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Summary.The measurement of human immunodeficiency virus ribonucleic acid levels over time
leads to censored longitudinal data. Suitable models for dynamic modelling of these levels need
to take this data characteristic into account. If groups of patients with different developments of
the levels over time are suspected the model class of finite mixtures of mixed effects models
with censored data is required. We describe the model specification and derive the estimation
with a suitable expectation–maximization algorithm. We propose a convenient implementation
using closed form formulae for the expected mean and variance of the truncated multivariate
distribution. Only efficient evaluation of the cumulative multivariate normal distribution function
is required. Model selection as well as methods for inference are discussed. The application is
demonstrated on the clinical trial ACTG 315 data.
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1. Introduction

Dynamic models for human immunodeficiency virus ribonucleic acid (HIV RNA) levels are
used to estimate viral dynamic parameters for the whole population and for each individual
patient in an acquired immune deficiency syndrome clinical trial. These models provide a good
understanding of the pathogenesis of HIV infection and the evaluation of anti-retroviral ther-
apies. The analysis is based on the HIV type 1 (HIV-1) viral load which is primarily used to
measure HIV-1 infection. However, accurate quantification is in general not possible for low
levels, i.e. a lower detection limit is given under which no accurate measurement is possible and
censored observations are reported.

Previous work on dynamic models for HIV RNA levels used a variant or simplification of
non-linear mixed effects models while accounting for censored data and applied the method
proposed to a (subset) of the HIV-1 viral load data from clinical trial ACTG 315 (Lederman
et al., 1988). This trial was a prospective study to assess the virologic and immunologic effects
of combination anti-retroviral therapy among HIV-1-infected people, where the disease was
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moderately advanced (Kuritzkes et al., 2000). The HIV-1-infected patients were treated with
potent antiviral therapy consisting of ritonavir, lamivudine and azidothymidine. 53 patients
were enrolled, but five patients discontinued because of intolerance to the treatment and other
problems (Wu and Wu, 2002a). Plasma HIV-1 RNA levels were repeatedly measured with sched-
uled measurements on days 0, 2, 7, 10, 14, 21 and 28 and at weeks 8, 12, 24 and 48 after initiation
of treatment. The lower limit of detection was 100 copies ml−1, which was reached within the
first weeks of treatment by a considerable proportion of patients. Additional information avail-
able for each patient includes measurements of physiological markers taken at baseline and
demographic information.

In total 502 observations from 48 individuals on HIV RNA levels are available from the study,
with measurements taken at times ranging from 0 to 413 days since treatment. The amount of
censoring was rather high with 16% censored observations. 58% of the patients had at least
one censored observation; the average number of censored observations per patient was equal
to 1.65. Ignoring the censoring might therefore give biased results and hence the censoring
should be accounted for in the fitted model. The development of the HIV RNA levels over
time is shown in Fig. 1. The observations from the same individual are joined. Clearly different
groups of patients can be distinguished: for some patients the levels decline over time and stay
low, whereas for others the levels rise again after a decline at the beginning of the observation
period. This implies that a finite mixture model might be necessary to capture these differences.
In addition the individual levels also vary and this heterogeneity can be modelled by specifying
random intercepts.

The development of the HIV RNA levels over time was modelled by Wu and Ding (1999) us-
ing a hierarchical non-linear mixed effects model where they assumed two phases of exponential
decay with different rates of decay. Observations censored at 100 were imputed with 50. Exten-
sions of this model which accounted for censoring were presented in Wu (2002), Fitzgerald et al.
(2002) and Vaida et al. (2007). Fitzgerald et al. (2002) used multiple imputation, whereas Wu
(2002) and Vaida et al. (2007) used the expectation–maximization (EM) algorithm (Dempster
et al., 1977). Different methods to evaluate the E-step were employed in Fitzgerald et al. (2002)
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Fig. 1. ACTG 315 trial data: logarithmic HIV RNA levels for the 48 patients over time
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and Vaida et al. (2007). Following Hughes (1999), Wu (2002) used a Monte Carlo method
to evaluate the E-step and Vaida et al. (2007) proposed a hybrid Monte Carlo and numeri-
cal integration EM algorithm. As a complementary analysis Wu and Wu (2002b) considered
the identification of significant baseline host factors by using demographic and physiological
markers to explain interindividual variation in the HIV RNA level development over time.

The application of non-linear mixed effects models assumes that the functional relationship
between the explanatory and the dependent variable is known. For dynamic models for HIV
RNA levels the assumption is that the logarithmic HIV RNA levels exhibit an exponential decay
over time. The rate of decay is in general allowed to vary over time by splitting the observation
period into two phases where the decay rate is constant in each phase. This approach allows
parsimonious modelling of a complex relationship. However, it imposes a certain structure. In
this case it is implied that the HIV RNA levels decrease over time. As an alternative approach
this paper considers finite mixtures of mixed effects models with censored data for modelling
HIV RNA levels over time. The functional relationship between the independent and dependent
variables is assumed to be unknown and is flexibly estimated by using spline regression. The
required flexibility of the spline functions as well as the number of groups required to capture
the heterogeneity between patients are determined in the model selection step. The mixture
model specification allows us to investigate whether the same functional relationship holds for
all patients or whether groups of patients with different HIV RNA level developments exist.
Hence, this model can either be used

(a) if the a priori functional relationship is not known or
(b) to check whether the assumed functional relationship is suitable.

In previous work the need to model interindividual differences was acknowledged by fit-
ting mixed effects models. The model in this paper addresses the problem that interindividual
differences might not be sufficiently captured by the random effects. These differences are more
flexibly modelled by using a mixture model which allows for distinct groups with different
HIV RNA level developments over time. Because the model class proposed also contains the
model with only one component, model selection tests whether the models that were used in
the previous work sufficiently captured interindividual differences. In addition, one can use the
proposed model class to question the assumption of an exponential decay of the levels over time
by determining the functional relationship in a data-driven way.

We present the model class of finite mixtures of mixed effects models for censored data together
with a suitable estimation method. We outline a fast implementation of the EM algorithm. A
specific version of the EM algorithm for this model class is derived by extending the version
proposed for finite mixtures of mixed effects models (see for example Xu and Hedeker (2001))
to allow for censored observations also. We also exploit the fact that formulae for the mean and
the variance for a truncated multivariate normal distribution were developed by Tallis (1961) to
arrive at a fast implementation as in Vaida and Liu (2009) who developed an EM algorithm for
fitting linear mixed effects models with censored responses. The resulting EM algorithm has the
advantage that the expectation (E-)step as well as the maximization (M-)step are given in closed
form (if evaluation of the cumulative multivariate normal distribution function is assumed to
be given). In addition suitable strategies for model selection and inference are proposed.

An implementation of the estimation method proposed is available in the package flexmix
(Leisch, 2004; Grün and Leisch, 2008) for the statistical software environment R (R Develop-
ment Core Team, 2011). Package flexmix implements a general framework for fitting finite
mixtures by using the EM algorithm. The main fitting function in the package provides the
E-step and all data handling. A suitable M-step for the model class of finite mixtures of mixed
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effects models with censored data is available through function FLXMRlmmc(). The current
release version of flexmix including this functionality is available from the Comprehensive R
Archive Network (http://CRAN.R-project.org).

The paper is structured as follows. In Section 2 the model is specified and the estimation and
inference are outlined. The details of the EM algorithm as well as the derivation of the stan-
dard errors are presented in Appendix A. The model is applied to the ACTG 315 HIV RNA
level measurements data in Section 3. A simulation study investigating the performance of the
proposed methods for estimation and model selection is presented in Section 4. The paper ends
with some concluding remarks.

2. Finite mixtures of mixed effects models with censored observations

2.1. Model specification
Following Laird and Ware (1982) the standard mixed effects model is denoted by

Yi =Xiα+Ziβi + ei:

Yi = .yij/j=1,:::,ni
is the vector of ni outcomes observed for the ith individual. α is the vector

of fixed effects and βi is the vector of random effects for individual i. Xi = .xT
ij/j=1,:::,ni

and
Zi = .zT

ij/j=1,:::,ni
are the corresponding design matrices. ei is the vector of random errors. βi and

ei are assumed to be independent with

βi ∼N.0, Ψ/,

ei ∼N.0,σ2Ii/,

where N.μ, Σ/ denotes the multivariate normal distribution with mean μ and variance–covari-
ance matrix Σ and Ii is the identity matrix of dimension equal to ni × ni. This implies that
Yi follows a multivariate normal distribution with mean E.Yi/=Xiα and variance–covariance
matrix var.Yi/=ZiΨZT

i +σ2Ii given Xi, Zi, α, Ψ and σ2.
Extending this model by allowing for a mixture of normals with G components implies that

Yi ∼
G∑
g=1

πgN.Xiαg, ZiΨgZ
T
i +σ2

gIi/:

The component weights πg are restricted to be positive and sum to 1. The vector of parameters
is equal to θ= .πg,αg, vech.Ψ/g,σ2

g/g=1,:::,G. vech.·/ is the half-vectorization operator which
selects the unique parameters by taking the lower diagonal matrix (including the diagonal). The
basic model that was proposed by Laird and Ware (1982) is contained as a special case by setting
the number of components G to 1.

This model formulation assumes that the component membership is the same over different
observations from the same individual, i.e. the mixture distribution accounts for heterogeneity
between individuals. A different variant would arise if the component membership also varied
within individuals (see for example Yau et al. (2003) and Hall and Wang (2005)). However, the
resulting model is not a mixture of linear mixed effects models any more, because the random
effects are imposed on the mixture and not for each of the components. In addition the evalu-
ation of the E-step is completely different. Another possibility still would be to assume a finite
mixture distribution for the random effects, i.e. to estimate the random-effects distribution in a
semiparametric way instead of assuming that it follows a normal distribution (see for example
Aitkin (1999)).

Whereas mixtures of normal distributions are generically identifiable (Teicher, 1963; Yakowitz
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and Spragins, 1968), generic identifiability of mixtures of linear regression models depends on
the covariate matrix (Hennig, 2000). However, in the case of longitudinal data where the com-
ponent membership is fixed over repeated observations the condition on the covariate matrix
is likely to be fulfilled and, thus, parameter uniqueness for a given mixture distribution to be
ensured.

Variants of this general model class could impose equality constraints on some of the param-
eters over the mixture components. This means that either one, two or all three of

(a) the fixed effects,
(b) the variance–covariance matrices of the random effects and
(c) the variances of the error term

are assumed to be identical over components. For example for the fixed effects this restriction
implies that αg ≡α for all g. In general only restrictions (b) and (c) will be of interest to check
whether a more parsimonious model suitably describes the data when regarding the two vari-
ance parameters as nuisance parameters and the fitted component means are in the main focus
of the analysis. In what follows only restrictions on the variances are considered.

The model formulation applies only if the values Yi for each individual are available. However,
we assume that we have partly censored data, i.e. instead of yij for individual i at occasion j we
observe the pair .qij, cij/, where qij is the (possibly censored) response and cij is the censoring
indicator. In what follows we consider only left-censored observations, i.e. cij = 1 denotes left
censoring and cij = 0 indicates that an uncensored response is observed. This can certainly be
easily extended to the general case of left, right and interval censoring.

The observed data for each individual i are combined to Qi = .qij/j=1,:::,ni
and Ci =

.cij/j=1,:::,ni
. These pairs .Qi, Ci/ of observed data for each individual are augmented with

latent unobserved variables to represent the data-generating process more easily. This leads
to the so-called complete data which consist of the uncensored observations Yi as well as the
random effects βi and the component assignment indicators γi. The component assignment
indicators γi = .γig/g=1,:::,G give the component g to which an individual belongs and it holds
that γig ∈{0, 1} and ΣG

g=1γig =1 for all i.
Hence, we can summarize the observed and the complete data as follows:

(a) observed data, .Qi, Ci/ for i=1, . . . , N;
(b) complete data, .Yi,βi,γi/ for i=1, . . . , N.

N denotes the number of observed individuals.

2.2. Estimation
The EM algorithm is a general method for maximum likelihood estimation in a missing data
setting. The algorithm exploits that in general the complete log-likelihood where missing data
are included is easier to maximize than the likelihood where only the observed data are used. It is
an iterative method switching between an E-step and an M-step. In the E-step the expected com-
plete log-likelihood given the current parameter estimates and the observed data is determined
and the missing data are integrated out. In the M-step the expected complete log-likelihood is
maximized to determine new parameter estimates. The new parameter estimates which maxi-
mize the expected complete log-likelihood also give a higher value for the likelihood by using
only the observed data. If the likelihood is bounded the EM algorithm converges, in the sense
that the sequence of likelihood values converges to a stationary point (Dempster et al., 1977).

In the case of finite mixtures of mixed effects models with censored data three different kinds
of information are missing:
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(a) the group assignment γi indicating which component individual i is from,
(b) the random effect βi and
(c) the observations yij of individual i and its jth observation if cij =1.

The joint distribution of the complete data Yi, βi and γi is given by

f.Yi,βi,γi/=f.Yi,βi|γi/f.γi/=f.Yi|βi,γi/f.βi|γi/f.γi/:

The distribution of Yi given βi and γi with γig = 1 is the product of univariate normal distri-
butions for each yij with mean xT

ijαg + zT
ijβi and variance σ2

g . βi given γi with γig =1 follows a
multivariate normal distribution with zero mean and variance–covariance matrix Ψg. Finally,
γi follows a multinomial distribution with vector of success probabilities equal to .πg/g=1,:::,G.
Hence, the complete log-likelihood for individual i is up to a constant given by

Δc.θ|Yi,βi,γi/=
G∑
g=1

γig log.πg/− 1
2

G∑
g=1

γig

{
ni log.σ2

g/+
ni∑

j=1

.yij −xT
ijαg − zT

ijβi/
2

σ2
g

+ log.|Ψg|/+βT
i Ψ−1

g βi

}
: .1/

In the E-step the expectation of the complete log-likelihood that is given in equation (1) is
determined conditionally on the current parameter estimates and the observed data. In this step
the law of the iterated expectation is used by first only integrating out the random effects and
then the underlying values of the censored observations and the component memberships. The
mean and the variance of the censored observations can be determined as proposed in Tallis
(1961) and Leppard and Tallis (1989) for truncated multivariate normal distributions (see also
Vaida and Liu (2009)). In addition to the mean and variance of the truncated multivariate nor-
mal distribution the quantities given in equations (3)–(8) in Appendix A need to be determined
for the E-step. Given the expected complete log-likelihood the M-step can be solved in closed
form. The update for the parameters in the M-step are given by equations (9)–(12) in Appendix
A.

The EM algorithm proposed naturally extends the proposed algorithm for mixtures of mixed
effects models (see for example Xu and Hedeker (2001)). Other versions of the EM algorithm
which are more in the line of Hughes (1999) or Vaida et al. (2007) are also possible. In both
Hughes (1999) and Vaida et al. (2007), suitable EM-type algorithms for mixed effects models with
censored data were proposed. The regression coefficients in the M-step are determined by using
a linear regression with a general variance–covariance matrix estimated for the random effects,
instead of plugging in the expected means of the random effects and using a linear regression
where the errors are independently identically distributed. In addition in both Hughes (1999)
and Vaida et al. (2007) the expected values for the censored observations of each individual
were determined by using a Gibbs sampler if the individual has more than two missing observa-
tions, instead of using the formulae that were proposed in Tallis (1961) and Leppard and Tallis
(1989).

The rate of convergence of the EM algorithm depends on the amount of missing data intro-
duced (McLachlan and Krishnan (1977), page 39). Because the variant proposed has three
different kinds of missing data it can be assumed that convergence will be slow and that a con-
siderable number of iterations is needed. However, each iteration is quite simple and can be
quickly evaluated because all terms are given in closed form. Only efficient evaluation of the
cumulative multivariate normal distribution is required. Convergence of the EM algorithm is
checked by determining the relative change in the log-likelihood of subsequent iterations. The
algorithm is stopped if this difference is smaller than an a priori specified threshold. The EM algo-
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rithm is started with an M-step using initial estimates for the group memberships, the random
effects and the underlying values of the censored observations. Because convergence is at best
to a local maximum, the best result of several runs of the EM algorithm with different random
initializations is determined to eliminate local maxima and to increase the chance of detecting
the global maximum. A comparison of different initialization strategies for finite mixtures of
linear and linear mixed effects models was presented in Scharl et al. (2010).

2.3. Inference
Selecting a suitable model from the model class of finite mixtures of linear mixed effects models
with censored data involves deciding on

(a) the number of components,
(b) the covariates in the regressions for the fixed effects,
(c) the covariates in the regressions for the random effects and
(d) constraints on the parameters over the components.

The additional assumption that the covariates are the same for all components considerably
reduces the range of possible models.

In general selecting the suitable number of components is a difficult problem in finite mixture
modelling which has not yet been completely resolved (see McLachlan and Peel (2000), page
175). A general recommendation for finite mixture models is the Bayesian information criterion
(BIC) despite the fact that the regularity conditions do not hold. Nevertheless the BIC has been
shown not to underestimate the number of components asymptotically (Leroux, 1992) and to
give good results in simulation studies (McLachlan and Peel (2000), page 209).

For finite mixtures of regression models, Wang et al. (1996) proposed a two-stage procedure for
model selection. In the first stage they selected the optimal number of components G among all
saturated models according to the BIC. In the second stage the optimal model is chosen among
all different component-specific models with the number of components fixed at G either by
using information criteria or likelihood ratio tests. In addition the second stage can be used to
determine whether the random effects and/or residual variances should be restricted to be equal
over components. In this second stage model selection methods from the literature on linear
mixed effects models can directly be used. To speed up the convergence of the EM algorithm
for fitting the models that are required in the second stage the algorithm can conveniently be
initialized by using the posterior probabilities of the saturated and unrestricted models selected
in the first stage.

In the context of finite mixtures of mixed effects models using B-splines, Luan and Li (2003)
and Ng et al. (2006) selected the number of components by using the BIC. In this model selection
step they kept the covariates and the random effects fixed. Celeux et al. (2005) used different
information criteria including Akaike’s information criterion (AIC), the BIC and the integrated
completed likelihood criterion to select the random effects, constraints over parameters and the
number of components. They also did not vary the covariates. Even though comparing different
criteria they favour the BIC. A comparison of the performance of the AIC and BIC is presented
in a simulation study in Section 4. The results clearly indicate a superior performance of the
BIC for selecting the correct number of components. This is in line with previous results and
recommendations.

Standard errors for the parameter estimates can be estimated by using the empirical informa-
tion matrix to perform inference for the selected model. For independent data it is convenient to
approximate the empirical information matrix by using only the gradient vector of the log-like-
lihood functions to avoid calculating second derivatives (see Basford et al. (1997)). Equations
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(13)–(16) in Appendix A indicate how the scores for the component sizes πg, the fixed effects
coefficients αg, the residual variance σ2

g and the variance–covariance matrix of the random
effects Ψg are determined.

3. Application to the ACTG 315 data

3.1. Model estimation and selection
We assume that the functional form of the HIV RNA levels over time is not known and might
vary between groups of patients. This model formulation has the advantages that

(a) the application is possible without knowing the functional relationship between depen-
dent and independent variables and

(b) a supposed relationship can be validated.

We use B-splines of the time variable with different degrees of freedom as regressors. A similar
approach is often pursued for modelling expression levels of microarray experiments over time
(see for example Ng et al. (2006)). The numbers of degrees in addition to an intercept are varied
from 1 to 5 and the degrees of the piecewise polynomial are the minimum of 3 and the specified
number of degrees to have at most cubic splines. Different variants are fitted with respect to
the residual and the random-effects variances: they are either assumed to be equal over com-
ponents or different for each of the components. The variation of the degrees of freedom and
of the restrictions on the variances lead to 20 different models. For each of these models the
number of components is varied from 1 to 5. In addition the same models are also fitted without
random effects, i.e. the intercepts are assumed to be identical over respondents.

Each model is fitted with the EM algorithm as described in Section 2 by using five differ-
ent random initializations. The EM algorithm is stopped by using the relative change in the
log-likelihood as criterion and the threshold is set to 10−6. The best model among all these
models is selected according to the BIC and the AIC. The BIC selects a mixture model with
four components, random intercepts and cubic splines with degrees of freedom equal to 4. For
the random-effects equal variances and for the residuals unequal variances are fitted. The AIC
prefers a mixture model with five components, random intercepts and cubic splines with degrees
of freedom equal to 4. The random-effects variances as well as the residual variances are selected
to be not restricted over the components. A comparison of the clusterings that are induced by
the posterior probabilities of the two models indicates that for four of the components of the
model selected with the AIC a good overlap with the four components of the model selected
with the BIC is given. The additional component in the model that is selected with the AIC
contains observations which are assigned to three different components in the model that is
selected with the BIC.

The two-stage approach for model selection that was proposed in Wang et al. (1996) cannot
directly be used because it is unclear what the saturated models are if the covariates are B-splines
of different degrees. However, their approach can be used to select suitable constraints for the
random-effects and residual variances. In this case first the best model with respect to the BIC
is selected from the models with number of components varied from 1 to 5 and the number
of degrees for the B-splines varied from 1 to 5 where unrestricted variances for the random
effects and the residuals are estimated. In this case in the first step also the model with four
components and 4 degrees of freedom for the B-splines is selected. This approach would hence
lead to the same result because in the second step the restricted model is preferred. Selection
with the AIC by using the two-stage approach also leads to the same model because for the AIC
no restrictions on the variances are preferred.
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3.2. Model interpretation
In what follows the mixture model that is selected by the BIC is considered in more detail. This
model has four components, random intercepts, cubic splines with degrees of freedom equal to
4, equal variances for the random effects and unequal variances for the residuals. This follows
the general recommendation to use the BIC for model selection. The component sizes that were
obtained are equal to 0.32, 0.26, 0.21 and 0.21. The numbers of patients who were assigned
to each component according to the maximum a posteriori probabilities are 16, 12, 10 and 10
respectively. The assignment of patients to the various components is unambiguous for most
patients. The mean maximum a posteriori probability is 0.96 and 90% of the patients have a
maximum a posteriori probability of at least 0.86.

The HIV RNA levels of the patients split into four groups according to the component assign-
ments are given in Fig. 2. In each panel the estimated means of the corresponding component
(with 95% confidence intervals) are also shown. Fig. 2 indicates that for patients from compo-
nents 1 and 4 the expected behaviour, the decrease in RNA level over time which levels off, is
observed. These two components could also be modelled by using the non-linear mixed effects
framework where the functional form is supposed to be a linear combination of two exponential
functions as in Vaida et al. (2007). However, components 2 and 3 have a different behaviour.
After a decrease at the beginning of the observation period, the levels of RNA increase again
later. Fitting this kind of functional behaviour would not be possible if it is fixed a priori to be
a linear combination of two decreasing functions. Fig. 2 also indicates that the uncertainty in
estimating the means is higher for censored observations than for uncensored.
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Fig. 2. Logarithmic HIV RNA levels for the 48 patients over time separately for each component and the
fitted component mean (with the 95% confidence interval): (a) component 1; (b) component 2; (c) component
3; (d) component 4



210 B. Grün and K. Hornik

For each of the components a strong decay in HIV RNA levels is observed at the beginning
of the observation period. The length of this period of strong decay differs over components as
well as how HIV RNA levels change in the second stage. The end of this first time period could
be identified as the time of viral rebound for the second and third component where the HIV
RNA levels increase in the following period. Viral rebound occurs very soon after the beginning
of treatment for patients in component 3. For component 1 the levels decrease over the whole
observation period; the amount of decrease grows smaller only over time. For component 4 after
the first stage of decay the HIV RNA levels are stable over the remaining observation period.
This clearly shows that accounting for these differences in HIV RNA developments over time
allows for improved estimation of viral rebound which was for example also investigated by
using non-linear mixed effects models with censoring in Fitzgerald et al. (2002).

Predicting a priori from baseline host factors the component membership of patients is of
interest

(a) to explain interindividual differences based on these variables and
(b) to forecast the viral load trajectories of the patient for improved clinical decisions and

individualized treatments.

31 demographic variables and physiological markers have been measured at baseline in the clin-
ical trial ACTG 315. The data were described in Wu and Wu (2002b) where the variables are
listed and explained in Table 1. A Kruskal–Wallis rank sum test is used to check for signifi-
cant differences in the baseline covariates between the components. This procedure identifies
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Fig. 3. Parallel boxplots of the baseline host factors which differ significantly at the 5% level of significance
for the components induced by the mixture model: (a) CD8 cells; (b) CD838 cells; (c) pCD8 cells; (d) CD4
cells; (e) CD438 cells; (f) CD438dr cells
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six baseline covariates which differ significantly at the 5% level of significance between the com-
ponents. Parallel boxplots for the components for each of the variables are given in Fig. 3. All
covariates identified are related to CD8 cells. This is different from Wu and Wu (2002b) who
in addition to CD8-cell-related covariates also selected the baseline RNA level and covariates
that are related to CD4 cells. However, Wu and Wu (2002b) used the baseline host factors to
identify variables where values of the covariates are associated with the (individual) decay rates.
By contrast, our approach identifies covariates where patients have similar values who also have
a similar HIV RNA level development pattern over time.

To investigate further the differences detected, pairwise comparisons using a Wilcoxon rank
sum test are performed, where the p-values are adjusted for multiple testing by using Holm’s
method and a level of significance of 5% is used. For CD8 cells significant differences are detected
between components 2 and 4. For CD838 cells significant differences are detected between com-
ponents 1 and 4 and components 2 and 4. For pCD8 cells significant differences are detected
between components 1 and 4. This indicates that component 4 significantly differs from the
other components on the basis of these baseline host factors. For component 3, no covariate
can be identified which exhibits a significant difference from any other component.

4. Simulation study

The performance of the model estimation and selection strategy proposed is evaluated by using
the parametric bootstrap. This allows us to check whether the available data are sufficient to
estimate the different groups in the data reliably. 100 samples are drawn from the fitted model
to the HIV RNA data in Section 3 which was selected as the best model by using the BIC. The
models are estimated in the same way as in Section 3, i.e. the number of components and the
number of degrees of freedom are varied from 1 to 5 and the variances of the residuals as well
as of the random effects are either restricted to be the same over components or are allowed to
differ.

Model selection is performed by choosing the best model according to the AIC and the BIC
from all models that were fitted to each bootstrap sample. The models selected are given in
Table 1. The BIC clearly performs better than the AIC by choosing the correct model for 53%
of the bootstrap samples whereas this is only so for 29% for the AIC. For the BIC the number
of components is only underestimated, but never overestimated. The reverse is true for the AIC.
The numbers of individuals are quite small for each component. Random sampling from the

Table 1. Selected models for the 100 bootstrap samples

Criterion Degrees of Variance Results for the following
freedom numbers of components:

Residuals Random
effects 2 3 4 5

AIC 4 Unequal Unequal 0 0 3 14
4 Unequal Equal 0 0 29 15
5 Unequal Unequal 0 0 5 6
5 Unequal Equal 0 0 21 7

BIC 4 Unequal Unequal 0 0 1 0
4 Unequal Equal 0 13 53 0
5 Unequal Unequal 1 0 0 0
5 Unequal Equal 0 11 20 0
5 Equal Equal 0 0 1 0
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(a) (b)

(c) (d)

Fig. 4. Logarithmic HIV RNA levels for the 48 patients over time separately for each component and the
fitted component means for the bootstrap samples when selecting the correct model: (a) component 1; (b)
component 2; (c) component 3; (d) component 4

mixture distribution therefore can easily lead to samples where only very few individuals are
drawn from one component and which is therefore not identified as a component when using
the BIC. The correct number of degrees of freedom is also selected for 67% of the bootstrap
samples when using the BIC. For the AIC for 61% of the samples the correct number of degrees
of freedom is selected and otherwise the flexibility of the spline functions is overestimated. The
AIC and BIC values differ only slightly between the true model and the selected model. The
BIC values are only at most 3.3% smaller for the selected models for 80% of the cases and the
AIC values of the selected models are only at most 5.6% smaller for 80% of the cases.

The estimated means for each component are compared if the correct model is selected. The
components are matched to maximize the agreement in the component assignment. Fig. 4 shows
the data split according to the model selected in Section 3. The estimated means of the compo-
nents of the original model are given together with the component means of the models fitted to
the bootstrap samples. A strong correspondence is observable to the 95% confidence intervals
estimated by relying on standard asymptotic theory as indicated in Fig. 2. This indicates that
the results by using standard asymptotic theory are reliable and the additional computational
effort of using the parametric bootstrap does not pay off.

The concordance between the component assignments determined for the ACTG 315 data
by using the original model and the correct model fitted to the bootstrap samples is evaluated
by using the Rand index corrected for chance (Hubert and Arabie, 1985). The mean corrected
Rand index over the 100 samples is 0.91 with a standard deviation of 0.09. The minimum Rand
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index corrected for chance is 0.51 and the maximum Rand index corrected for chance of 1 is
attained 25 times.

The simulation study indicates that the model that was fitted to the data is reasonable and
can be re-estimated surprisingly well by using data sets of the same size drawn from the fitted
model. In addition it indicates the superior performance of the BIC if the true number of latent
groups in the data is of interest.

5. Concluding remarks

An alternative approach for dynamic modelling of HIV RNA levels is proposed by using finite
mixtures of linear mixed effects models with censored data. A suitable EM algorithm for fit-
ting this model class in a frequentist setting is derived and possible methods for inference are
discussed. In contrast with previous approaches for fitting mixed effects models with censored
data by using the EM algorithm, no Gibbs sampling is involved for determining the means and
variances of the censored observations (Hughes, 1999; Vaida et al., 2007). The closed form
solutions that were given in Tallis (1961) and Leppard and Tallis (1989) are used as in Vaida
and Liu (2009). This requires only evaluating the cumulative multivariate normal distribution
function which can be efficiently done by using the method that was proposed in Genz (1992).

The application indicates that assuming that the functional relationship is known between the
dependent and the independent variables might lead to overly restrictive model specifications.
The model class proposed constitutes an addition to the available modelling toolbox which
allows us to check assumptions and to investigate alternative models. Because the model is a
direct extension and generalization of previously proposed approaches, model selection can
easily be integrated and a suitable model can be chosen.

Further possible extensions of the presented model class include also to relax the assumption
of normality for the remaining errors. For example, finite mixtures of multivariate t-distributions
were previously used for robust mixture modelling and the error distribution could therefore be
replaced by a t-distribution. Following Peel and McLachlan (2000) the t-distribution could be
interpreted as a normal scale mixture model and in the future we would like to attempt to adapt
the EM algorithm for this model by including a latent gamma-distributed variable.

Using spline functions to model an unkown functional relationship is appealing because of
its flexibility and the possibility of choosing the necessary amount of smoothing by using model
selection methods. For finite mixtures, different numbers of degrees of freedom could be used
for each of the components. This would allow us to model components suitably where the degree
of smoothness varies considerably. For the present application this did not seem to be an issue
and the same amount of flexibility for the spline functions was suitable for each component.
Relaxing the assumption of equality of smoothness in the components would in general sub-
stantially increase the model space and fitting all different models would be infeasible. This
could be solved by employing two different approaches:

(a) a two-step approach where the other aspects of model selection are determined in the
first step and kept fixed in the second step where the degree of flexbility in each of the
components is determined and

(b) by including the determination of suitable degrees of freedom in the EM algorithm.

Both possible approaches should be investigated in future work.
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Appendix A: Data and computational details

The data were downloaded as ACTG315Long-TermViralDynamicsData.cfm and ACTG315Lon
gitudinalDataNLMEData2.cfm from the data set collection at http://www.urmc.rochester.
edu/smd/biostat/people/faculty/WuSite/.

All computations are done in R by using package flexmix and the new model driver FLXMRlmmc().
For determining the mean and the covariance of the censored observations the algorithm that was pro-
posed in Leppard and Tallis (1989) was implemented by using package mvtnorm (Genz, 1992). Numerical
problems arise for very small probabilities, e.g. for observations from different components. To avoid these
problems observations with a small posterior probability (smaller than or equal to 10−6) are omitted in
the M-step of this component. In addition, if infeasible results are obtained by using mvtnorm, they are
replaced by a rough, but feasible, alternative estimate.

Appendix B: Details on estimation and inference

B.1. EM algorithm
For convenience of notation the subscripts u (uncensored) and c (censored) are used for any vector of
observations from individual i to define the subvectors where cij =0 and cij =1 respectively. This signifies
for example that

Yu,i = .yij :{j =1, . . . , ni|cij =0}/,
Yc,i = .yij :{j =1, . . . , ni|cij =1}/:

In addition 1c, i indicates a vector of 1s with length equal to Σni
j=1cij and Ic, i the identity matrix of the same

number of rows and columns. This notation also implies that

Yu,i =Qu,i:

Yc, i given Yu, i (or equivalently Qu, i) and γig =1 follows a multivariate Gaussian distribution with mean
and variance

μc,ig =Eθ[Yc,i|Qu,i, γig =1]=Eθ[Yc,i|Yu,i, γig =1]
=Xc,iαg +Zc,iΨgZ

T
u,i.Zu,iΨgZ

T
u,i +σ2

gIu,i/
−1.Yu,i −Xu,iαg/,

Σc,ig =varθ.Yc,i|Qu,i, γig =1/=varθ.Yc,i|Yu,i, γig =1/

=Zc,iΨgZ
T
c,i +σ2

gIc,i −Zc,iΨgZ
T
u,i.Zu,iΨgZ

T
u,i +σ2

gIu,i/
−1Zu,iΨgZ

T
c,i:

This implies that the distribution of Yc,i given .Qi, Ci/ and γig =1 is a truncated multivariate Gaussian
distribution with upper bound Qc,i. Formulae for deriving the mean and the variance for a multivariate
Gaussian distribution truncated from below were given in Tallis (1961) and Leppard and Tallis (1989)
and can easily be analogously derived for a multivariate Gaussian distribution truncated from above. We
denote these means and covariances by

μ̃c, ig =Eθ[Yc, i|Qi, Ci, γig =1],
Σ̃c, ig =varθ.Yc, i|Qi, Ci, γig =1/:

The analogously defined μ̃u,ig is equal to Yu,i and Σ̃u,ig is equal to a matrix of 0s. In the E-step the expec-
tation of the complete log-likelihood with respect to the current parameter estimates θ given the observed
data is determined. This integrates out the missing data. The expectation is iteratively determined by first
eliminating the random effects and determining

Eθ[Δc|Yi, γi]=
G∑
g=1

γig log.πg/− 1
2

G∑
g=1

γig

[
ni log.σ2

g/+ log.|Ψg|/+
ni∑

j=1

.yij −xT
ijαg − zT

ij Eθ[βi|Yi, γig =1]/2

σ2
g

+
ni∑

j=1

zT
ijvarθ.βi|Yi, γig =1/zij

σ2
g

+Eθ[βi|Yi, γig =1]TΨ−1
g Eθ[βi|Yi, γig =1]+ tr{Ψ−1

g varθ.βi|Yi, γig =1/}
]
,
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where

Eθ[βi|Yi, γig =1]=ΨgZ
T
i .ZiΨgZ

T
i +σ2

gIi/
−1.Yi −Xiαg/

=
(

1
σ2
g

ZT
i Zi +Ψ−1

g

)−1 1
σ2
g

ZT
i .Yi −Xiαg/

and

varθ.βi|Yi, γig =1/=Ψg −ΨgZ
T
i .ZiΨgZ

T
i +σ2

gIi/
−1ZiΨg

=
(

1
σ2
g

ZT
i Zi +Ψ−1

g

)−1

using .I +AB/−1 = I −A.I +BA/−1B (see also Xu and Hedeker (2001)).
The expectation with respect to θ conditional on .Qi, Ci/ is then

Eθ[Eθ[Δc|Yi, Ci]|Qi, Ci]=
G∑
g=1

Eθ[γig|Qi, Ci] log.πg/− 1
2

G∑
g=1

Eθ[γig|Qi, Ci]
(

ni log.σ2
g/+ log.|Ψg|/

+ 1
σ2
g

ni∑
j=1

zT
ijΓigzij + 1

σ2
g

ni∑
j=1

.1− cij/.yij −xT
ijαg − zT

ij Eθ[βi|Qi, Ci, γig =1]/2

+ 1
σ2
g

ni∑
j=1

cij[{.μ̃ig/j −xT
ijαg − zT

ij Eθ[βi|Qi, Ci, γig =1]}2 + .Σ̃ig/jj −2zT
ij.ψig/j:]

+Eθ[βi|Qi, Ci, γig =1]TΨ−1
g Eθ[βi|Qi, Ci, γig =1]+ tr.Ψ−1

g Γig/

)
: .2/

The various terms that are needed in equation (2) are

Γig =varθ.Eθ[βi|Yi, γig =1]|Qi, Ci, γig =1/+Eθ[varθ.βi|Yi, γig =1/|Qi, Ci, γig =1], .3/

Eθ[γig|Qi, Ci]∝πgΦ.Qc, i;μc, ig, Σc, ig/φ.Yu, i; Xu, iαg, Zu, iΨgZ
T
u, i +σ2

gIu, i/, .4/

Eθ[βi|Qi, Ci, γig =1]=Eθ[Eθ[βi|Yi, γig =1]|Qi, Ci, γig =1]

=
(

1
σ2
g

ZT
i Zi +Ψ−1

g

)−1 1
σ2
g

ZT
i {diag.1i −Ci/Yi +diag.Ci/μ̃ig −Xiαg}, .5/

Eθ[varθ.βi|Yi, γig =1/|Qi, Ci, γig =1]=
(

1
σ2
g

ZT
i Zi +Ψ−1

g

)−1

, .6/

varθ.Eθ[βi|Yi, γig =1]|Qi, Ci, γig =1/

=
(

1
σ2
g

ZT
i Zi +Ψ−1

g

)−1 1
σ2
g

ZT
c, iΣ̃c, ig

1
σ2
g

Zc, i

(
1
σ2
g

ZT
i Zi +Ψ−1

g

)−T

, .7/

ψc, ig = covθ.Yc, i, Eθ[βi|Yi, γig =1]|Qi, Ci, γig =1/

= Σ̃c, ig
1
σ2
g

Zc,i

(
1
σ2
g

ZT
i Zi +Ψ−1

g

)−T

: .8/

The analogously defined ψu, ig is equal to a matrix of 0s. Φ.x;μ, Σ/ and φ.x;μ, Σ/ denote the cumulative
distribution function and the density function of the multivariate normal distribution with mean μ and
variance–covariance matrix Σ evaluated at x. diag.x/ gives a diagonal matrix with x in the diagonal.

The M-step consists of determining the first derivatives of the expected complete log-likelihood given
the data and the current parameter estimates with respect to the parameters and setting them equal to 0.
The solution of these score functions is given in closed form.
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π̂g = 1
N

N∑
i=1

Eθ[γig|Qi, Ci], .9/

α̂g =
(

N∑
i=1

Eθ[γig|Qi, Ci]XT
i Xi

)−1[ N∑
i=1

Eθ[γig|Qi, Ci]XT
i {diag.1i −Ci/Yi +diag.Ci/.μ̃ig/

−Zi Eθ[βi|Qi, Ci, γig =1]}
]
, .10/

Ψ̂g = 1
Nπ̂g

{
N∑

i=1
Eθ[γig|Qi, Ci].Eθ[βi|Qi, Ci, γig =1]Eθ[βi|Qi, Ci, γig =1]T +Γig/

}
.11/

σ̂2
g = 1

N∑
i=1

ni Eθ[γig|Qi, Ci]

N∑
i=1

Eθ[γig|Qi, Ci]
ni∑

j=1
[{.1− cij/yij

+ cij.μ̃ig/j −xT
ijα̂g − zT

ij Eθ[βi|Qi, Ci, γig =1]}2 + cij..Σ̃ig/jj −2zT
ij.ψig/j:/+ zT

ijΓigzij ]: .12/

These formulae can be easily modified to estimate fixed variances for the residuals or fixed variance–
covariance matrices for the random effects over components by weighted averaging over the component-
specific parameter estimates.

B. 2. Provision of standard errors
In the case where observations are independent and identically distributed the information matrix can be
approximated by the empirical information matrix (Basford et al., 1997; McLachlan and Peel, 2000). The
empirical information matrix is equal to

Ie.θ̂; Q, C/=
n∑

i=1
s.Qi, Ci; θ̂/s.Qi, Ci; θ̂/T,

where

s.Qi, Ci; θ/=Eθ

[
@Δci

@θ

∣∣∣∣Qi, Ci

]
:

The scores for πg are determined for g=1, . . . , G−1.

Eθ

[
@Δci

@πg

∣∣∣∣Qi, Ci

]
= Eθ[γig|Qi, Ci]

πg
− Eθ[γig|Qi, Ci]

πG

: .13/

The scores for the other parameters are determined for g=1, . . . , G.

Eθ

[
@Δci

@αg

∣∣∣∣Qi, Ci

]
= Eθ[γig|Qi, Ci]

σ2
g

XT
i {diag.1i −Ci/Yi +diag.Ci/μ̃ig −Xiαg −Zi Eθ[βi|Qi, Ci, γig =1]},

.14/

Eθ

[
@Δci

@σ2
g

∣∣∣∣Qi, Ci

]
= Eθ[γig|Qi, Ci]

2σ2
g

(
−ni + 1

σ2
g

ni∑
j=1

[cij{.Σ̃ig/jj −2zT
ij.ψig/j:}

+ zT
ijΓigzij +{.1− cij/yij + cij.μig/j −xT

ijαg − zT
ij Eθ[βi|Qi, Ci, γig =1]}2]

)
.15/

Eθ

[
@Δci

@Ψg

∣∣∣∣Qi, Ci

]
= Eθ[γig|Qi, Ci]

2
.−Ψ−1

g +Ψ−1
g ΓigΨ−1

g

+Ψ−1
g Eθ[βi|Qi, Ci, γig =1] Eθ[βi|Qi, Ci, γig =1]TΨ−1

g /: .16/
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Again these formulae can be easily modified when fixed variances for the residuals or fixed variance–
covariance matrices for the random effects over components are estimated by weighted averaging over the
scores of the component-specific parameters.
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