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We approach the problem of combining top-ranking association statistics or P-values from 
a new perspective which leads to a remarkably simple and powerful method. Statistical 
methods, such as the rank truncated product (RTP), have been developed for combining 
top-ranking associations, and this general strategy proved to be useful in applications 
for detecting combined effects of multiple disease components. To increase power, 
these methods aggregate signals across top ranking single nucleotide polymorphisms 
(SNPs), while adjusting for their total number assessed in a study. Analytic expressions for 
combined top statistics or P-values tend to be unwieldy, which complicates interpretation 
and practical implementation and hinders further developments. Here, we propose the 
augmented rank truncation (ART) method that retains main characteristics of the RTP 
but is substantially simpler to implement. ART leads to an efficient form of the adaptive 
algorithm, an approach where the number of top ranking SNPs is varied to optimize 
power. We illustrate our methods by strengthening previously reported associations of 
μ-opioid receptor variants with sensitivity to pain.

Keywords: combining evidence, rank truncated product, a rank truncated product RTP, augmented rank 
truncation, adaptive augmented rank truncation

INTRODUCTION
Complex diseases are influenced by multiple environmental and genetic risk factors. A specific 
factor, such as a single mutation, may convey a high risk, but population frequencies of high 
risk factors are usually low, and substantial contribution to disease incidence can be attributable 
to accumulation of multiple but weak determinants within individuals. Genetic determinants 
of complex diseases that had been identified by genetic association studies tend to carry modest 
effects; yet, power to detect such variants, as well as accuracy of identifying individuals at risk, 
can be improved by combining multiple weak predictors. The main challenge in detecting specific 
variants is low statistical power, but the overall accumulated effect of many individually weak 
signals can be much stronger. It is convenient to combine statistical summaries of associations—
for example, P-values, and this approach can be nearly as efficient as analysis of raw data (Lin and 
Zeng, 2010). In observational research, methods for combining P-values are commonly associated 
with meta-analyses that pool results of multiple experiments studying the same hypothesis. The 
combined P-value then aggregates signals across all L studies, potentially providing a higher level 
of assurance that the studied risk factor is associated with disease. Furthermore, if samples in those 
studies are taken from populations that are similar with respect to the effect size magnitude, the 
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combined meta-analytic P-value will well approximate the one 
that would have been obtained by pooling together all raw data 
and performing a single test (Zaykin, 2011).

P-values can also be combined when the L hypotheses 
are distinct, and when the interest is in detecting the overall 
signal. Such applications are common and include gene set and 
pathway analyses. Specifically, a typical strategy in computation 
of gene- and pathway-scores includes (1) mapping individual 
SNPs to genes, followed by combining their association P-values 
into gene-scores, and (2) grouping genes into pathways and 
combining gene-scores into pathway-scores.

Existing tools for combining P-values (Pi,i = 1, …, L) are 
often based on the sum of Pi‘s transformed by some function H. 
For example, Fisher (1932) test is based on the log-transformed 
P-values, H(Pi)=–21n(Pi), which are then added up to form 

a test statistics T H P
i

L

i L= ( ) ~
=1

(2 )
2∑ χ , where χ( )2

2
L  has the 

chi-square distribution with 2 L degrees of freedom. When 
a portion of L distinct associations is expected to be spurious, 
it is advantageous to combine only some of the predictors 
using a truncated variation of combined P-value methods or 
emphasize the smallest P-values. For instance, Zaykin et al. 
(2002) proposed the truncated product method (TPM) as a 
variation of the Fisher test, which was trimmed by the indicator 
function, I(Pi≤ α), that is equal to zero if Pi> α, and one if Pi≤ α; 0  
< α ≤ 1 is a truncation threshold. The combined P-value, PTPM, 
is then given by the cumulative distribution function (CDF) of 

W P I P
i

L

i= ln( ) ( ≤ )i
=1

∑ α . With the TPM approach, the threshold 

α is fixed while the number of P-values that form the sum W 
is random. Similarly inspired methods include the “tail strength 
measure” Taylor and Tibshirani (2005) and a method by Jiang 
et al. (2011).

A related popular method for combining top-ranking P-values 
is the rank truncated product (RTP) (Zaykin, 2000; Dudbridge 
and Koeleman, 2003; Zaykin et al., 2007a). In RTP, the number 
of P-values to be combined, k, is fixed, rather than the P-value 
threshold, as in TPM. The resulting combined P-value can be 
found from the cumulative distribution of the product:
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where P(i) is the ith smallest P-value, i = 1,…,k. RTP leads to 
an appealing extension, where k can be chosen adaptively, to 
maximize statistical power (Hoh et al., 2001; Yu et al., 2009; 
Zhang et al., 2013). Adaptive rank truncated product (aRTP) 
variations optimize selection of the truncation point k among 
all (or a subset) of possible values 1 ≤ k ≤ L. Adaptive extensions 
for TPM are not as straightforward because the threshold α 
is a continuous variable, but one can resort to evaluating 
the distribution over a set of grid points (Sheng and Yang, 
2013). In adaptive extensions of TPM and RTP, the final test 
statistic is the minimum P-value observed at various candidate 
truncation points.

The RTP null distribution is considerably more complicated 
than that of TPM. Complexity of the RTP distribution is due 
to dependency between ordered P-values. When k = L, this 
dependency is inconsequential because a statistic is formed as 
a sum of L terms, and its value does not change if the terms are 
re-ordered. In fact, when k = L, the RTP P-value is the same as 
the Fisher combined P-value, derived via a CDF of a sum of 
independent chi-square variables. However, if 1 < k < L, the k 
smallest P-values remain correlated and dependent even if these 
k values are randomly shuffled. The dependency is induced 
through P(k+1) being a random variable: when P(k+1) happens to 
be relatively small, the k P-values have to squeeze into a relatively 
small interval from zero to that value. This induces positive 
dependency between random sets of k smallest P-values, similar 
to the clustering effect in random effects models. Although the 
linear correlation can be eliminated by scaling the largest P-value, 
P(k), the k values remain dependent, as illustrated in Figure 1 (see 
Supplementary Material S-1 for discussion).

Applications of combining independent P-values remain 
important in statistical research, and there is clear preference 
among practitioners for methods that are based on simple and 
transparent approaches, such as the Fisher or the inverse normal 
(Stouffer’s) tests (Fisher, 1932; Stouffer et al., 1949; Loughin, 2004; 
Whitlock, 2005; Zaykin, 2011; Won et al., 2009). Here, we derive a 
simple, easily implemented theoretical form of the RTP distribution 
for independent P-values which further leads to derivation of 
a new statistic. The new statistic, which we call the augmented 
RTP, or ART, is based on the product of the first smallest P-values, 
just like the RTP, but, unlike the RTP, the distribution of the new 

FIGURe 1 | Illustration for decorrelated yet dependent P-values; k = 2, 
L = 4. A plot of simulated and decorrelated values, U(1) vs. U(2), reveals 
a hole in the middle, instead of the complete Malevich black square, 
indicating dependency.
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statistic is given by standard functions, and its computation avoids 
explicit integration. Despite simplicity, ART is at least as powerful 
as RTP, according to our simulation studies. Moreover, the ART 
leads to an adaptive statistic, where the number of the smallest 
P-values to combine can be determined analytically to maximize 
power. Next, we extend our methods by allowing dependence in 
the observed P-values. In genetic association studies, P-values 
are often correlated due to linkage disequilibrium (LD). The LD 
correlation is typically accounted for through permutational or 
other resampling approaches, where P-values are simulated under 
the null hypothesis while preserving LD between genetic variants. 
While such approaches are practical and easy to implement, it is 
also possible to de-correlate P-values before combining them and 
then use any of the approaches developed under the independence 
assumption. Surprisingly, we find that the decorrelation step often 
improves power. In particular, we find that, when association 
with disease is markedly different among variants within a gene, 
statistical power of standard methods (without the decorrelation 
step) approaches a plateau as a function of LD and does not 
improve as the number of SNPs increases. In contrast, power of 
our proposed decorrelation method increases steadily with the 
number of SNPs. Our analytical results as well as simulation 
experiments demonstrate this property for both ART (where k is 
chosen beforehand and fixed) and for the adaptive variations of 
RTP and ART (aRTP and ART-A). Finally, we illustrate usefulness 
of the proposed methods by strengthening an overall, gene-based 
association via combining previously reported P-values between 
pain sensitivity and individual SNPs within the μ-opioid receptor.

MATeRIAl AND MeThODS

Theoretical RTP Distribution and 
Augmented RTP, the ART
Even when P-values are independent, previously proposed 
theoretical forms of the RTP distribution are cumbersome and 
result in expressions that involve repeated integration (Zaykin, 
2000; Dudbridge and Koeleman, 2003; Nagaraja, 2006; Zaykin 
et al., 2007b). For example, Nagaraja (2006) gives the cumulative 

distribution for the statistic W = Pk i
i

k

- ln ( )
=1

∑  and k< L, as:
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Theoretical forms of the RTP distribution (e.g., Eq. 1) may retain 
order-specific terms. Here, we proceed to a simpler representation 
by noting that every random realization of k smallest P-values 
can be shuffled. This step does not change the value of the 
product, Wk (or its logarithm), which is our statistic of interest, 
but implies that we can treat the joint k-variate distribution as 
governed by the same pair-wise dependence for every pair of 
variables. Moreover, variables of that shuffled distribution are 
identical marginally. The dependency is induced completely 
through randomness of P(k+1), and conditionally on its value, 
the {Wk|p(k+1)} distribution is given by standard independence 
results. Then, PRTP is given by the marginal CDF of Wk. Based on 
this conceptual model, we derived the following representation 
of RTP where a single integral is evaluated in a bounded interval 
(0,1), which allows one to evaluate the RTP distribution as a 
simple average of standard functions. Specifically, we derive a 
simple expression for the RTP distribution as the expectation of 
a function of a uniform (0 to 1) random variable:

 

P k

W w G
B u

wk k
k

k

RTP

ln

( )

Pr( )
[ ( )]

=

≤ = −














 +

−

1
1

1









=

∫ du

E H U

0

1

{ ( )},| k,w  (2)

where Bk+
−

1
1 ( )⋅  is inverse CDF of Beta(k+1,L−k) distribution, Gk(·) is 

CDF of Gamma(k, 1), and H u k w G
B u

wk
k

k

( , )
( )

.| ln=
 























+
−

1
1

 

PRTP(k) is the combined RTP P-value. Notably, given the value of 
the product of k P-values, W = w, we can simultaneously evaluate 
PRTP(k+1):
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Details and the derivation are given in Supplementary 
Material S-2.

The conditional independence of k−1 smallest P-values, given 
a value of the beta-distributed k-th smallest P-value, leads to a 
simple statistic which (just as RTP) is a function of the product 
of the k-th smallest P-values. This statistic and its distribution 
are not an approximation to Wk and the RTP distribution. 
However, similarly to RTP, the new statistic is designed to 
capture information contained in the first k smallest P-values. 
Motivation for our augmented RTP method (ART) follows 
from the intermediate results of the derivation of the RTP 
distribution. Note that the distribution of Wk conditional on (k + 
1) involves a product of k uniforms and a beta random variable. 
Moreover, the product and the beta variable are independent. 
On the one hand, we could have proceeded by dividing every 
P(1:k) value by the observed p(k+1) and employed the gamma 
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CDF to − +
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∑ ln( / )( ) ( )P pi k
i

k

1
1

 to obtain the combined P-value. 

However, this approach ignores information contained in P(k+1) 
magnitude. On the other hand, we can exploit the independence 
of the gamma-distributed sum and P(k+1) by transforming P(k+1) 
to a gamma random variable and adding the result to the sum. 
Specifically, to construct the new statistic, we propose the 
following transformation that involves the product Wk−1 and 
the variable P(k). These transformations yield three independent 
variables, which are next added together and give a gamma-
distributed random variable,

 

A
W k P G B P

k

k k k k

=
− + − + −−

−l ln{ } ( ) n{ } { ( )},( ) ( )1
11 1λ  (4)

where Gk
− ⋅1( )  is inverse CDF of Gamma (k,1),

λ = (k – 1) × E {– ln (P(k))} = (k – 1) (Γ′ (L + 1)/Γ (L + 1) 
– Γ′ (k)/Γ (k)),

Γ′ is the first derivative of a gamma function; and Bk(x) is the 
CDF of Beta(k, L−k+1) distribution evaluated at x. The shape 
parameter λ is chosen so that the two last terms in Eq. 4 (that 
are both transformations of P(k)) have the same expectation. The 
shape parameter here plays a role of a weight given to the last 
term. This is similar to the Lancaster method for combining 
P-values, where the gamma shape parameter (equivalently, the 
degrees of freedom of a chi-square distribution) has been used to 
give differential weights to P-values (Lancaster, 1965).

Given the observed value Ak=ak, the combined P-value is

 P A a G ak k k kART = ≤ = − + −Pr( ) ( ).1 1λ  (5)

Under the null hypothesis, as illustrated by Figure 2, combined 
P-values based on the proposed method (ART) are very similar 
to PRTP, and approach PRTP as k increases. However, under the 
alternative, we find (as described in “Results” section) that ART 
has either the same or higher power than RTP. Furthermore, the 
combined P-value, ART, can be easily computed in R using its 
standard functions. A short example and an R code are given in 
Supplementary Material S-3.

Adaptive ART Method, ART-A
As we discussed earlier in Introduction, the number of k P-values 
to be combined by the RTP method (or ART) is fixed and needs 
to be pre-specified. The choice of k is somewhat arbitrary; 
so, a researcher may wish to evaluate ART at several values of 
k, consequently choosing k that corresponds to the smallest 
combined P-value. However, this additional step creates another 
layer of multiple comparisons, which needs to be accounted 
for. Yu et al. (2009) proposed an empirical procedure to 
evaluate adaptive RTP (aRTP) method based on the minimum 
P-value computed over various candidate truncation points. To 
avoid a cumbersome two-level permutation procedure, they 
built on the method suggested by Ge et al. (2003) to reduce 
computational time. While computationally efficient, the 
method requires to store a large B×L matrix, with every row 
containing L P-values generated under the null distribution 

FIGURe 2 | Combined P-values based on Ak versus RTP statistic. Multiple combined P-values were computed using the 2 proposed statistics based on either top 
10 or top 15 P-values out of L = 20 tests.
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over B simulated experiments. Zhang et al. (2013) derived 
analytic but mathematically complex aRTP distribution, which 
needs to be evaluated using high-dimensional integration. 
Here, we propose a new and easily implemented version of the 
theoretical distribution for ART, ART-A. The method exploits 
the fact that ordered P-values can be represented as functions 
of the same number of independent uniform random variables 
(Supplementary Material S-4). The two main ideas behind 
ART-A are first to approximate the Gamma distribution with a 
large shape parameter by the normal distribution, and second to 
use the fact that the joint distribution of the partial normal sums 
follows a multivariate normal distribution.

Correlated P-Values
We further extend the proposed methods to combine correlated 
P-values via decorrelation by orthogonal transformation 
approach, DOT. Let L correlated P-values, (p1, p2, …, pL) originate 
from statistics that jointly follow a standard multivariate normal 
distribution, y ~ MVN (μ = 0, Σ), under H0. For two-sided 
P-values, the elements of y are squared. Elements of the vector 
of squared variables, y j

2 , follow the one degree of freedom 
chi-square distribution with Cor( , )y yi j

2 2 = ΣΣij
2 . Dependent 

variables can be transformed into independent variables by 
using eigendecomposition of Σ, such that Σ = QΛQ−1, where 
Q is a square matrix, with ith column containing eigenvector 
qi of Σ, and Λ is the diagonal matrix of eigenvalues λ1, λ2, …, 
λL. Next, define an orthogonal matrix H = QΛ−1/2QT and ye = 
HTy. P-values are decorrelated as 1-Φ−1(ye). Then, the first k 
smallest decorrelated P-values can be used to calculate various 
combined statistics. The choice of this particular transformation 
is motivated by its “invariance to order” property. Briefly, in 
the equicorrelation case, including the special case of ρ = 0, 
i.e., independence, a permutation of y should yield the same 
(possibly permuted) values in the decorrelated vector, ye. 
Extensive evaluation of the decorrelation approach is presented 
by us elsewhere (Vsevolozhskaya et al., 2019).

ReSUlTS

Simulation Study Results
We used simulation experiments to evaluate the type I error rate 
and power of the proposed methods relative to the previously 
studied RTP (defined for a fixed k) and to the adaptive RTP 
[where k is varied and the distribution is evaluated by single-
layer simulations as in Yu et al. (2009)]. Briefly, a single-layer 
simulation is a numerical optimization of the naive simulation 
setup, which is quite slow because each round of data generation 
has to be followed by a second set of simulations to determine 
the optimal truncation point. Yu et al. proposed a clever shortcut 
based on a rectangular matrix, in which each i-th row is a set of 
L P-values that corresponds to the i-th simulation. The shortcut 
avoids nested and slow simulations but has a downside of keeping 
quite large matrix in computer memory.

Performance of various methods was evaluated using k 
first-ordered P-values, with k = {10,100}, L = {100,200,500}, 

and B = 100,000 simulations for evaluation of both, type-I 
error and power. Details of the simulation design are given in 
Supplementary Material S-5.

When various combined P-value methods are being 
compared, it is meaningful to gauge their performance against 
methods designed for multiple testing adjustments. This is 
especially relevant with methods that employ truncation due 
to their emphasis on small P-values. Therefore, we included the 

TABle 1 | Type I error at α = 0.05, 0.01, and 0.005, assuming that P-values 
are independent.

k = 10 k = 100

L = 100 L = 200 L = 500 L = 100 L = 200 L = 500

α = 0.05
RTP 0.0499 0.0502 0.0515 0.0494 0.0511 0.0515
ART 0.0501 0.0504 0.0511 0.0486 0.0509 0.0503
aRTP 0.0499 0.0501 0.0504 0.0510 0.0502 0.0506
ART-A 0.0504 0.0503 0.0507 0.0495 0.0509 0.0489
Simes 0.0499 0.0496 0.0495 0.0507 0.0506 0.0501
α = 0.01
RTP 0.0106 0.0097 0.0099 0.0100 0.0097 0.0095
ART 0.0102 0.0100 0.0099 0.0103 0.0095 0.0095
aRTP 0.0101 0.0098 0.0101 0.0102 0.0098 0.0095
ART-A 0.0103 0.0103 0.0097 0.0102 0.0105 0.0101
Simes 0.0098 0.0101 0.0099 0.0097 0.0104 0.0091
α = 0.005
RTP 0.0049 0.0054 0.0046 0.0046 0.0049 0.0044
ART 0.0050 0.0052 0.0050 0.0048 0.0051 0.0046
aRTP 0.0050 0.0049 0.0052 0.0050 0.0049 0.0050
ART-A 0.0049 0.0051 0.0051 0.0050 0.0048 0.0044
Simes 0.0051 0.0050 0.0052 0.0053 0.0048 0.0053

TABle 2 | Type I error at α = 0.05, 0.01, and 0.005 for randomly correlated 
P-values.

L = k = 4 L = k = 6 L = k = 
10

L = 100, 
k = 10

L = k = 
100

Mean | ρ| 0.2924 0.3715 0.4178 0.4634 0.4634

α = 0.05
RTP 0.0463 0.0495 0.0501 0.0538 0.0541
RTP (decorr) 0.0492 0.0480 0.0515 0.0528 0.0515
ART (decorr) 0.0504 0.0474 0.0501 0.0514 0.0514
aRTP 0.0466 0.0508 0.0489 0.0538 0.0552
ART-A (decorr) 0.0492 0.0500 0.0519 0.0510 0.0543
Simes 0.0516 0.0500 0.0494 0.0510 0.0506
α = 0.01
RTP 0.0098 0.0099 0.0105 0.0103 0.0096
RTP (decorr) 0.0107 0.0096 0.0095 0.0092 0.0100
ART (decorr) 0.0106 0.0094 0.0101 0.0096 0.0101
aRTP 0.0103 0.0100 0.0097 0.0100 0.0105
ART-A (decorr) 0.0103 0.0100 0.0097 0.0100 0.0105
Simes 0.0101 0.0100 0.0096 0.0099 0.0100
α = 0.005
RTP 0.0050 0.0048 0.0051 0.0052 0.0052
RTP (decorr) 0.0047 0.0048 0.0056 0.0046 0.0050
ART (decorr) 0.0050 0.0046 0.0056 0.0048 0.0050
aRTP 0.0052 0.0047 0.0050 0.0051 0.0053
ART-A (decorr) 0.0049 0.0048 0.0051 0.0050 0.0049
Simes 0.0051 0.0051 0.0050 0.0048 0.0047
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Simes (1986) method in our power comparisons because it can be 
viewed as a combined P-value method. The Simes method tests 
the overall H0 without a reference to individual P-values: the H0 
is rejected at α level if P(i) ≤ iα/L for at least one i. Equivalently, the 
overall (or the “combined”) Simes P-value can be obtained as min 
{kp(i)/i}. The Simes test is a useful benchmark, because it is related 
to the combined P-value methods with truncation, as well as to 
multiple testing adjustment procedures. At the extreme, the RTP 
with k = 1 becomes equivalent to Šidák (1967) correction. Šidák 
correction is approximately the Bonferroni (1935) correction for 
small P-values and large L. The Simes P-value is at least as small as 
Bonferroni-corrected P-value. In addition, there is a connection 
of the Simes test to the Benjamini and Hochberg (1995) false 
discovery rate (FDR), i.e., the Simes test is algebraically the same 
procedure as the Benjamini and Hochberg FDR, although the 

interpretation is different: FDR method determines the largest i, 
such that P(i) ≤ iα/L, and rejects H0 for all P(j), j ≤ i, to control the 
expectation of FDR.

Tables 1–3 present type I error rates for combinations of 
independent and decorrelated P-values, respectively. In the tables, 
rows labeled “ART-A” refer to our newly proposed adaptive ART 
method, while “aRTP” rows label the results of the conventional 
approach (Yu et al., 2009). For the adaptive methods, the sequence 
of truncation points varied from 1 to k or from 1 to L, if k = L. 
Both tables confirm that all methods maintain the correct Type I 
error rate at various α-levels.

Tables 4–6 summarize a set of power simulations for 
independent P-values. Results presented in Table 4 were 
obtained under the assumption that all L statistics had the same 
underlying effect size (μ = 0.5). From this table, it is evident 
that our ART has the highest power, closely followed by RTP. 
In general, the ART P-values tend to be similar to the P-values 
obtained by the RTP, and we show their similarity graphically 
in Figure 2. The Simes method has the lowest power, which is 
expected due to homogeneity in effect sizes across L tests and 
absence of true nulls. For the results in Table 5, the effect size 
was allowed to randomly vary throughout the range from 0.05 
to 0.45. In both of these tables, the ART method has the highest 
power, while the Simes method has the lowest power. The 
power of both adaptive methods is very similar to one another 
but lower than that of methods based on a fixed k (RTP and 
ART). Nonetheless, in practice, a good choice for k may not be 
immediately clear, so a small sacrifice in power may be preferable 
to an arbitrary and possibly poor choice of k. However, when L 
is large, it can be impractical or unreasonable to vary candidate 
truncation points all the way up to L. Therefore, the value of k in 

TABle 3 | Additional type I error results at α = 0.05, 0.01, and 0.005 for 
correlated P-values and different k and L combinations.

k = 10 k = 100

L = 100 L = 200 L = 500 L = 100 L = 200 L = 500

Mean ρ 0.4634 0.4655 0.4667 0.4655 0.4635 0.4667
α = 0.05
RTP 0.0538 0.0541 0.0498 0.0509 0.0499 0.0502
RTP (decorr) 0.0528 0.0515 0.0503 0.0497 0.0504 0.0494
ART (decorr) 0.0514 0.0514 0.0501 0.0505 0.0503 0.0498
ART-A 0.0538 0.0552 0.0497 0.0509 0.0497 0.0502
ART-A 
(decorr)

0.0510 0.0543 0.0498 0.0511 0.0492 0.0505

Simes 0.0510 0.0506 0.0504 0.0514 0.0500 0.0502
α = 0.01
RTP 0.0103 0.0096 0.0107 0.0096 0.0102 0.0101
RTP (decorr) 0.0092 0.0101 0.0098 0.0100 0.0103 0.0098
mRTP 
(decorr)

0.0096 0.0100 0.0096 0.0101 0.0101 0.0101

ART 0.0104 0.0098 0.0103 0.0098 0.0094 0.0099
ART-A 
(decorr)

0.0100 0.0099 0.0098 0.0105 0.0101 0.0103

Simes 0.0099 0.0103 0.0101 0.0100 0.0101 0.0095
α = 0.005
RTP 0.0052 0.0047 0.0052 0.0052 0.0052 0.0050
RTP (decorr) 0.0046 0.0048 0.0050 0.0050 0.0045 0.0050
mRTP 
(decorr)

0.0048 0.0050 0.0049 0.0050 0.0047 0.0051

ART 0.0051 0.0045 0.0050 0.0053 0.0050 0.0051
ART-A 
(decorr)

0.0050 0.0047 0.0046 0.0049 0.0052 0.0054

Simes 0.0048 0.0050 0.0048 0.0047 0.0048 0.0045

TABle 4 | Power under the alternative hypothesis, assuming independence and 
the same effect size μ = 0.5 for all L tests.

k = 10 k = 10

L = 100 L = 200 L = 500 L = 100 L = 200 L = 500

RTP 0.35 0.43 0.54 0.49 0.73 0.94
ART 0.38 0.49 0.63 0.50 0.74 0.95
aRTP 0.27 0.33 0.41 0.41 0.61 0.86
ART-A 0.32 0.38 0.46 0.40 0.57 0.72
Simes 0.14 0.16 0.17 0.15 0.16 0.17

TABle 5 | Power under the alternative hypothesis, assuming independence and 
random effect size (μ between 0.05 and 0.45).

k = 10 k = 10

L = 100 L = 200 L = 500 L = 100 L = 200 L = 500

RTP 0.23 0.28 0.37 0.30 0.46 0.72
ART 0.25 0.32 0.43 0.30 0.46 0.75
aRTP 0.18 0.22 0.27 0.25 0.36 0.57
ART-A 0.22 0.26 0.33 0.25 0.37 0.53
Simes 0.12 0.13 0.14 0.12 0.13 0.14

TABle 6 | Power under independence, assuming constant effect size (μ = 1.4) 
for a fraction of L = 1,000 hypotheses and μ = 0 for the rest of the tests. 
Proportion of true effects is the proportion of SNPs with μ≠0. In other words, it is 
the proportion of alternative hypotheses among all hypotheses.

k = 10 k = 50

Proportion of 
true effects

2.5% 5% 10% 2.5% 5% 10%

RTP 0.24 0.48 0.83 0.29 0.65 0.97
ART 0.24 0.52 0.89 0.29 0.66 0.98
aRTP 0.20 0.40 0.75 0.25 0.55 0.93
ART-A 0.22 0.45 0.75 0.26 0.56 0.88
Simes 0.14 0.23 0.38 0.14 0.23 0.38
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these tables is the upper bound for sets of candidate truncation 
points, and that explains the difference in powers. For example, 
for the combination k = 10, L = 200, the power of ART-A in Table 
5 is 0.26, while for k = 100, L = 200, the power is 0.37. Adaptive 
methods are considerably slower than methods where the value 
of k is fixed. A promising solution, which is currently under 
development, is removal of candidate truncation points for 
which the corresponding partial products are highly correlated.

We note that power values in Tables 4–5 include k = L, but 
for illustrative purposes, we also give power values for some 
choices where k < L. We emphasize that, in our tables, these 
chosen maximum k values do not have any specific meaning. In 
general, the maximum value of k for the adaptive methods can be 
varied up to L, unless L is either very large, or if there is a priori 
assumption that the real signals are rare. As discussed in Zaykin 
et al. (2007a), the optimal value of k is usually lower than the 
actual number of real signals; however, the upper bound for k 
can be set to reflect a priori knowledge about potential maximum 
number of real signals.

Finally, Table 6 summarizes results for simulations when some 
of the L hypotheses were true nulls (μ = 0), while the remaining 
hypotheses were true signals (μ = 0.5). The results follow the 
same pattern as in the previous tables, with ART having the 
highest power.

Table 7 summarizes a set of power simulations for correlated 
P-values. The effect sizes were randomly varied between −0.45 
and 1.3 in each simulation. The correlation matrices were 
generated as described in Supplementary Material S-5. This 
set of simulations assumes that the P-values were obtained 
from the same data set as the sample estimate of the correlation 
matrix. Under heterogeneous effect sizes (Table 7), the empirical 
versions of the tests (“RTP,” “ART-A”) show nearly identical (and 
low) power for various combinations of k and L values. However, 
decorrelation-based methods become quite powerful, and their 
power is increasing with k and L. The steady power increase is 
due to the decorrelation effect on the combined noncentrality 

that involves the sum ( - )2

≠
µ µi j

i j

L∑ , which increases with the 

increased heterogeneity of μ. More details on the performance 
of the decorrelation approach are given by us elsewhere 
(Vsevolozhskaya et al., 2019), but here we briefly note that this 
finding is practically relevant because substantial heterogeneity 
of associations is expected among genetic variants, leading to a 

substantial power boost, as we next illustrate via re-analysis of 
published associations of genetic variants within the μ-opioid 
gene with pain sensitivity.

Real Data Analysis
In several popular variations of the gene-based approach (Neale 
and Sham, 2004), future association statistics or P-values are 
combined across variants within a gene (Yu et al., 2009; Liu et al., 
2010; Peng et al., 2010; Li et al., 2011). Gene-based approaches 
have some advantages over methods based on individual SNPs 
or haplotypes. In particular, gene-based P-values may facilitate 
subsequent meta-analysis of separate studies and can be less 
susceptible to erroneous findings (Neale and Sham, 2004). To 
obtain a gene-based P-value, one would need to account for LD 
among variants. The matrix of LD correlation coefficients can 
be obtained conveniently without access to individual genotypes 
if frequencies of haplotypes for SNPs within the genetic region 
of interest are available. The LD for alleles i and j is defined by 
the difference between the di-locus haplotype frequency, Pij, 
and the product of the frequencies of two alleles, Dij = Pij- pipj. 

The LD correlation for SNPs i and j is r
D

p p p pij
ij

i i j j
=

− −( ) ( )1 1 . 

Shabalina et al. (2008) and Kuo et al. (2014) reported SNP-based 
P-values (Table 8), as well as results of several haplotype-based 

TABle 7 | Power for correlated P-values when the effect size is randomly varied 
between −0.45 and 1.3.

L = 
k = 4

L =  
k = 6

L =  
k = 10

L = 100,  
k = 10

L =  
k = 100

Mean | ρ| 0.39 0.43 0.45 0.47 0.47

RTP 0.13 0.12 0.11 0.17 0.12
RTP (decorr) 0.41 0.47 0.57 0.98 > 0.99
ART (decorr) 0.41 0.47 0.57 0.99 > 0.99
aRTP 0.17 0.16 0.16 0.20 0.18
ART-A 
(decorr)

0.38 0.44 0.52 0.94 0.98

Simes 0.35 0.38 0.41 0.63 0.64

TABle 8 | Individual SNP P-values as originally reported in Shabalina et al. (2008).

SNP P-value

rs563649 0.0007
rs9322446 0.0941
rs2075572 0.2957
rs533586 0.7037
rs540825 0.8171
rs675026 0.8012
rs660756 0.5745
rs677830 0.9891
rs623956 0.8308
rs609148 0.8208
rs497332 0.3139

TABle 9 | Combined P-values by different methods for μ-opioid data. 

k RTP RTP 
(decorr)

ART 
(decorr)

aRTP ART-A 
(decorr)

2 0.0187 0.0225 0.0256 0.0519 0.0533
3 0.0411 0.0234 0.0253 0.2963 0.0211
4 0.0566 0.0192 0.0183 0.1845 0.0115
5 0.0886 0.0211 0.0231 0.4702 0.0165
6 0.1172 0.0204 0.0208 0.6543 0.0070
7 0.1486 0.0177 0.0169 0.7718 0.0041
8 0.1726 0.0211 0.0220 0.7189 0.0416
9 0.1810 0.0228 0.0232 0.6766 0.0165
10 0.1867 0.0241 0.0241 0.6423 0.0096
11 0.1938 0.0241 0.0243 0.6140 0.0065

The smallest P-values in decor columns are highlighted in bold. The table reports 11 
aRTP values rather than a single optimal one, because one can specify the largest k 
value, which was varied here from 2 to 11.
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tests for genetic association of variants within the μ-opioid 
receptor (MOR) with pain sensitivity. Kuo et al. (2014) also 
reported estimated frequencies for 11-SNP haplotypes within 
the MOR gene, from which the 11×11 LD correlation matrix 
can be computed. The Pij frequencies are given by the sum of 
frequencies of those 11-SNP haplotypes that contain both of the 
minor alleles for SNPs i and j. Similarly, pi allele frequency is 
the sum of haplotype frequencies that carry the minor allele of 
the SNP i. The LD correlations within the MOR region spanned 
by the 11 SNPs ranged from −0.82 to 0.99, with the average 
absolute value ≈0.55 and the median absolute value ≈0.66. 
Half of pairwise LD correlations were smaller than −0.23 or 
larger than 0.82. Our analysis (Table 9) showcases utility of the 
proposed methods. The columns show combined P-values, for 
k varying from 2 up to all 11 SNPs (k = 1 is equivalent to the 
Bonferroni correction, i.e., 0.007×11). Similar to what we found 
via simulation experiments, where correlation is controlled by 
reshuffling the phenotype values while keeping the original LD 
structure intact, RTP and aRTP (without the decorrelation step) 
do not benefit from inclusion of additional SNPs. P-values in the 
ART column are very similar to those in the RTP column, which 
reassures our theoretical expectations. In contrast to previously 
proposed methods that control correlation by resampling (i.e., 
RTP, aRTP, and ART), the results in columns marked by “decorr” 
are substantially lower. In these columns, we used the proposed 
transformation to independence, which gives much stronger 
combined P-values. In all “decorr” columns, k = 7 results in the 
smallest combined P-value, implying that the number of real 
effects (including proxy associations) is at least seven.

DISCUSSION
Complex diseases are influenced by collective effects of 
environmental exposures and genetic determinants. There can 
be numerous weak but biologically meaningful risk factors. The 
challenge is to distinguish between real and spurious statistical 
signals in the presence of multiple comparisons and low detection 
power. When the number of potential real associations is expected 
to be small, compared to the total number of variants evaluated 
within a study, it is advantageous to focus on the top-ranking 
associations. The rank truncated product method (RTP) has 
been designed with this objective in mind. The RTP and related 
approaches had been shown to be valuable tools in analysis of 
genetic associations with disease. In this article, we derive a 
mathematically simple form of the RTP distribution that leads 
a to new method, ART and its adaptive version, ART-A, which 
searches through a number of candidate values of truncation 
points and finds an optimal number in terms of combined P-value. 
Two important questions are the meaning of “k” and its optimal 
value. Unfortunately, k cannot be interpreted as an estimate of 
the number of real signals, for the reason that the k value that 
yields the minimum P-value depends on both the numbers of real 
signals, as well as on their strength of association, both of which 
are unknown. This issue has been investigated in detail in Zaykin 
et al. (2007a). The ART is designed with the same objectives in 

mind as RTP and TPM: to facilitate detection of possibly weak 
signals among top-ranking predictors that could have been 
missed, unless combined into a single score. The ART is trivial to 
implement in terms of standard functions, provided by packages 
such as R, and its power characteristics are close to RTP or higher 
in all studied settings. Analytical forms of ART and ART-A are 
derived under independence. To accommodate LD, we propose a 
decorrelation step, by transformation of P-values to independence. 
Our decorrelation by orthogonal transformation approach 
(DOT) is analogous to the Mahalanobis transformation (Härdle 
and Simar, 2007). We found DOT to be surprisingly powerful 
in many settings, compared to the usual method of evaluating 
the distribution of product of correlated P-values under the 
null hypothesis. Theoretical properties and extensive numerical 
evaluation of DOT will be published elsewhere and currently 
these findings are available as a preprint (Vsevolozhskaya et al., 
2019). Further, we illustrate an application of our methods with 
analyses of variants within the μ-opioid gene that have been shown 
to affect sensitivity to pain. We find strengthened evidence of 
overall association within the 11-SNP block. In this application, 
the LD correlation matrix was reconstructed from the haplotype 
frequencies, which might be slightly different from the correlation 
of (0,1,2) values between pairs of SNPs (Zaykin, 2004). Further 
studies are needed to investigate whether approaches such as this, 
or utilization of reference panel (external) data as a source of LD 
information, may lead to substantial bias.
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