19400 measured reflections

 $R_{\rm int} = 0.115$

227 parameters

 $\Delta \rho_{\text{max}} = 0.59 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$

4576 independent reflections 2587 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

OPEN a ACCESS

Crystal structure of chloridopentakis-(dimethyl sulfoxide-*kO*)chromium(III) dichloride

Kyung-sun Son, Jeong Oh Woo, Namhun Kim and Sung Kwon Kang*

Department of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea. *Correspondence e-mail: skkang@cnu.ac.kr

Received 6 July 2014; accepted 7 July 2014

Edited by M. Weil, Vienna University of Technology, Austria

In the complex cation of the title salt, $[CrCl(C_2H_6OS)_5]Cl_2$, the Cr^{III} ion is coordinated by one chloride ligand and five O atoms from dimethyl sulfoxide (DMSO) ligands, leading to a slightly distorted octahedral coordination environment [O-Cr-O angles range from 86.69 (16) to 92.87 (16)°]. In the crystal, complex cations are arranged in hexagonally packed rows parallel to [010], with the chloride counter-anions situated in between. The interactions between cations and anions are mainly ionic in nature.

Keywords: crystal structure; chromium(III); dimethyl sulfoxide solvate.

CCDC reference: 1012642

1. Related literature

For the preparation and structures of DMSO solvates of transition metal cations, see: Abbasi et al. (2007); Al-Najjar et al. (2013); Bratsos et al. (2013); Niu et al. (2012); Srivastava et al. (2009).

2. Experimental

2.1. Crystal data

$[CrCl(C_2H_6OS)_5]Cl_2$	$\gamma = 89.0009 \ (18)^{\circ}$
$M_r = 548.99$	V = 1228.26 (9) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 9.5883 (4) Å	Mo $K\alpha$ radiation
b = 10.4998 (4) Å	$\mu = 1.23 \text{ mm}^{-1}$
c = 13.0088 (5) Å	T = 296 K
$\alpha = 70.633 \ (4)^{\circ}$	$0.10 \times 0.06 \times 0.05 \text{ mm}$
$\beta = 83.867 \ (3)^{\circ}$	

2.2. Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min} = 0.905, \ T_{\max} = 0.935$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.072$	
$wR(F^2) = 0.138$	
S = 0.98	
4576 reflections	

Table 1 Selected bond lengths (Å).

Cr1-O3	1.967 (4)	Cr1-011	1.977 (4)
Cr1-O19	1.971 (4)	Cr1-O15	1.982 (4)
Cr1-O7	1.975 (4)	Cr1-Cl2	2.3096 (18)

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Acknowledgements

Financial support from the National Research Foundation of Korea (NRF-2012R1A1A1005839) is gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5034).

References

- Abbasi, A., Risberg, E. D., Eriksson, L., Mink, J., Persson, I., Sandström, M., Sidorov, Y. V., Skripkin, M. Y. & Ullström, A.-S. (2007). Inorg. Chem. 46, 7731-7741
- Al-Najjar, N. A., Al-Sudani, A.-R. H., Shanshal, M. A., Mousa, F. H. & Kariuki, B. M. (2013). Acta Cryst. E69, m395-m396.
- Bratsos, I., Calmo, S., Zangrando, E., Balducci, G. & Alessio, E. (2013). Inorg. Chem. 52, 12120-12130.
- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Niu, M., Fan, S. & Liu, G. (2012). Acta Cryst. E68, m67.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Srivastava, R. S., Fronczek, F. R. & Perkins, R. S. (2009). J. Coord. Chem. 62, 3745-3753.

supporting information

Acta Cryst. (2014). E70, m309 [doi:10.1107/S1600536814015852]

Crystal structure of chloridopentakis(dimethyl sulfoxide- κO)chromium(III) dichloride

Kyung-sun Son, Jeong Oh Woo, Namhun Kim and Sung Kwon Kang

S1. Experimental

All manipulations were carried out under nitrogen atmosphere using standard Schlenk techniques or in a purified nitrogen-filled drybox, and all solvents were dried and distilled prior to use according to standard methods. The title mononuclear complex was synthesized during an attempt to prepare a chromium(III) complex with 2,6-bis[(5-methyl-4phenyl-1*H*-pyrazol-1-yl)methyl]pyridine. To a solution of CrCl₃(THF)₃ (0.1124 g, 0.3 mmol) in THF (6 ml) was added a solution of the organic ligand (0.126 g, 0.3 mmol) in THF (4 ml) dropwise at 333 K. The solution was stirred vigorously. A green suspension was formed immediately in 5 min, and the mixture was stirred overnight at this temperature. The product was isolated as a green powder by removing the solvent, washed repeatedly with THF followed by diethyl ether, and dried under vacuum. Bright green crystals of the title compound were obtained by slow diffusion of diethyl ether into a concentrated solution of the green solid in DMSO within one to two days.

S2. Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 Å, and with $U_{iso}(H) = 1.5U_{eq}(C)$.

Figure 1

The asymmetric unit of the title compound, with the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.

Figure 2

The crystal structure of the title compound in a perspective view along [100].

Chloridopentakis(dimethyl sulfoxide-kO)chromium(III) dichloride

Crystal data

[CrCl(C₂H₆OS)₅]Cl₂ $M_r = 548.99$ Triclinic, *P*1 Hall symbol: -P 1 a = 9.5883 (4) Å b = 10.4998 (4) Å c = 13.0088 (5) Å a = 70.633 (4)° $\beta = 83.867$ (3)° $\gamma = 89.0009$ (18)° V = 1228.26 (9) Å³

Data collection

Bruker SMART CCD area-detector	4576 independent reflections
diffractometer	2587 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.115$
φ and ω scans	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Bruker, 2002)	$k = -12 \rightarrow 12$
$T_{\min} = 0.905, \ T_{\max} = 0.935$	$l = -15 \rightarrow 15$
19400 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.072$	H-atom parameters constrained
$wR(F^2) = 0.138$	$w = 1/[\sigma^2(F_o^2) + (0.0582P)^2]$
S = 0.98	where $P = (F_o^2 + 2F_c^2)/3$
4576 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
227 parameters	$\Delta ho_{ m max} = 0.59 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta ho_{ m min} = -0.47$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 2

F(000) = 570

 $\theta = 2.2 - 28.2^{\circ}$

 $\mu = 1.23 \text{ mm}^{-1}$

Block, green

 $0.10 \times 0.06 \times 0.05 \text{ mm}$

T = 296 K

 $D_{\rm x} = 1.484 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2991 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cr1	0.73481 (10)	0.87030 (9)	0.21633 (7)	0.0237 (3)
Cl2	0.75680 (18)	1.04916 (16)	0.05360 (12)	0.0396 (4)
03	0.5471 (4)	0.8278 (4)	0.1872 (3)	0.0355 (11)
S4	0.49654 (17)	0.68654 (16)	0.19631 (13)	0.0332 (4)
C5	0.5051 (8)	0.6874 (7)	0.0590 (5)	0.055 (2)
H5A	0.4633	0.768	0.0149	0.082*
H5B	0.4554	0.6098	0.0571	0.082*
H5C	0.6014	0.6849	0.0307	0.082*
C6	0.3132 (6)	0.6983 (7)	0.2227 (5)	0.0436 (18)

Н6А	0 291	0 7047	0 2946	0.065*
H6B	0.268	0.6194	0.2189	0.065*
H6C	0.281	0.7771	0.1691	0.065*
07	0.6490 (4)	0.9863 (4)	0.2973(3)	0.0296 (10)
S8	0.53284(17)	1 08678 (15)	0.25183(13)	0.0306 (4)
C9	0.33267(17) 0.4206(7)	1 0783 (6)	0.22105(15)	0.0445(18)
Н9А	0.3776	0.9901	0.4009	0.067*
H9R	0.3492	1 1448	0.3511	0.067*
HOC	0.4737	1.0956	0.4228	0.067*
C10	0.4737	1.0950	0.7266 (5)	0.007 0.0452(19)
H10A	0.6571	1.2474 (0)	0.2200 (5)	0.0492 (17)
HIOR	0.5413	1.2407	0.2092	0.008
	0.5415	1.3131	0.2135	0.008
011	0.0803	0.0080 (4)	0.1033	0.008°
S12	0.9199(4)	0.9069(4)	0.2340(3)	0.0327(11)
S12 C12	0.97370(18)	1.03332(10)	0.23280(13)	0.0342(4)
	1.0000 (8)	1.0308 (8)	0.3030 (3)	0.037(2)
ПІЗА 1112D	0.9107	1.0057	0.4022	0.080*
ПІЗБ	1.0383	1.1552	0.3307	0.080*
HI3C	1.0444	0.9/55	0.4034	0.080°
	1.1538 (7)	1.0469 (8)	0.1831 (6)	0.067 (3)
HI4A	1.1992	0.9765	0.2358	0.101*
HI4B	1.1995	1.1319	0.1/13	0.101*
HI4C	1.1593	1.0286	0.1152	0.101*
015	0.8145 (4)	0.7458 (4)	0.1404 (3)	0.0339 (11)
S16	0.93855 (17)	0.65183 (16)	0.17455 (13)	0.0339 (4)
C17	1.0204 (7)	0.6520 (7)	0.0464 (5)	0.053 (2)
H17A	0.9518	0.6318	0.0051	0.079*
H17B	1.0917	0.5849	0.0575	0.079*
H17C	1.0621	0.7393	0.0068	0.079*
C18	0.8644 (8)	0.4878 (6)	0.2216 (6)	0.061 (2)
H18A	0.8188	0.469	0.2946	0.091*
H18B	0.937	0.4235	0.2219	0.091*
H18C	0.797	0.4812	0.174	0.091*
O19	0.7205 (4)	0.7130 (4)	0.3520 (3)	0.0343 (11)
S20	0.73602 (17)	0.72155 (15)	0.46602 (13)	0.0306 (4)
C21	0.6037 (6)	0.6113 (6)	0.5523 (5)	0.0422 (18)
H21A	0.5134	0.6452	0.5318	0.063*
H21B	0.6103	0.6051	0.6269	0.063*
H21C	0.615	0.5234	0.5453	0.063*
C22	0.8822 (7)	0.6230 (8)	0.5089 (6)	0.062 (2)
H22A	0.874	0.5383	0.4966	0.092*
H22B	0.8864	0.6068	0.5856	0.092*
H22C	0.9661	0.6698	0.4681	0.092*
C123	0.25112 (19)	0.74394 (19)	0.49760 (15)	0.0542 (5)
Cl24	0.2423 (2)	0.37459 (18)	0.19086 (17)	0.0579 (6)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Crl	0.0290 (6)	0.0197 (5)	0.0227 (5)	0.0021 (4)	-0.0077 (4)	-0.0062 (4)
Cl2	0.0555 (12)	0.0340 (10)	0.0231 (9)	0.0017 (8)	-0.0081 (8)	0.0000 (7)
03	0.034 (3)	0.023 (2)	0.053 (3)	0.002 (2)	-0.012 (2)	-0.014 (2)
S4	0.0379 (11)	0.0255 (9)	0.0383 (10)	0.0026 (8)	-0.0171 (8)	-0.0094 (8)
C5	0.063 (5)	0.066 (5)	0.049 (5)	0.014 (4)	-0.016 (4)	-0.034 (4)
C6	0.041 (4)	0.038 (4)	0.051 (5)	-0.008 (3)	-0.008 (4)	-0.013 (4)
07	0.039 (3)	0.029 (2)	0.027 (2)	0.013 (2)	-0.012 (2)	-0.015 (2)
S8	0.0377 (10)	0.0240 (9)	0.0313 (10)	0.0053 (8)	-0.0101 (8)	-0.0091 (8)
C9	0.047 (5)	0.035 (4)	0.044 (4)	0.008 (4)	0.000 (4)	-0.005 (3)
C10	0.056 (5)	0.029 (4)	0.043 (4)	0.002 (4)	-0.002 (4)	-0.003 (3)
011	0.029 (2)	0.026 (2)	0.045 (3)	-0.001 (2)	-0.018 (2)	-0.010 (2)
S12	0.0416 (11)	0.0294 (10)	0.0357 (10)	0.0013 (8)	-0.0127 (8)	-0.0137 (8)
C13	0.067 (5)	0.078 (6)	0.039 (5)	-0.003 (4)	-0.001 (4)	-0.037 (4)
C14	0.056 (5)	0.081 (6)	0.079 (6)	-0.026 (5)	0.026 (5)	-0.054 (5)
015	0.038 (3)	0.033 (3)	0.039 (3)	0.011 (2)	-0.015 (2)	-0.021 (2)
S16	0.0357 (10)	0.0292 (10)	0.0389 (10)	0.0055 (8)	-0.0094 (8)	-0.0124 (8)
C17	0.053 (5)	0.043 (5)	0.057 (5)	0.003 (4)	0.011 (4)	-0.014 (4)
C18	0.073 (6)	0.023 (4)	0.064 (5)	-0.001 (4)	0.014 (4)	0.009 (4)
O19	0.050 (3)	0.021 (2)	0.028 (3)	0.002 (2)	-0.007 (2)	-0.0026 (19)
S20	0.0389 (10)	0.0239 (9)	0.0280 (9)	0.0043 (8)	-0.0089 (8)	-0.0057 (7)
C21	0.039 (4)	0.044 (4)	0.037 (4)	-0.007 (3)	0.002 (3)	-0.007 (3)
C22	0.041 (5)	0.074 (6)	0.067 (6)	0.020 (4)	-0.027 (4)	-0.014 (5)
Cl23	0.0512 (12)	0.0524 (12)	0.0527 (12)	0.0007 (10)	0.0000 (10)	-0.0108 (10)
Cl24	0.0641 (13)	0.0360 (11)	0.0797 (15)	0.0096 (9)	-0.0272 (11)	-0.0217 (10)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cr1-03	1.967 (4)	S12—C14	1.768 (7)
Cr1—O19	1.971 (4)	C13—H13A	0.96
Cr1—O7	1.975 (4)	C13—H13B	0.96
Cr1—O11	1.977 (4)	C13—H13C	0.96
Cr1—O15	1.982 (4)	C14—H14A	0.96
Cr1—Cl2	2.3096 (18)	C14—H14B	0.96
O3—S4	1.531 (4)	C14—H14C	0.96
S4—C6	1.764 (6)	O15—S16	1.539 (4)
S4—C5	1.777 (6)	S16—C18	1.760 (6)
C5—H5A	0.96	S16—C17	1.765 (6)
С5—Н5В	0.96	C17—H17A	0.96
С5—Н5С	0.96	C17—H17B	0.96
С6—Н6А	0.96	С17—Н17С	0.96
С6—Н6В	0.96	C18—H18A	0.96
С6—Н6С	0.96	C18—H18B	0.96
O7—S8	1.546 (4)	C18—H18C	0.96
S8—C9	1.758 (6)	O19—S20	1.538 (4)
S8—C10	1.775 (6)	S20—C22	1.755 (6)

С9—Н9А	0.96	S20—C21	1.760 (6)
С9—Н9В	0.96	C21—H21A	0.96
С9—Н9С	0.96	C21—H21B	0.96
C10—H10A	0.96	C21—H21C	0.96
C10—H10B	0.96	C22—H22A	0.96
C10—H10C	0.96	C22—H22B	0.96
011—\$12	1.542 (4)	C22—H22C	0.96
S12—C13	1.753 (6)		
O3—Cr1—O19	90.28 (17)	O11—S12—C13	103.8 (3)
O3—Cr1—O7	89.61 (16)	O11—S12—C14	103.4 (3)
O19—Cr1—O7	90.78 (16)	C13—S12—C14	98.5 (4)
O3—Cr1—O11	176.76 (18)	S12—C13—H13A	109.5
O19—Cr1—O11	86.97 (17)	S12—C13—H13B	109.5
O7—Cr1—O11	88.70 (16)	H13A—C13—H13B	109.5
O3—Cr1—O15	88.69 (16)	S12—C13—H13C	109.5
019— $Cr1$ — 015	86.69 (16)	H13A—C13—H13C	109.5
07—Cr1—O15	176.95 (18)	H13B—C13—H13C	109.5
011—Cr1—015	92.87 (16)	S12—C14—H14A	109.5
O3-Cr1-Cl2	90.00 (13)	S12—C14—H14B	109.5
019— $Cr1$ — $Cl2$	177.61 (13)	H14A—C14—H14B	109.5
07—Cr1—Cl2	91.59 (12)	S12—C14—H14C	109.5
O11— $Cr1$ — $Cl2$	92.82 (13)	H14A—C14—H14C	109.5
O15—Cr1—Cl2	90.95 (13)	H14B—C14—H14C	109.5
S4—O3—Cr1	124.5 (2)	S16—O15—Cr1	125.3 (2)
O3—S4—C6	101.8 (3)	O15—S16—C18	104.8 (3)
O3—S4—C5	105.0 (3)	O15—S16—C17	101.7 (3)
C6—S4—C5	99.0 (3)	C18—S16—C17	98.8 (3)
S4—C5—H5A	109.5	S16—C17—H17A	109.5
S4—C5—H5B	109.5	S16—C17—H17B	109.5
H5A—C5—H5B	109.5	H17A—C17—H17B	109.5
S4—C5—H5C	109.5	S16—C17—H17C	109.5
H5A—C5—H5C	109.5	H17A—C17—H17C	109.5
H5B—C5—H5C	109.5	H17B—C17—H17C	109.5
S4—C6—H6A	109.5	S16—C18—H18A	109.5
S4—C6—H6B	109.5	S16-C18-H18B	109.5
H6A—C6—H6B	109.5	H18A—C18—H18B	109.5
S4—C6—H6C	109.5	S16—C18—H18C	109.5
H6A—C6—H6C	109.5	H18A—C18—H18C	109.5
H6B—C6—H6C	109.5	H18B—C18—H18C	109.5
S8—O7—Cr1	121.5 (2)	S20—O19—Cr1	123.9 (2)
O7—S8—C9	103.2 (3)	O19—S20—C22	104.6 (3)
O7—S8—C10	103.8 (3)	O19—S20—C21	103.8 (3)
C9—S8—C10	98.7 (3)	C22—S20—C21	98.7 (3)
S8—C9—H9A	109.5	S20-C21-H21A	109.5
S8—C9—H9B	109.5	S20—C21—H21B	109.5
Н9А—С9—Н9В	109.5	H21A—C21—H21B	109.5
S8—C9—H9C	109.5	S20-C21-H21C	109.5

TTO 1 00 TTO 0			
H9A—C9—H9C	109.5	H21A—C21—H21C	109.5
Н9В—С9—Н9С	109.5	H21B—C21—H21C	109.5
S8—C10—H10A	109.5	S20—C22—H22A	109.5
S8—C10—H10B	109.5	S20—C22—H22B	109.5
H10A-C10-H10B	109.5	H22A—C22—H22B	109.5
S8—C10—H10C	109.5	S20—C22—H22C	109.5
H10A-C10-H10C	109.5	H22A—C22—H22C	109.5
H10B-C10-H10C	109.5	H22B—C22—H22C	109.5
S12—O11—Cr1	123.0 (2)		