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Wafer-scale functional circuits based on two
dimensional semiconductors with fabrication
optimized by machine learning
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Hui Shen1, Fuyu Bai1, Daming Huang1, Jianan Deng 2, Antoine Riaud 1, Zihan Xu3, Chenjian Wu4,

Shiwei Xing4, Ye Lu2, Shunli Ma1, Zhengzong Sun 1, Zhongyin Xue5, Zengfeng Di5, Xiao Gong6,

David Wei Zhang1, Peng Zhou 1✉, Jing Wan2✉ & Wenzhong Bao 1✉

Triggered by the pioneering research on graphene, the family of two-dimensional layered

materials (2DLMs) has been investigated for more than a decade, and appealing function-

alities have been demonstrated. However, there are still challenges inhibiting high-quality

growth and circuit-level integration, and results from previous studies are still far from

complying with industrial standards. Here, we overcome these challenges by utilizing

machine-learning (ML) algorithms to evaluate key process parameters that impact the

electrical characteristics of MoS2 top-gated field-effect transistors (FETs). The wafer-scale

fabrication processes are then guided by ML combined with grid searching to co-optimize

device performance, including mobility, threshold voltage and subthreshold swing. A 62-level

SPICE modeling was implemented for MoS2 FETs and further used to construct functional

digital, analog, and photodetection circuits. Finally, we present wafer-scale test FET arrays

and a 4-bit full adder employing industry-standard design flows and processes. Taken

together, these results experimentally validate the application potential of ML-assisted fab-

rication optimization for beyond-silicon electronic materials.
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Two-dimensional (2D) semiconductors have potential
applications from mainstream logic and analog circuits to
flexible electronics1–8. Semiconductive transition-metal

dichalcogenides (TMDs) are a family of 2D semiconductors
with versatile band structures, among which MoS2 is the most
widely studied representative of TMDs9–18. The atomically thin
channel with dangling-bond-free interfaces and low in-plane
dielectric constants ensures high carrier mobility in extremely
scaled devices with robust control over short-channel effects
(SCEs)19–21. While intrinsic advantages of 2DLMs are promising
for more-than-Moore electronic applications22–25, it is still
challenging to meet the stringent requirements for large-scale
circuit- and system-level applications, where the primary chal-
lenges are wafer-scale material synthesis and device
processing26–33. Recently, worldwide research efforts on chemical
vapor deposition (CVD) and metal–organic CVD synthesis have
enabled semiconductive TMD films with large areas34–36.
Although satisfied crystalline quality and large-scale uniformity
still require further improvement of synthesis techniques, cur-
rently available wafer-scale TMD films are practically sufficient
for fabricating large-scale circuits.

In order to realize complex cascaded circuits based on 2D
semiconductors, voltage-level matching and high noise margins
are also important37, placing the need for the accurate control of
threshold voltage (VT) of field-effect transistors (FETs). So far, a
functional circuit consisting of 115 MoS2 FETs fabricated by a
gate-first technology has been reported37,38. However, such gate-
first technology requires a more complex film-transfer processing
and an extra step to form contact via, which not only introduces
defects to MoS2 films but also drastically reduces the yield and
reproducibility of wafer-scale fabrication. Moreover, from a
practical point of view, a top-gate (TG) structured FET with a
high-k dielectric layer (i.e., conventional gate-last technology), is
necessary for independent gate control and circuit-level
integration39. Hence, large-scale circuits require more emphasis
on TG-FET fabrication optimization toward wafer-scale uni-
formity and reproducibility. However, the ultrathin nature of 2D
semiconductors makes them extremely sensitive to exterior
environments and fabrication processing, especially the top
interface of 2D semiconductors. In their TG-FET fabrication
procedure, all individual processing steps are highly coupled to
each other because any subsequent processing steps will influence
the previous ones, making the processing optimization of 2D
semiconductors more complicated than those in bulk semi-
conductors such as Si and Ge.

In this work, to realize batch fabrication using 2-in. MoS2
wafer, machine-learning (ML) algorithms were used to analyze
experimental data and evaluate various key process parameters
that significantly impact the electrical characteristics of 2D-FETs,
enabling optimized electrical performance for enhancement-
mode FETs fabricated using ML-guided gate-last processing.
Calibrated by measured electrical data, the device modeling is
conducted to guide the design of basic digital, analog, and
optoelectrical circuits. With wafer-scale processing using
industry-standard design flows and processes, our work illustrates
the feasibility of using ML in device-processing optimization for
emerging novel materials and shortens the learning cycle from
fundamental research to practical application.

Results
Machine learning-assisted co-optimization. High-quality, uni-
form MoS2 was grown using customized CVD equipment (see
Methods). Raman mapping results indicate that the synthesized
wafer is uniform at the wafer scale, as shown in Fig. 1a (see
Supplementary Note 1 for more details). The subsequent

fabrication of high-performance MoS2 FETs requires optimizing
individual processing modules, such as channel doping,
source–drain contacts, and TG gate stack. Due to the extremely
high sensitivity of carriers in the MoS2 channel to the ambient
environment, these processing steps are strongly coupled together
through the MoS2 channel interface and an ultrathin TG dielec-
tric layer (around 10-nm thick), making comprehensive process
optimization much more complex and challenging, as illustrated
in Fig. 1b. The processing steps are all correlated to the final
device-performance metrics, including carrier mobility (μ),
threshold voltage (VT), subthreshold swing (SS), and current
on–off ratio (Ion/Ioff), as shown in Fig. 1c. For practical applica-
tions, it is necessary to optimize the combination of these
quantities, and different device applications also require different
optimization strategies, e.g., a high μ is critical for faster operation
speed, and a small SS is essential for low-power consumption.
After optimizing wafer-scale material and device-fabrication
processes, we can continue the device characterization, SPICE
modeling, and circuit design. The obtained device and circuit-
characterization results can also be further used to guide
improvements to the fabrication process, as illustrated by Fig. 1d.

The fast-developed ML technology is commonly used for the
efficient understanding of complex mathematical or logical
models. ML has been used in many disciplines, such as exploring
novel materials40, but there has never been any report on using
ML to optimize process modules for 2D devices. Here, we show
that ML can improve the fabrication process of devices built on
emerging semiconductors more effectively than the conventional
process-optimization method. Specifically, ML is used to under-
stand the impact of each processing step on the final device
performance. This is essential for materials, such as MoS2 grown
via CVD on an insulating substrate, making device measurements
after each processing step difficult.

A complete process for fabricating MoS2 TG-FETs is
schematically shown in Fig. 2a (also see Supplementary Note 2
for detailed processing steps). The FET performance is measured
at the end of the process flow. Ensemble learning (EL), a
supervised ML method where multiple learning algorithms are
aggregated for more accurate prediction41, is used here as it is
effective for classifying imbalanced data (details see Supplemen-
tary Note 3). The decision-tree method is used as a weak classifier
because it can efficiently handle discrete data (Fig. 2b). More than
560 MoS2-FETs on over 40 different wafers were fabricated using
specially designed process flows to provide a comprehensive
database. We first focus on two device-performance parameters, μ
and VT, as μ is directly correlated to operation speed and VT is
essential for fabricating an enhancement-mode FET. The
importance of each processing step can be determined using
one favored parameter (μ or VT) as the sorting standard for EL
analysis (Fig. 2c). The generated results are reasonable upon
physical analysis, since VT is primarily influenced by the TG
structure (metal work function and charge impurities/dipoles in
the deposited-gate dielectric). At the same time, the mobility μ is
extracted by the Y-function method, which depends on multiple
factors such as interfacial scattering and contact resistance42. The
TG-electrode metallization also becomes an essential step as
indicated by ML analysis, which is unexpected (for details see
Supplementary Note 7). μ, VT, and other performance parameters
can be comprehensively considered by multiplying a weighting
factor for each parameter, depending on the requirements of
various functionalities.

We then demonstrate that ML can also be used to co-optimize
all process steps, as shown in Fig. 2d. After the EL training, a
score predictor can predict the results from a specific processing
combination (i.e., one process recipe). All possible process recipes
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are then sorted using a grid-search method, as shown in Fig. 2e.
To demonstrate this, we fabricated more than 500 MoS2 FETs,
which are summarized in the μ–VT plot in Fig. 2f. Each color
corresponds to FETs fabricated by one process recipe. Most
recipes were designed by human experiences based on step-by-
step optimization (details see Supplementary Notes 4-9). For
example, one recipe provides a high μ value (orange circles), and
another provides a positive VT (blue circles). However, mixing
two recipes (green circles) cannot guarantee both high μ and
positive VT, mainly due to crosstalk between different processing
steps (for detailed discussion see Supplementary Note 9). There-
fore, the combination of multiple steps with each optimized does
not necessarily generate the best device. We then fabricated a
batch of devices (red stars in Fig. 2f) following the suggestion of
the sorting result (red arrow in Fig. 2e). This recipe (processing
details, see Supplementary Note 9) also gives rise to an average μ
of about 75 cm2/V ∙ s and VT of 2.1 V, as well as a high wafer-scale
uniformity that is important for large-scale circuits, as shown in
Fig. 2g (see more electrical characterizations in Supplementary
Note 10). In the future, device physics is still necessary to
understand each aspect deeply for further optimization. However,
the detailed physical explanations are not the focus of this work.

Therefore, compared with the traditional design of experiment
(DoE), our ML-assisted approach can effectively reduce the
research workload of complex co-optimization. Here, the
application of the ML algorithm for MoS2 TG-FET optimization
is only a case study, and its capability to reduce the learning cycle
of device optimization can be conveniently extended to other
emerging electronic materials and novel devices.

From transistors to circuits. Since the FETs built on the wafer
have high uniformity, we use an RPI model (level= 62) to
simulate MoS2 FETs in an HSPICE simulator. As is shown in
Fig. 3a, b, to fit the transfer and output characteristics of MoS2
FETs, the parameters of the model are configured by adjusting the
empirical parameters and characteristic parameters (such as
mobility and VT extracted from transfer curves, thickness and
permittivity of the dielectric, and W and L of MoS2 channel). The
voltage-transfer characteristics (VTC) for a pseudo-NMOS MoS2
inverter (M1 as a load transistor and M2 as a pull-down network)
were also simulated in HSPICE using the simulation parameters
from the same model. By sizing the aspect ratio W/L of two MoS2
FETs (Fig. 3c) and shifting the VT value (Fig. 3d) of the M1
independently, the voltage-switching point can be tuned to the
proper position (around half of VDD) to achieve rail-to-rail output
swing and large noise margin (Supplementary Note 11).

A flip-flop is a fundamental storage element for sequential
ICs43–46. Figure 3e shows a circuit schematic and a die photo of a
negative edge-triggered D flip-flop (DFF) based on 8 NANDs
with 2 inputs and 3 inverters. The measured waveforms from the
DFF are plotted in Fig. 3f, where the device outputs correct logic
values for given input data on the falling edge of the clock (CLK)
and holds the data until the next falling edge. A full adder is
another key combinational circuit usually used as a fundamental
building block in an arithmetic logic unit (ALU)37,47. Figure 3g
shows a circuit schematic of a 1-bit full adder and a photograph
of the die. The 1-bit full adder consists of 10 NANDs, three
inverters, and 1 NOR with 39 n-FETs in total. The measured-
output waveforms from the 1-bit full adder are shown in the
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bottom plots of Fig. 3h, where the outputs (“S” and “Co”)
produce the correct rail-to-rail voltage for all possible input
combinations with 3.0 V supply voltage. More logic modules are
also demonstrated in Supplementary Notes 12–13.

A ring oscillator (RO) is an industrial standard benchmarking
circuit for performance evaluation47,48. We then fabricated and
measured a 5-stage pseudo-CMOS RO with an output buffer

(Fig. 4a) to assess the high-frequency switching capability of
MoS2. Such RO circuit is composed of five inverters cascaded in a
loop chain. High uniformity of all inverter stages, such as their
large noise margin, is essential for robust oscillator performance.
As shown in Fig. 4b, an oscillation frequency of 19.5 kHz with a
propagation delay of τpd ¼ 1=ð2nf Þ ¼ 5:13 μs per stage was
measured at VDD= 3 V, where n is the number of stages. The
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self-oscillation frequency of our RO is relatively low compared
with previous reported results11 (for discussion see Supplemen-
tary Note 14), but there is a large room for future improvement
via downscale of device size.

For memory applications, we present dynamic memory arrays
built from MoS2 FETs (Fig. 4c). A schematic diagram of a 1T–1C
circuit is shown in Fig. 4d. An oscilloscope was used to test its
function as memory (Supplementary Note 15)49–53. The experi-
mental results are shown in Fig. 4e. During a write operation, the
MoS2 FET is turned on to provide a low-impedance path, and a
positive current pulse (red curve) is collected by the oscilloscope,
which indicates the capacitance has been recharged. During the
holding state, the MoS2 FET is turned off and presents a high-
impedance path. If the current pulse detected by the oscilloscope
is negative during a read operation, it indicates that a charge
remains in the capacitor after the hold time. Due to the ultralow
leakage current from our MoS2 FET, the charge saved in the
capacitor is expected to be ideally stored, thereby achieving long-
term retention. By integrating the current pulse during a read
operation, we can estimate the charge retained in the capacitor as
a function of hold time, as shown in Fig. 4f. The retention time is
defined as the hold time at which the retained charge (Qread) is
zero compared with a read voltage of 0.5 V; the average retention
time is on the order of seconds (Supplementary Figure 18).

Furthermore, our wafer-scale MoS2 devices can be extended for
optoelectrical application54,55. A thin layer Au (~10 nm)
deposited as TG electrode will have higher optical transmittance,
as shown in Fig. 4g. The transfer characteristics (Fig. 4h) from a
typical device indicate a photocurrent of ~1 μA/μm under white
light (1.5 mW/cm2) when VTG= 4 V and an on–off ratio of

approximately 100 when VTG= 0 V (more details see Supple-
mentary Note 16). In Fig. 4i, we use a 9 × 9 MoS2 FET array to
demonstrate a simple function of image sensing. The photo-
currents are recorded from each pixel by scanning a focused
white beam across the array. We set the illumination position to
form the English letters F, D, and U deliberately. The color
pattern representing the photocurrent value exhibits high on/off
contrast and high spatial uniformity.

Here we have demonstrated logic, analog, memory, and
optoelectronic functions, which can be conveniently integrated
into a single device. In the future, if we further take advantage of
the atomically thin and flexible nature of 2D materials, it is
possible to prepare three-dimensional monolithic integrated
circuits (3D integration) by stacking 2DLMs with different
functions56. Thus, it provides a new route to implement a
complex system to realize various applications.

Wafer-scale fabrication. To demonstrate the potential for high-
volume production, we fabricated MoS2 TG-FET arrays and 1-bit
full-adder arrays on a 2-inch wafer, as shown in Fig. 5a. Similar to
what is normally completed in a semiconductor-fabrication
facility, the full-adder arrays were placed in the center region of
the wafer as a functional block, and MoS2 TG-FETs were placed
surrounding the functional blocks and used to monitor wafer-
scale uniformity. Each block contained 16 FETs, and 81 blocks in
total were distributed across the wafer. The average mobility and
VT values extracted from the transfer curves in each FET array are
plotted in Fig. 5b, showing a wafer-scale uniformity acceptable for
batch fabrication. The average mobility and VT values for all 1296
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Fig. 4 Analog, memory, and optoelectronic circuits based on MoS2 TG-FETs. a is an optical microscope image of a 5-stage ring oscillator, and b is the
corresponding output characteristics at 19.5 kHz with VDD= 3 V. c Optical microscope image of MoS2 memory-unit arrays. The right zoom-in shows the
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MoS2 FETs are 46.7 cm2 V−1 s−1 and 1.9 V, respectively, with a
standard deviation <30%. In the rest of the wafer area, we tested
144 1-bit full-adder circuits, revealing a yield of about 50% (right
graph of Fig. 5b, and more discussion see Supplementary
Note 17). These results indicate that our wafer-scale MoS2 film,
together with optimized device-processing technologies, can
potentially achieve industrial high-volume production. To the
best of our knowledge, these are among the highest-mobility and
VT values observed in wafer-scale-fabricated MoS2 TG devices
with high uniformity (for a detailed comparison see Supple-
mentary Note 18). Finally, we fabricated a complete 4-bit full
adder composed of four parallel 1-bit full adders consisting of 156
FETs; the microscope image and truth table are shown in Fig. 5c.
The 4-bit full adder was tested using eight input-signal combi-
nations (A3 A2 A1 A0, B3 B2 B1 B0, Ci), including (0000, 0000,
0), (0000, 0111, 0), (1111, 1000, 0), (1111, 1111, 0), (0000, 0000,
1), (0000, 0111, 1), (1111, 1000, 1), and (1111, 1111, 1). The
output results in Fig. 5d show that the 4-bit full adder exhibits
correct logical function and rail-to-rail conversion. Thus, we have
demonstrated that our ML-guided MoS2 fabrication technology
provides a potential route for constructing future large-scale 2D
ICs compatible with current silicon-based technologies.

Discussion
The synthesis of wafer-scale MoS2 and other 2D semiconductors
is currently under fast development, providing more material
candidates for fabricating FETs and ICs. Even for the MoS2 film
itself investigated in this work, the synthesis method can be
further optimized to modify the grain size, crystallinity, defect
density, etc.57, which all influence the overall performances of the

MoS2 FETs. This is one of the main reasons why academic
researchers have opted not to undertake strenuous efforts on the
fabrication optimization of specific 2D semiconductors. There-
fore, our results can be extended to other 2D semiconductors and
emerging novel materials to reduce their device-optimization
burdens and shorten the learning cycle. Of course, such a speed-
up approach is more suitable at the initial phases in device
optimization. Once a certain level is reached, the understanding
of device physics is still needed for further improvement.

Methods
Synthesis of wafer-scale MoS2. A crucible with MoO3 power (Alfa Aesar 99.95%)
is placed in Zone 2, and an appropriate amount of sulfur powder (Alfa Aesar
99.999%) is placed in Zone 1, which is upstream of the flow in the tube. The
distance between the two zones is 30 cm. A carefully rinsed sapphire substrate is
placed face-down on the MoO3 power. During the synthesis process, 300-sccm
argon gas serves as a carrier gas. The synthesis temperature for Zone 1 and Zone 2
is controlled at 180 °C and 650 °C, respectively. A continuous-monolayer MoS2
film is synthesized at atmospheric pressure with 10 min of sulfuration time.

The machine-learning method. The details of ensemble learning, random-forest
algorithm, and feature-importance assessment are described in Supplementary
Note 3.

Overall fabrication procedure of MoS2 FETs and circuits. The MoS2 FETs and
circuits are fabricated on the wafer-scale MoS2 film on the sapphire substrate. The
contact electrodes, source and drain contacts are patterned by laser direct writing
technology (Micro-Writer ML3) and subsequently deposited using electronic beam
(E-beam) evaporation. CF4 plasma etching is performed to define a MoS2-channel
region. A seeding layer is deposited by E-beam evaporation and subsequently
annealed in an oxygen atmosphere at 100 °C. Then HfO2 layer was grown by
atomic-layer deposition (ALD) as a high-k TG dielectric layer. Another litho-
graphy/lift-off/deposition process is utilized to form the TG metal layer. For
electrical probing or further fabrication of more complex circuits, SF6 plasma
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etching removes the HfO2 layer on top of the source/drain electrodes to form via
holes defined by the lithography. More fabrication details can be found in Sup-
plementary Note 2.

Electrical measurement. The electrical properties of MoS2 FETs and circuits are
carried out in a probe station connecting to an Agilent B1500A semiconductor
analyzer with eight source-measure units (SMUs). To investigate the circuit’s
dynamic response, an Agilent 33622 A arbitrary-waveform generator is used to
input signals, while a RIGOL DS1054Z digital oscilloscope and an Agilent B1500A
semiconductor analyzer capture the output signal.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding authors upon reasonable request.

Code availability
The codes used for simulation and data plotting are available from the corresponding
authors upon reasonable request.
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