major manifestation of AML
(34, 35). Studies have also demonstrated the clinical significance of
mitochondrial targets for their effectiveness against relapsed or
refractory AML (11, 23, 35). Thus, the identification of
mitochondria-related prognostic biomarkers can be used to
predict the prognosis of AML to improve patient management.
A B

C D

FIGURE 4 | Relationship between 4 MRGs’ expression and cytogenetic risk in AML. (A) The heatmap of 4 MRGs in different risk stratification in TCGA-AML. (B) The
boxplot of the 4 MRGs in different risk stratification in TCGA-AML. (C) The heatmap of 4 MRGs in different risk stratification in TARGET-AML. (D) The boxplot of the
4 MRGs in different risk stratification in TARGET-AML cohort. AML, acute myeloid leukemia.
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In this study, for the first time, a prognostic model based on 4
MRGs was constructed and validated for AML patients. The
model performed well in predicting the OS state of AML patients
in TCGA training and TARGET validation cohorts.
Furthermore, the prediction efficacy of the risk model was
superior to that of bone marrow blasts, leukocyte level, and
cytogenetic risk, which are previously reported to be popular risk
factors for AML development (24). Additionally, the correlation
analysis has shown that the MRG-based risk score and
expression level of 4 MRGs in the classifier were positively
related to the cytogenetic risk of samples, showing a good
prediction efficacy on AML prognosis. All 4 MRGs of the risk
model, ETFB, CPT1A, HPDL, and IDH3A, were risk-associated
and highly expressed in the high-risk group, indicating potential
roles of these genes in the development of AML. Among them,
HPDL, 4-hydroxyphenylpyruvate dioxygenase-like protein, a
previously uncharacterized protein, localized in mitochondria,
Frontiers in Oncology | www.frontiersin.org 9
where it may function as 4-hydroxyphenylpyruvate dioxygenase,
which was recently reported to be positively associated with the
development of pancreatic ductal adenocarcinoma (PDAC) (36),
AML (37), and breast cancer (38). Overexpression of HPDL
promotes tumorigenesis and protects tumor cells from oxidative
stress by reprogramming the metabolic profile of PDAC cells
toward glutamine metabolism (36). ETFB, electron transfer
flavoprotein subunit beta, is located in the inner membrane of
the mitochondrial matrix in a complex with ETFA, FAD, and
AMP, which together function as an electron acceptor in the fatty
acid oxidation cascade and subsequent ATP production (39).
However, recent studies have reported ETFB as a novel
prognostic biomarker of many cancers, such as follicular
carcinoma and breast cancer (40, 41). CPT1A catalyzes the
rate-limiting step of the fatty acid oxidation (FAO) pathway,
promoting cell proliferation and suppressing apoptosis (42).
Abnormal CPT1A expression was associated with the poor OS
A B

C

D E F

FIGURE 5 | Efficiency of the MRG risk signature in prognostic prediction in AML from TCGA database. (A, B) Univariate and multivariate Cox analyses, which
evaluated the risk signature’s independence in prognostic value in terms of overall survival in pediatric AML patients. (C) Nomograms for the probability of death at 1,
3, and 5 years. (D–F) The calibration curve of the nomograms. MRG, mitochondria-related gene; AML, acute myeloid leukemia; TCGA, The Cancer Genome Atlas.
***p < 0.001 in multivariate Cox analysis.
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of AML (43), ovarian cancer (44), and glioblastoma stem cells
(45). Leslimar et al. reported that CPT1A could regulate prostate
cancer survival in hypoxic conditions and promote
aggressiveness (46). IDH3A, isocitrate dehydrogenases 3
Catalytic Subunit Alpha, is the key part of isocitrate
dehydrogenases, catalyzing the oxidative decarboxylation of
isocitrate to a-ketoglutarate in citrate cycle (47). Recently, a
study reported that IDH3A could regulate one-carbon
Frontiers in Oncology | www.frontiersin.org 10
metabolism in glioblastoma via the IDH3A-cSHMT signaling
axis, promoting cancer progression through metabolic
reprogramming (48). Abnormal IDH3A expression was
associated with the poor OS of lung and breast cancer patients,
promoting tumor growth by inducing HIF-1-mediated metabolic
reprogramming and angiogenesis (49).

The GSEAs show that the enriched pathways in AML patients
with higher MRG risk mainly related to signaling molecule
A B C

E FD

G H I

FIGURE 6 | Identification of MRG-related signaling pathways with GSEA. (A–F) GSEA results of the gene KEGG enrichment in the AML patients from TCGA.
(G–I) GSEA results of AML-related gene sets enrichment by the AML-TCGA data. MRG, mitochondria-related gene; GSEA, gene set enrichment analysis;
KEGG, Kyoto Encyclopedia of Genes and Genomes; AML, acute myeloid leukemia; TCGA, The Cancer Genome Atlas.
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interaction, immune system, immune diseases, such as cytokine–
cytokine receptor interaction, cell adhesion, intestinal immune
network for IGA production, autoimmune thyroid disease, and
systemic lupus erythematosus (Figure 6). Moreover, several AML-
related gene sets from C2 curated gene sets in MSigDB were also
enriched in the high-risk groups including AML with Verhaak’s
AMLwithNPM1mutated upregulation, Valk’s AML cluster 5, and
Yagi’s AML FAB markers, showing a close relationship with AML
prognosis. Mitochondria deeply involved in energy generation,
differentiation, and activation processes of immune cells play a
key role in the immune system, regulating innate and adaptive
immunity (50–52). Mitochondrial dysfunction is also involved in
many immunological diseases, such as systemic lupus
erythematosus (53), rheumatoid arthritis (54), and type 1
diabetes (55).

Accumulating evidence shows that immune cells are closely
related to the tumor microenvironment (TME) (56–58). It was
reported that the innate immune cells (macrophages, neutrophils,
dendritic cells, innate lymphoid cells,MDSCs, andNKcells) as well
as adaptive immune cells (T cells and B cells) could promote tumor
progression in TME (58). Moreover, mitochondria-related
Frontiers in Oncology | www.frontiersin.org 11
metabolic reprogramming in cancer cells deeply affects gene
expression, cellular differentiation, and the TME (59). In our
research, we found that AML patients with high MRG risk had
significantly higher proportions in memory CD4+ T cell,
neutrophils, macrophages, monocyte, dendritic cell, NK cells,
MDSCs, regulatory T cells, and immature B cells. However, there
was no significant difference in the activated CD4+, CD8+ T cell,
CD56 bright NK cell, and activated B cell, suggesting that MRG
classification might be highly related to an immunosuppressive
microenvironment. It was reported that tumor-associated
macrophages can account for up to 50% of some tumor mass,
supporting tumor progression and resistance to drugs by providing
cancer cell nutritional support (60). Tumor-associated
macrophages and neutrophils were reported to be protumoral,
promoting tumor cell invasion and metastasis and angiogenesis,
remodeling extracellular matrix, and suppressing immune
surveillance (61). Dendritic cells have been reported to be tumor-
promoting in TMEs and to correlate with a positive prognosis in
endometrial carcinoma (62). NK cells are considered killers of
tumor cells. However, their activity is often suppressed in the TME,
due to nutrient and oxygen deprivation, tumor-derived metabolic
A

B

FIGURE 7 | Immune landscape between low and high MRG risk groups of AML patients. (A) Heatmap of immune infiltration of 28 immune cell types between two
MRG risk groups in TCGA-AML cohort. (B) Box plots showing significant differences of immune cells between two MRG risk groups. MRG, mitochondria-related
gene; AML, acute myeloid leukemia. *p < 0.05, **p < 0.01, ***p < 0.001 and ns, not significant, high risk group versus low risk group.
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FIGURE 8 | Immunosuppressive microenvironment in high MRG risk group. (A, B) Heatmaps of the immunosuppressive genes in high and low MRG risk groups in
TCGA (A) and TARGET (B). (C–L) Expressions of 5 immune checkpoints (PD1(PDCD1), PDL1(CD274), PDL2(PDCD1LG2), LAG-3, and CTLA-4) in two MRG risk
groups and their correlation with MRG risk score in AML-TCGA patients. (M–V) Expressions of 5 immune checkpoints (PD1(PDCD1), PDL1(CD274), PDL2
(PDCD1LG2), LAG-3, and CTLA-4) in two MRG risk groups and their correlation with MRG risk score in AML-TARGET patients. MRG, mitochondria-related gene;
TCGA, The Cancer Genome Atlas. *p < 0.05 and **p < 0.01, high risk group versus low risk group.
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end products, and impaired metabolism in the TME (63). MDSCs
are one of the major players in the TME, exerting immune-
suppressive activity (64). Regulatory T cells could also suppress
anticancer immunity and inhibit effective antitumor immune
responses in TME (65). Immune checkpoints play a crucial role
in carc inogenes is and deve lopment for enhancing
immunosuppression in cancer (66). Ok et al. pointed out that in
hematological malignancies, the common targets of immune
checkpoints mainly include PD1, PD-L1, PD-L2, CTLA-4, TIM-
3, and LAG3 (67). In our study, 5 common immune checkpoints
(PD1, PDL1/2, LAG3, and CTLA4) were significantly upregulated
in the high MRG risk group and positively related to MRG risk
scores, suggesting an immunosuppressive bone marrow
microenvironment in the high MRG risk group (Figure 8). It was
reported that there is resistance to immunotherapy in most
leukemia patients, partially due to the immunosuppressive bone
marrow microenvironment (68). Moreover, leukemia cells could
create the immunosuppressive bone marrow microenvironment
through reprogramming metabolism to generate enough energy
and to escape antitumor immune surveillance (68). Additionally,
leukemia cells escape immune recognition through expressing
inhibitors or immune checkpoint molecules such as PD-L1 or
CTLA-4 (69).

Inevitably, due to the limitations of data sources and research
methods, the present study has some deficiencies. Firstly, it was a
retrospective study based on public databases of TCGA, GTEx,
and TARGET, consisting of only 673 samples included, and this
still requires further verification in vivo and in vitro. Finally, the
clinical application of the MRG-based model still requires large-
scale, multicenter, and in-depth research.

In conclusion, this was the first research to establish a
mitochondria-related prognostic model for AML, which could
be used as an independent prognostic indicator for AML patients.
Moreover, we also found that high MRG risk AML patients were
closely associated with an immunosuppressive microenvironment,
indicating that attenuating immunosuppression in the bone
marrow microenvironment may be an important treatment for
AML. Additionally, we identified several targeted therapy drugs
for MRG risk signature. Our study may provide a reference for the
clinical prognosis and treatment of AML based on the regulation
of mitochondrial function.
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