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The advent of disease modifying therapies (DMT) in the past two decades has been

the cornerstone of successful clinical management of multiple sclerosis (MS). Despite

the great strides made in reducing the relapse frequency and occurrence of new signal

changes on neuroimaging in patients with relapsing remitting MS (RRMS) by approved

DMT, it has been challenging to demonstrate their effectiveness in non-active secondary

progressive MS (SPMS) and primary progressive MS (PPMS) disease phenotypes. The

dichotomy of DMT effectiveness between RRMS and progressive MS informs on distinct

pathogeneses of the different MS phenotypes. Conversely, factors that render patients

with progressive MS resistant to therapy are not understood. Thus far, age has emerged

as the main correlate of the transition from RRMS to SPMS. Whether it is aging and

age-related factors or the underlying immune senescence that qualitatively alter immune

responses as the disease transitions to SPMS, that diminish DMT effectiveness, or both,

is currently not known. Here, we will discuss the role of immune senescence on different

arms of the immune system, and how it may explain relative DMT resistance.

Keywords: adaptive immunity, innate immunity, multiple sclerosis, immunosenescence, progressive multiple

sclerosis, disease modifying therapies

INTRODUCTION

Multiple sclerosis (MS) is the most prevalent inflammatory disorder of the central nervous system
(CNS) with a presumed autoimmune pathogenesis. MS was traditionally viewed as a T cell-
mediated inflammatory disorder based on numerous observations made over the span of many
decades. Aside from the abundance of lymphocytic infiltrates in MS lesion biopsies, other factors
included: (A) the induction of the experimental autoimmune encephalomyelitis (EAE) model of
MS in healthy recipient animals by adoptive transfer of myelin-reactive CD4+ T helper (Th)
cells from previously immunized donor mice (1); (B) the genetic association of MS with human
leukocyte antigen (HLA) DRB1∗15:01 (2), a major histocompatibility complex (MHC) class II
molecule, required for the presentation of linearized peptides to CD4+ Th cells; (C) the failed
attempt to treat MS patients with an altered peptide ligand of myelin basic protein (MBP) that
activatedMBP-reactive CD4+ Th cells, leading to disease exacerbation instead (3); (D) the initiation
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and re-activation of MS with immune checkpoint inhibitors
during cancer therapy (4); and (E) the beneficial effects of
pharmacotherapies in early relapsing MS that deplete T cells,
or sequester them out of the CNS (5, 6). This last aspect has
illustrated how in early MS, relapses and new MS brain lesions
are triggered and perpetuated by T cells and possibly other
bone marrow-derived immune cells (7). The success of B cell
depleting therapies in treating activeMS, further corroborates the
role of bone marrow-derived immune cells outside of the T cell
compartment in pathogenesis of the disease (8–10). Changes in
the clinical phenotype of MS, including treatment responsiveness
will likely be linked to these cells as well.

A clinical course typified by relapses followed by periods
of remission defines relapsing-remitting MS (RRMS) (11, 12).
Patients with early MS who display clinical and paraclinical
magnetic resonance imaging (MRI) disease activity gain a
detectable and substantial benefit from receiving disease
modifying therapies (DMT); patients without these evidences
of disease activity, are defined as progressive MS (PMS);
specifically, based on the 2013 Lublin criteria, PMS patients
accrue objectively documented neurological disability without
intermittent recovery and do not appear to receive any benefit
from DMT (12, 13). Thus, the molecular and cellular signature
of MS, as the primary therapeutic targets, change with age and
disease becomes non-active. PMS at this stage is considered
either secondary MS (SPMS) when following a period of RRMS,
or primary progressive MS (PPMS) in lieu of relapsing disease
activity (11, 12). PPMS patients are ∼10 years older upon
diagnosis than RRMS patients. A subsection of patients with
PMS, do show disease activity as defined above (12). There is no
disease biomarker to indicate when the transition from RRMS to
SPMS starts or is completed.

Currently, different hypotheses try to explain this transition;
to date, age has been the most relevant prognostic factor
underlying the transition from active RRMS to non-active SPMS
(14–17). In contrast, a meta-analysis of all blinded, randomized
clinical trials of DMT for RRMS indicated that DMT efficacy
were independent of the recipients’ age (18) despite a clear trend
toward reduced effectiveness. Unfortunately, individualized data
was not made available to the authors, and these results have to
be interpreted with some caution.

As a biological correlate to age, immunosenescence has been
advocated as a candidate to explain diminished DMT efficacy
in PMS (19). Immunosenescence correlates with age relative to
overall life expectancy (20). It is often accompanied by a decline
in key immune functions such as the capacity for strictly non-
self-antigen presentation and breadth of antigen recognition, the
formation of long-lasting immune memory, and active immune
surveillance (20). Here, we discuss whether immunosenescence
contributes to the transition from active to non-active MS and
how that correlates to loss of DMT efficacy in the context of PMS.

AGE, IMMUNOSENESCENCE, AND LOSS
OF DMT EFFICACY

The transition to SPMS may not be entirely influenced by
age. It takes place on average two decades following the

clinical diagnosis of RRMS in adult-onset MS (AOMS) (21).
Given that currently approved DMT remain effective even in
patients with late-onset MS (LOMS), diagnosed in 50-year-
old patients or older, it appears counterintuitive to attribute
DMT unresponsiveness to age alone. Although, PPMS is
more prevalent among LOMS than AOMS, still, nearly 50%
of LOMS cases are RRMS and respond to DMT (18, 22).
Immunosenescence as a potential contributor to DMT-resistance
may be present in both AOMS and LOMS, and not entirely driven
by age.

A correlate of intact adaptive immune function is
responsiveness to vaccination with neo-antigens. Expectedly,
vaccine efficacy wanes in elder populations (23); however, data on
vaccine response among elderly RRMS demonstrate substantial
adaptive immune response, despite long term DMT treatment
with proven negative effects on vaccine response (24), reiterating
how age alone does not define quality of immune response.

Current DMT in MS, including interferons (25–27),
copolymers (28) depleting agents against CD20 (8–10) and CD52
(29), nucleoside synthesis antagonists (30–32), sphingosine-
1 phosphate receptor modulators (33–36), nuclear 1 factor
(erythroid-derived 2)–like 2 modulators (37) or α4-integrin
antagonists (38, 39), aim to either deplete lymphocytes, modulate
pro-inflammatory features or inhibit their traffic into the
CNS. These DMT classes are approved for use in active MS.
The validating trials for the only two FDA-approved DMT
for use in SPMS, namely, cladribine (40, 41) and siponimod
(34) recruited a mix of active and non-active progressive MS
patients, limiting their relevance in pure non-active MS cohorts
(13). These trials likely benefited participants with residual
active MS (42). Conceivably, immunosenescence, both predates
and promotes the transition from DMT-responsive active
MS to DMT-resistant non-active MS. However, instigators or
accelerators of immunosenescence in the context of MS require
further elucidation.

ADAPTIVE IMMUNOSENESCENCE AND
DMT-RESISTANT PMS

The adaptive immune system is not fully competent at birth; it
becomes fully functional post-puberty and in early adulthood,
declining progressively thereafter (43–46). Despite the age-
associated decline in thymic epithelial tissue, it has been
demonstrated that both the thymic cortex and thymic medulla
function throughout life (47–49); however, the inevitable thymic
involution is accompanied by the reduction of T cell diversity
(49). Intact and functional thymic epithelium continually
produces T cells migrating out of thymic medulla to peripheral
lymphoid organs (50, 51). T cells generated from thymopoiesis
have a full T cell receptor (TCR) repertoire, and are capable
of generating responses to neo-antigens. In contrast, expansion
of the peripheral T cells, driven by thymic involution may lead
to repertoires limited to those of existing memory T cells and
reduced capacity of immune response to new antigens (52–55).
As mentioned, T cells are critical in initiating and perpetuating
inflammation in active MS (7). MS pathogenesis potentiates T
cell-antigenic spreading and repeatedly stimulates CNS-specific
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FIGURE 1 | Immune senescence contribution to the lack of effectiveness of disease-modifying therapies (DMT) in progressive multiple sclerosis (MS). Senescent T

and B immune cell phenotypes become more predominant as the immune system ages. Age-dependent deterioration of tissues including central nervous system

(CNS) glial cells increases. Bone marrow-derived myeloid cells are activated and compound adaptive immune senescence. Dysregulated myeloid cells prospectively

accumulate within the CNS milieu. Inflammatory MS, characterized by active relapses, transitions to non-active progressive MS, which is resistant to DMT.

T cells (56). Suppressed CD28 expression, mediated by repeated
antigenic stimulation is associated with senescent phenotypes in
T cells (Figure 1) (23, 57–61). A similar phenotype of CD28low

T cells is detectable in the pool of circulatory effector memory
T cells with senescent attributes in the context of MS. (62, 63).
Immunosenescence is not restricted to cellular immunity and
similarly carries over to B cell-mediated immune responses (61).
Noticeably, non-cellular adaptive immune responsesmediated by
B cells have been implicated by preclinical models as mediators
of CNS autoimmunity (64). The Epstein-Barr virus (EBV),
a plausible pathogenic MS trigger, is in fact a B cell tropic
infection (65). EBV infection primes polyclonal populations of
B cells to avidly present self-antigens to autoreactive CD8+

cytotoxic T cells (66). Post-mortem studies that have yet to
be reproduced showed abundant EBV infected B cells within
actively demyelinating MS lesions (66, 67). Similar to T cells,
constant B cell activation may drive premature senescence (68).
Interestingly, surface expression of CD40, a correlate of B cells
antigen presentation andmemory formation, signifies senescence
and is elevated in EBV infected B cells (69). In B cell senescence, it
is quality rather than quantity of humoral response that declines,
resulting in comparable volume of antibodies, albeit less effective.
This is evident from diminished antibody specificity for foreign
antigens, and decreased predominance of IgG isotypes along with

lowered affinity of antibodies (70). Prematurely senescent B cells
provide antigen presentation for expansion andmaintenance of T
cells in autoimmune disease likeMS. Namely, increased signaling
via CD80, CD86, CD11c, and CD40 by B cells in MS patients
is higher than healthy controls and responsible for promotion
of inflammatory T cell responses. Ultimately, the expression
of these markers correlates with exhausted or senescent B cell
phenotypes (Figure 1) (23, 57–61, 71). As discussed earlier,
anti-CD20 agents that deplete B cells have become a mainstay
of therapy for active MS with proven efficacy (72). However,
B cell depletion with the humanized anti-CD20 monoclonal
antibody (72) ocrelizumab, which is approved for PPMS, does
not deliver significant neuroprotective effects as assessed by
serial blood measurements of neurofilament light chain (NfL)
(73). CD20+ cells are not a single population and range from
naïve B cells to fully matured memory cells. Since production
of new pro-B cells is directly affected by senescence (74),
continued treatment with anti-CD20 therapies likely depletes
naïve B cells with diverse B cell receptor (BCR) repertoires.
Likewise, continuation of T cell-depleting DMT in non-active
PMS will likely result in T cells that lack diverse naïve cells.
In this manner, increasing age and DMT therapy compound
adaptive immunosenescence in MS. Nevertheless, if adaptive
immunity was relevant in perpetuating disease progression in
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PMS, DMT effectiveness should have remained constant or even
slightly improved since PMS is dominated by senescence. In
fact, if DMT unresponsiveness in PMS was driven predominantly
by adaptive immunity, decreased potency of senescent adaptive
immunity would have led to improvement of clinical outcomes
in elder patients. Since DMT optimally address adaptive immune
cells in the periphery, DMT resistance in non-active PMS
requires explanations beyond adaptive immune components or
peripheral compartment.

INNATE IMMUNOSENESCENCE AND DMT
RESISTANCE IN PMS

Innate immunity is influenced by the immunosenescence.
Contrary to adaptive immunity, the innate immune system in
mammals is considered functional at birth, and retains most
of its function throughout life (61). Cell migration, adhesion
and phagocytosis of polymorphonuclear leukocytes (PMN) were
believed to stay virtually unaltered by aging (75–78); however
studies have shown that certain innate immune cell functions
may falter with age (79–81). Immunosenescence pushes innate
immune cells toward functional dysregulation that compounds
the effects of suboptimal senescent adaptive immunity. In MS,
effects of immunosenescence on innate immune are noticeable in
four domains; namely, (1) Aged innate immune systemmanifests
with the preponderance of dys-homeostatic phenotypes and
forme pleine of the ideally self-limiting responses. This is
likely to promote chronic and continued tissue destruction,
sub-functional remodeling and delayed healing (81–84). (2)
Within the CNS, myeloid cells, as antigen presenting cells
(APC), re-activate and retain CD4+ T cells, and contribute
to effective immune surveillance (85). These cells are altered
via senescence. There are three compartments within the brain
where myeloid cells exert their effect: (A) the parenchyma,
(B) cerebral perivascular spaces (CPVS) and (C) meninges.
Parenchymal microglia are tissue-intrinsic macrophages of the
CNS (86–88). The other relevant compartments for antigen
presentation are CPVS and meninges, which are populated by
monocyte-derived macrophages and dendritic cells (DC). In
CX3CR1 GFP+ mice, it was demonstrated that microglia and
monocyte-derived brain macrophages are distinct entities (89,
90). Meninges have been implicated as an anatomic site in host
defense and autoimmunity. Major histocompatibility complex
II (MHCII)-positive cells, detectable within all meningeal
layers (91), include monocyte-derived macrophages, monocyte-
derived DC (mDC) and classical DC (cDC) (92). While some
studies reported DC from young and aged humans having
similar surface expression of MHCII molecules and elicited
equal T cell proliferation, other investigators demonstrated
significantly lower MHCII expression by DC in the elderly
(93, 94). (3) During hematopoiesis, immunosenescence reduces
lymphopoiesis in favor of heightened myelopoiesis, resulting in
a net increase in myeloid cell output (59). (4) Inflammaging,
defined as chronic, low grade and sterile inflammation, despite
the overall diminishment in immune functions, increases with
age (81, 95). Bone marrow-derived myeloid cells (BMC), activate

and upregulate surface adhesion molecules in response to
inflammation (96). This may allow BMC to penetrate and accrue
within target tissues such as CNS (97).

CNS microenvironment in response to the aforementioned
events may shift to a dys-homeostatic state adopted by CNS-
resident myeloid cells (97). Previous observations postulated
that compared to naïve quiescent microglia, activated microglia
and infiltrated BMC during CNS inflammation upregulate
inflammation-associated signals (92). Myeloid cells within the
CPVS are constantly replaced by BMC, and this turnover is
accelerated during inflammation (98). During EAE, parenchymal
microglia and BMC exhibited mutual activation markers
following the onset of clinical disease inmice. Specifically, clinical
disease onset was temporally associated with the appearance
of BMC in the CNS inflammatory milieu (97). This was not
a transient event and the newly present activated BMC were
likely retained within the CNS microenvironment and merged
with the activated microglial pool (97). It is still unclear to
what extent these changes advance functional disarray and
homeostatic disturbance; however, current DMT in MS do
not primarily target BMC. Certain DMT might modulate
the trafficking of BMC into the CNS, as demonstrated with
natalizumab therapy (99). However, the ASCEND trial, a phase
3 study on the efficacy of natalizumab therapy in SPMS, failed to
show meaningful clinical benefits (100), perhaps suggesting that
ongoing migration of BMC in SPMS is no longer highly relevant
to disease progression.

“Smoldering” MS lesions are a candidate to explain
PMS and chronic destruction of CNS parenchyma without
evident inflammation. They are dominated by the presence
of perilesional activated myeloid cells without lymphoid
inflammation (101, 102). Whether these myeloid cells are CNS
intrinsic or bone marrow-derived, or a mixture of both is
incompletely understood. Smoldering MS is more prevalent
among SPMS patients who are on average older than active
MS patients, however, as we discussed before, age likely is not
the driving factor. The transition to SPMS takes place faster
in LOMS patients; however, accrual of disability for LOMS
patients during years living with SPMS is slower in comparison
(21). Possibly, later onset and relatively brief inflammatory
phase in LOMS, spares them from fully-recognized disease
burden. In the context of non-active PMS, antigen-independent
and compartmentalized chronic inflammation, shielded from
therapeutic efforts, is plausible. The corollary to this hypothesis
would be that even outside of common DMT, other anti-
proliferative therapies might fail to provide meaningful clinical
benefit to PMS (103), a logic that should guide hematopoietic
stem cell transplants as well (104). Furthermore, if myeloid cells
drive PMS, they probably do so in a stage-specific fashion; (1)
BMC likely enter the CNS throughout active and non-active MS
and are retained within the CNS; and (2) altered CNS-intrinsic
myeloid cells, respond to BMC presence, at sites similar to the
border of smoldering lesions. Adaptive immune cells most likely
instigate these events at first; during non-activeMS, such external
cues may no longer be absolutely required and suppression of
adaptive immune system via DMT, thereafter provide little
clinical benefit.
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GLIAL SENESCENCE AND DMT
RESISTANCE IN PMS

Glial cells including astrocytes and microglia are critical in
CNS. Immune functions related to astrocytes in the context of
MS and its preclinical models have recently attracted renewed
interest; however their pathogenic role in MS is currently less
clear. For instance, the depletion of astrocytes worsens clinical
disease in an acute EAE model but ameliorates progressive
EAE (105). A subpopulation of astrocytes expresses complement
component 3 (C3) in response to interleukin-1 alpha (IL-1α)
tumor necrosis factor alpha (TNFα) and complement component
1, subcomponent q (C1q), and possesses neurotoxic properties
and are upregulated in MS lesions (106). Their development
underscores a bi-directional interaction between astrocytes and
myeloid cells. Pro-inflammatory signals from Microglia and
BMC in CNS are a primary inducer of such astrocytes while
activated astrocytes allow further recruitment and entry of
pro-inflammatory monocytes to the CNS; this multiplicative
effect may have been intercepted by astrocyte depletion leading
to the aforementioned amelioration of chronic EAE (106,
107). Furthermore, senescent astrocytes, may contribute to
neurodegeneration in an overburdened neural network post
demyelination. Astrocytes possess star-shaped appearance, and
are intimately associated with the CNS vasculature (108).
Together with endothelial cells and pericytes, astrocytes are
critical in forming and maintaining the blood brain barrier
(BBB). Astrocytes can express MHC class II molecules in defined
experimental conditions which endows them to serve as potential
APC to CD4+ T helper cells (109–111). Cellular changes
associated with astrocyte senescence include the increased
expression of glial fibrillary acidic protein (GFAP) and vimentin
(112, 113). This is at least partly driven by increased signaling
of transforming growth factor beta 1 (TGFβ1). TGFβ1 inhibits
astrocyte proliferation and induces a senescence-associated
secretory phenotype (SASP), which involves an enhanced
expression of inflammatory molecules (19, 114).

Inflammation induced phenotypes in microglia also mimic
senescence. Specifically, CNS microglia exhibit a phenotypical
profile that has been frequently associated with aging in
the context of neurodegenerative disorders (115). These
attributes, including increased iron storage, production of
pro-inflammatory cytokines, lower motility and diminished
phagocytic capacity are not strictly age-dependent and are
inducible by other insults as well. Single cell transcriptomic
studies on EAE models as well as human samples have shown
presence of distinct microglia-like cells in CNS inflammation
(97, 116). Microglia are maintained by local proliferative
self-renewal (90). Within the CNS, functional properties of
microglia, as tissue resident myeloid cells, across age groups
are likely constant. Interestingly, it was recently shown that
microglial density in the brain increases in aged mice (117).
However, the authors had utilized markers that correlated with
activated microglia, namely Iba-1. Therefore, the observed
increase in microglia density with age might point more toward
heightened microglial activation and subsequent reduction in
the pool of homeostatic quiescent microglia. Senescent microglia

are found within the brains of PMS patients despite pronounced
reduction in inactive lesions (118, 119). As discussed, these cells
might exert their role at the border of smoldering lesions (102).
Phagocytosis of myelin debris supports re-myelination efforts;
microglial depletion associates with loss of phagocytic capacity
in the microenvironment of MS lesions, likely promoting
dysmyelination. Aged human microglia exhibit proclivity to
express ferritin, believed to be associated with senescence
(120). Increased iron uptake likely follows the destruction of
iron-containing oligodendrocytes in MS and is observable in
aged microglia. These limitations to CNS re-myelination efforts,
possibly lend to PMS phenotype.

Glial cells are not a primary target for current DMT, and
their role in relation to why DMT fail remains to be explained.
The restricted CNS bioavailability of most DMT, is unlikely
to impact glial cells. Further studies are required to elucidate
the significance of these observations and their potential for
development of novel therapeutics.

TOWARD A THEORY FOR DMT
RESISTANCE IN PROGRESSIVE MS

Based on extensive data from clinical trials and post-approval
observational studies it is evident that the current therapeutic
dogma in MS, namely the depletion of inflammatory adaptive
immune cells or their sequestration out of the CNS is effective
during active RRMS. Current data gleaned from clinical trials
suggest that most DMT have minimal effects on non-active
progressive MS without signs of disease activity (13, 34, 73,
121, 122); therefore administration of DMT that target immune
components may not be in the best interest of these patients.
Alternatively future therapeutic endeavors may benefit from
incorporating strategies that cover innate immunity and glial
targets within the CNS.

The evidence presented here supports a view of DMT
resistance associated with immunosenescence in PMS (Figure 1).
Possible pharmacological efforts to address immunosenescence
may adopt designs that identify senescence-specific factors,
amenable to modulation. A desired goal and measure of success
could be delayed transition to non-active PMS. Current DMT,
as effective as they are in controlling RRMS, are unqualified
to address the breadth of ongoing deleterious effects of MS
(123–125), including the role of innate immune cells and CNS
glial components. Myeloid cells, as potential candidates for
targeted novel therapies in non-active PMS, retain phenotypical
plasticity. Curtailing the dys-homeosatic signaling in these cells
and safeguarding against further disruption of CNS quiescence,
is a biological plausibility (126, 127). Given the current
availability of analytic tools with single-cell resolution, deep
characterization of myeloid sub populations and definition of
exclusive phenotypical signatures in pertinent compartments
is both feasible and indispensable. Molecular targets, acquired
through this process could serve as a map for pre-clinical
efforts (128, 129).

In conclusion, immunosenescence as a multivariate
phenomenon, is not defined by advancing age alone and its
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constellation of immunological effects over time culminates to
DMT resistance in PMS. Current DMT mechanisms of action
are optimized to mitigate inflammation-induced damage during
active MS. They are limited to address the inevitable transition
to non-active PMS or remain effective thereafter. Clinical
and biological data call for a more targeted approach with an
emphasis on myeloid cells, innate immunity components and
glial cells in the future.
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