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Resting state functional MRI (rs-fMRI) creates a rich four-dimensional data set that
can be analyzed in a variety of ways. As more researchers come to view the brain
as a complex dynamical system, tools are increasingly being drawn from other fields
to characterize the complexity of the brain’s activity. However, given that the signal
measured with rs-fMRI arises from the hemodynamic response to neural activity, the
extent to which complexity metrics reflect neural complexity as compared to signal
properties related to image quality remains unknown. To provide some insight into this
question, correlation dimension, approximate entropy and Lyapunov exponent were
calculated for different rs-fMRI scans from the same subject to examine their reliability.
The metrics of complexity were then compared to several properties of the rs-fMRI signal
from each brain area to determine if basic signal features could explain differences in the
complexity metrics. Differences in complexity across brain areas were highly reliable and
were closely linked to differences in the frequency profiles of the rs-fMRI signal. The
spatial distributions of the complexity and frequency metrics suggest that they are both
influenced by location-dependent signal properties that can obscure changes related to
neural activity.

Keywords: resting state – fMRI, complexity systems, BOLD signal, frequency, entropy

INTRODUCTION

Resting state functional magnetic resonance imaging (rs-fMRI; Biswal et al., 1995) is a popular tool
for characterizing the functional architecture of the brain. Based on the relationships between the
blood oxygenation level dependent (BOLD) signal from different areas, it is possible to identify
functional networks and test for changes that distinguish between patient groups or that relate to
cognition (Fox et al., 2005; Rombouts et al., 2005; Sorg et al., 2007; Smith et al., 2009; Yeo et al.,
2011; Barch et al., 2015; Magnuson et al., 2015).

While rs-fMRI analysis has usually used correlation or similar metrics to calculate network-
based properties like functional connectivity, it is also possible to look at voxel-level or parcel-
level properties. The most prominent examples of this type of analysis are ALFF (Zang et al., 2007)
and fALFF (Zou et al., 2008), which describe the power of the BOLD signal that lies in the low
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frequency range typically used for rs-fMRI (0.01–0.08 Hz). Areas
with higher power and thus stronger low frequency fluctuations
are thought to have higher spontaneous neural activity. In line
with this hypothesis, areas like the posterior cingulate cortex
(PCC) that exhibit high resting state metabolism in PET scans
also have higher ALFF and fALFF than other cortical areas (Zou
et al., 2008). Furthermore, these measures of low frequency power
can discriminate between patient groups and healthy controls or
between rest and task performance (Zang et al., 2007; Cui et al.,
2019; Li et al., 2019; Zhou et al., 2019).

As interest in the brain as a complex system grows,
researchers are increasingly applying more sophisticated
analytical techniques to the rs-fMRI signal. Time-varying
analysis (rather than measures averaged over the whole scan,
like typical correlation-based functional connectivity) attempts
to characterize the underlying low-dimensional structure of
the brain’s dynamics (Hutchison et al., 2013; Keilholz et al.,
2017; Preti et al., 2017). At the voxel/parcel level, concepts from
non-linear dynamics like entropy, Hurst exponent and Lyapunov
exponent have been used to characterize the complexity of
the signal from each area, based on the hypothesis that the
complexity of the BOLD signal carries information about the
complexity of the underlying neural activity (Wang et al., 2011;
Yang et al., 2013; Ciuciu et al., 2014; Jia et al., 2017; Wang Y.
et al., 2018; Liu et al., 2018, 2019; Song et al., 2019; Nezafati et al.,
2020). However, these metrics are difficult to interpret in the
context of rs-fMRI. The relationship between the BOLD signal
and neural activity relies on neurovascular coupling, which can
vary across areas. Moreover, the BOLD signal itself is low in
amplitude and easily contaminated with physiological noise
or motion. In the absence of “ground truth” measurements of
neural complexity, it is difficult to be confident that BOLD-based
metrics of complexity are meaningful.

We approached this problem by asking whether metrics of
complexity provide unique information beyond the most basic
features of the BOLD signal: its mean, standard deviation,
temporal signal to noise ratio (tSNR) and power spectrum. In
the large dataset available from the Human Connectome Project
(HCP), we look at the relationship between these fundamental
features and the higher level metrics of correlation dimension,
approximate entropy, and Lyapunov exponent. Finally, we
examine variability in fundamental properties and complexity
metrics across parcels and across individuals, and their reliability
across scans and across days.

MATERIALS AND METHODS

Data and Preprocessing
The minimally preprocessed and FIX de-noised rs-fMRI of the
HCP S900 release (Van Essen et al., 2013) were downloaded.
Before additional preprocessing, we calculated the mean,
standard deviation, and temporal signal to noise ratio (tSNR)
for each parcel from each individual. All 817 individuals
with four complete rs-fMRI scans were preprocessed for a
previous study (Yousefi et al., 2018). To summarize, each
timeseries was demeaned and bandpass filtered (0.01–0.1 Hz)

to maximize sensitivity to fluctuations related to neural activity
and minimize contributions from noise. White matter, CSF and
gray matter signals were regressed out. This is equivalent to
global signal regression (GSR), which increased the similarity
of rs-fMRI spatiotemporal structure across subjects in our
prior work (Yousefi et al., 2018). The spatial dimension was
reduced to 360 cortical parcels (Glasser et al., 2016) and each
parcel’s timeseries was z-scored. Analysis was performed on
the parcel level rather than at the vertex level to improve
the signal-to-noise ratio further and to reduce computation
times. As a complementary analysis, complexity metrics were
also calculated for parcellated minimally-preprocessed data (no
GSR; Supplementary Figure 5). All primary calculations were
performed on the first scan from the first day (D1S1) for each
subject. The second scan from the first day (D1S2) and first scan
from the second day (D2S1) were used to examine reliability.
Matrices were sorted so that parcels from the same networks
(Yeo et al., 2011) were adjacent to each other using a simple
rule that assigns each parcel to the network with which it has
maximal overlap.

Calculation of tSNR
Using the minimally-preprocessed data, the mean and standard
deviation were calculated for the time course from each parcel.
The tSNR was then given by the ratio of the mean to the
standard deviation.

Calculation of Power Spectra and
Weighted Average Frequency
The power spectral density of each time course from each
parcel for each subject was calculated using the Matlab pwelch
function (8 segments, 50% overlap, Hamming window). Because
the power spectrum is a vector, it is difficult to compare it
directly to measures of complexity. We chose to characterize
each power spectrum using a single value, the weighted average
frequency (WAF):

WAF =
∑

pxfx∑
px

(1)
where Px is the power in each frequency bin x and fx is the
frequency of the bin. The power spectra of interest tend to
be dominated by low frequency components in the HCP data,
and so the weighted average frequency tends to reflect the
relative contribution of higher frequencies for each time course.
Supplementary Figure 1 shows an example power spectral
density plot and the resulting weighted average frequency.
The weighted average frequency for the power spectrum was
calculated for each parcel from each subject, resulting in a
817 × 360 matrix. For convenience of calculation, the weighted
average frequency was set to the discrete value of the frequency
at which the sum of weighted frequencies was greater than half of
the sum over the whole distribution.

Calculation of Complexity Metrics
Several metrics of complexity were calculated for each parcel
from each subject. The first step of the calculation involves the
estimation of a lower dimensional space that is “embedded”
in the inherently high dimensional signal and captures its
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most prominent features. We used Matlab’s phase Space
Reconstruction to estimate the dimensionality and the
appropriate lag for a low dimensional representation of the
signal. This algorithm uses the first minimum of average mutual
information to estimate the embedding lag, and the false nearest
neighbor algorithm to determine the embedding dimension.
These values are used in the calculation of correlation dimension,
approximate entropy, and Lyapunov exponent. The correlation
Dimension function first generates a delay embedding of
the signal, then is calculated as the slope of the correlation
integral vs. the range of the radius of similarity. It provides an
estimate of the chaotic complexity of the signal. The Lyapunov
exponent measures the rate of divergence of trajectories in
phase space and can be used as a measure of chaos in the
system (lyapunovExponent). Approximate entropy measures
regularity in a time series to quantify the level of complexity
(approximateEntropy). For each metric, these calculation
resulted in a 817 × 360 matrix.

Variability Across Subjects/Parcels
To examine variability across subjects, the mean across all
parcels was calculated for each individual, and the mean and
standard deviation of the resulting distribution across individuals
were recorded. To examine variability across parcels, the mean
across all subjects was calculated for each parcel, and the
mean and standard deviation of the resulting distribution across
parcels were recorded.

Variability Across Scans/Days
To examine consistency for both parcels and individuals, we first
calculated the correlation coefficient between the full matrices
from D1S1 and D1S2 (to examine short term consistency) and
between the full matrices from D1S1 and D2S1 (to examine
longer term consistency). We also assessed the reliability of the
metrics between D1S1-D1S2 and D1S1-D2S1 using intraclass
correlation (ICC). Specifically, we used a two-way mixed single
score ICC(3,1) (Shrout and Fleiss, 1979), which is based on
two-way ANOVA with the two scanning times as fixed effects
and subjects as random effects and the unit of analysis is
measurements obtained from each scanning time.

Because variations in basic signal properties are more
prominent at the parcel level than at the individual level, we
also calculated the correlation between the values averaged across
individuals for each of the scans.

Relationships Between Metrics
To determine whether complexity metrics (correlation
dimension, Lyapunov exponent, and approximate entropy)
provide additional information beyond the basic signal
properties (mean, standard deviation, tSNR, and WAF), we first
calculated the average across individuals to obtain the values for
360 parcels. Correlation between each basic property and each
complexity metric was calculated and tested for significance.
Bonferroni correction was applied to control for multiple
comparisons (n = 12, requiring p < 0.0042 for significance
with α = 0.05).

Effects of Filtering and Noise on Metrics
of Complexity
For comparison to the rs-fMRI data, we created 100 time series
of 1200 points that were randomly sampled from a Gaussian
distribution (randn in Matlab). These time series were bandpass
filtered using three different passbands: 0.01–0.1 Hz, 0.1–0.2 Hz,
and 0.01–0.2 Hz. We then calculated correlation dimension,
approximate entropy, and Lyapunov exponent for each filtered
time series to determine whether the average frequency or
bandwidth of the signal affected the metrics of complexity. To
examine the effects of noise, time series were bandpass filtered
(0.01–0.1 Hz), then Gaussian noise was added with an amplitude
of 0.2 or 0.5 times the standard deviation. Correlation dimension,
approximate entropy, and Lyapunov exponent were calculated.

All code is available on the lab website1 and github2.

RESULTS

Fundamental Signal Properties
The mean signal intensity, standard deviation, tSNR, and
weighted average frequency for all subjects and all parcels are
shown in Figure 1. Visually it is apparent that particular parcels
tend to have higher or lower values across all individuals (vertical
lines) and also that some individuals tend to have higher or lower
values across all parcels (horizontal lines). Because the WAF is
not commonly used to describe rs-fMRI signals, we compared it
to standard metrics and obtained correlation values for the full
parcel by individual matrices of 0.05 with the mean, 0.21 with
standard deviation, and −0.15 with tSNR, indicating that the
WAF provides complementary information to these metrics. The
average WAF was 0.065 ± 0.01 Hz, well within the 0.01–0.08 Hz
range widely used to define spontaneous BOLD fluctuations.
Supplementary Figure 2 provides a histogram of the number of
counts per frequency bin for each parcel across all scans, giving a
visual demonstration of the distribution of the weighted average
frequency. The limbic network exhibited low signal intensity, low
tSNR and high WAF, while the dorsal attention network exhibited
uniformly low WAF. Most other networks had a mixture of
parcels with high and low values. To demonstrate the spatial
distribution of these values, in Figure 1, WAF is displayed on a
dilated brain (Van Essen et al., 2012).

To examine the source of the differences in WAF, the power
spectra for the five parcels with the highest WAFs averaged
across subjects [Piriform (Pir), Area 25, entorhinal and posterior
orbitofrontal cortex (pOFC)] and the five parcels with the lowest
WAFs averaged across subjects [prefrontal (PF) regions, Area
46] are shown in Supplementary Figure 3. It can be seen that
the higher WAF reflects a power distribution that is smooth
and broad, while the power for parcels with low WAF falls
off more rapidly. Supplementary Figure 4 provides the power
spectra for the five individuals with the highest and lowest
WAFs. At the individual level, power spectra averaged across
parcels for subjects with low WAF appear similar to the power

1https://sites.google.com/view/keilholz-lab/resources
2https://github.com/keilholzMINDlab
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FIGURE 1 | (Top) Mean, standard deviation and tSNR for all parcels from all individuals, sorted by network (V, visual; SM, somatomotor; DA, dorsal attention; VA,
ventral attention; L, limbic; FP, frontoparietal; DM, default mode). (Bottom) Weighted average frequency from all parcels from all individuals, and weighted average
frequency averaged across individuals, displayed on the brain surface. Variability is evident across both individuals and parcels. Limbic and ventral attention networks
exhibit the highest weighted average frequencies, while the dorsal attention and frontoparietal networks exhibit the lowest. In other networks, there is a greater mix of
areas with higher or lower weighted average frequencies.

spectra averaged across individuals for parcels with low WAF.
For subjects with high WAF, however, the power spectra are less
smooth and more likely to exhibit distinct peaks than for parcels
with high WAF. Because motion has complex effects on rs-fMRI,
we also examined the motion (as categorized as in Yousefi et al.,
2018) for the individuals with the highest and lowest WAF.
For the lowest WAFs, two individuals were in the high motion
category [mean framewise displacement (FD) > 0.4 mm], two
were in the moderate category (FD 0.2–0.4 mm), and one was in
the group with the lowest motion (<0.12 mm FD). In contrast, for
the five subjects with the highest WAFs, two were in the moderate
category and three were in the lowest motion category. While
this clearly does not rule out an effect of motion on frequency,
it suggests that the frequency characteristics of an individual are
not completely driven by motion.

Complexity Metrics
To understand the relationship between basic signal properties
and measurements of complexity, we first estimated the optimal
dimensionality and lag for delay embedding of the signal from
each parcel from each subject. The resulting embedding is the
basis for the other metrics of complexity examined here. As
shown in Figure 2, the estimated dimensionality was either 3 or
4 for all scans. The lag time was more variable, ranging from 3 to
9 time points (∼2–6 s).

Using the delay embedding of each time course obtained
with the estimated dimensionality and lag, we calculated the
correlation dimension, Lyapunov exponent, and approximate
entropy for each parcel from each individual (Figure 3).
Correlation dimension has a mean of 3.26 ± 0.73 and showed
relatively slight differences across either parcels or individuals.
In contrast, the Lyapunov exponent (mean 0.27 ± 0.07) and
approximate entropy (mean 1.6 ± 0.07) exhibited clear variability
across both subjects and parcels.

Variability Across Scans/Days
To examine the variability in basic metrics and complexity
metrics, we compared the values from D1S1 to the values
from D1S2 and D2S1 using Pearson correlation of the
entire parcel by individual matrix and intraclass correlation
[ICC(3,1)]. The results are summarized in Table 1. For all
of the basic signal properties and most of the complexity
metrics, the reliability is excellent, with ICC > 0.9. The
exception is correlation dimension, which exhibits a lower
ICC of 0.6–0.7.

We further examined the variability in the metrics across
subjects and across parcels in different scans. The results are
summarized in Tables 2, 3. All metrics for a given parcel appear
to be highly reliable, while more variability is present at the
individual level.
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FIGURE 2 | Estimated dimensionality and lag (in time points) for delay embedding of the signal from each parcel from each individual. Variability in lag especially can
be observed across both individuals and parcels.

FIGURE 3 | Correlation dimension, Lyapunov exponent, and approximate entropy for each parcel from each individual. Correlation dimension does not exhibit
consistent variability across parcels or individuals, but the Lyapunov exponent and entropy show variability that is closely linked to the weighted average frequency.
The Lyapunov exponent is anticorrelated with weighted average frequency, while entropy is correlated with weighted average frequency.

Relationships Between Metrics
Visual inspection of the parcel by individual matrices for the
various metrics reveals commonalities and differences. To reduce

TABLE 1 | Correlation and intraclass correlation for the matrices of metrics
calculated for every parcel from every individual using different rs-fMRI scans.

Metric D1S1-D1S2 D1S1-D2S1

CC/ICC CC/ICC

Mean signal 0.94/0.98 0.86/0.95

Standard deviation 0.84/0.99 0.83/0.99

tSNR 0.82/0.996 0.80/0.995

Weighted average frequency 0.66/0.99 0.60/0.99

Correlation dimension 0.03/0.71 0.02/0.67

Approximate entropy 0.4/0.99 0.36/0.98

Lyapunov exponent 0.40/0.98 0.36/0.98

D1, day 1; D2, day 2; S1, scan 1; S2, scan 2.

the effect of noise and focus on parcel-wise relationships,
we calculated correlation between each basic signal property
and each complexity metric after averaging over individuals.
Scatterplots are shown in Figure 4. The mean signal intensity was
least correlated with the three metrics of complexity, and the only
relationship that reached statistical significance was with entropy.

TABLE 2 | Correlation between metrics calculated for every parcel, averaged
across all individuals, using different rs-fMRI scans.

Metric D1S1-D1S2 D1S1-D2S1

Mean signal 0.96 0.97

Standard deviation 0.92 0.93

tSNR 0.93 0.95

Weighted average frequency 0.98 0.99

Correlation dimension 0.91 0.91

Approximate entropy 0.98 0.99

Lyapunov exponent 0.97 0.99
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TABLE 3 | Correlation between metrics calculated for every individual, averaged
across all parcels, using different rs-fMRI scans.

Metric D1S1-D1S2 D1S1-D2S1

Mean signal 0.95 0.84

Standard deviation 0.79 0.70

tSNR 0.81 0.72

Weighted average frequency 0.77 0.54

Correlation dimension 0.55 0.55

Approximate entropy 0.71 0.52

Lyapunov exponent 0.75 0.54

Standard deviation and tSNR were significantly correlated with
all metrics of complexity, with a correlation magnitude of
∼0.5. Given the relatively weak relationship between the mean
signal intensity and complexity metrics, the relationship between
metrics of complexity and tSNR is likely to be driven by their
relationship to the standard deviation.

The correlation between the weighted average frequency and
all complexity metrics was significant and surprisingly strong (-
0.98 for Lyapunov exponent, 0.96 for approximate entropy and
correlation dimension). Given the strong relationship observed
parcelwise, we also calculated correlation between the full parcel
by individual matrices. For WAF and Lyapunov exponent, the
correlation was −0.64; for WAF and approximate entropy, the
correlation was 0.65; for WAF and correlation dimension, the
correlation was 0.17.

We also obtained complexity metrics directly from the
minimally processed data (Supplementary Figure 5). Their
values change substantially: −0.039 for Lyapunov exponent
compared to 0.27 after additional preprocessing, 1.72 for
approximate entropy compared to 1.6, and 3.6 for correlation
coefficient compared to 3.26. However, the patterns of spatial
variability were similar before and after additional preprocessing,
suggesting that the underlying differences across parcels are
preserved. For example, the limbic system continues to
exhibit high entropy and low Lyapunov exponent in the
minimally processed data.

Effects of Filtering and Noise
For the randomly-generated and bandpass filtered time courses,
neither the WAF nor the bandwidth affected correlation
dimension, approximate entropy, or Lyapunov exponent
(Table 4). However, the addition of noise had a marked
effect, decreasing the Lyapunov exponent and increasing the
approximate entropy (Table 5). The correlation dimension was
relatively unaffected.

DISCUSSION

We showed that basic signal properties of the spontaneous BOLD
fluctuations in the HCP data set vary across brain regions. Several
metrics of signal complexity (correlation dimension, Lyapunov
exponent, and approximate entropy) exhibit similar variability.
While mean, standard deviation, and tSNR are significantly
correlated to complexity metrics, the weighted average frequency

exhibits the strongest relationship. However, analysis of filtered
randomly-generated time courses shows that the frequency
distribution alone is not sufficient to account for differences
in complexity.

Frequency Distribution of rs-fMRI Data
It has long been known that different frequency bands of the
spontaneous BOLD fluctuations have differing contributions
from noise and other processes. In an early paper, Cordes et al.
(2001) showed that frequencies below 0.1 Hz accounted for most
of the correlation between cortical areas. This concentration
of functional information into the low frequency bands is also
the basis for amplitude-based metrics like ALFF and fALFF
(Zang et al., 2007; Zou et al., 2008). Note, however, that our
analysis was performed on time series that were already bandpass
filtered to 0.01–0.1 Hz, and so we are actually looking at the
distribution of frequencies within the band typically used to
measure functional connectivity.

Specificity Within the Low Frequency
Band
A number of other studies have shown that the frequency
distribution within the low frequency band adds information
about the functional organization of the brain. Using a wavelet-
based analysis, Bajaj et al. (2013) showed that flow between
nodes in higher frequencies is informative about activity at lower
frequencies. Wang Y. et al., 2018 found that the right anterior
insula exhibits a frequency-dependent relationship with large
scale brain networks, and the network structure of the whole
brain exhibits differences across frequencies (Thompson and
Fransson, 2015). Similar to our study, Xue et al. (2014) found that
higher frequencies were typically associated with lower functional
connectivity, and that differences across frequencies were
particularly prominent in limbic areas. We have previously used
wavelet-based clustering to identify networks based on both their
temporal and spectral characteristics, and there too the widely-
recognized resting state networks were best defined at the lower
end of the frequency spectrum (Billings et al., 2018). Moreover,
clustering based on frequency information gave additional
information to that available from traditional correlation analysis
(Medda et al., 2016). Like our current work, these studies suggest
that the power distribution of low frequency BOLD fluctuations
holds information about the relative contributions of a variety of
neural and non-neural processes.

A few research groups have begun to examine the relationship
between measures of entropy and different rs-fMRI frequency
bands. Using a modeling approach, Wang et al. found that
multiscale entropy in the lower frequencies (0.02–0.087 Hz) in
twenty subjects from the HCP data set was positively correlated
with functional connectivity between those areas (Wang Y.
et al., 2018). This is slightly discordant from our finding that
higher WAFs are linked to higher entropy, but note that different
measures of entropy were used and that the previous study did
not look at the distribution of power within the low frequency
band. In fact, they found that multiscale entropy at higher
frequencies (0.347–0.694 Hz) was negatively related to functional
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FIGURE 4 | Scatterplots for the four basic signal properties (mean, standard deviation, tSNR, and weighted average frequency) vs. complexity metrics (Lyapunov
exponent, approximate entropy, correlation dimension). All values were averaged across individuals. Correlation coefficients and p-values are given, with significance
indicated by ∗. Weighted average frequency exhibits the closest relationship to complexity metrics.

connectivity, which could indicate that the high WAFs in our
study may have been tied to higher power outside of the band
used for functional connectivity analysis. In another study, Song
et al. examined the correlation between sample entropy and

fALFF, and found widespread anticorrelation between the two,
especially in visual and somatomotor cortex. These prior reports
of the frequency-dependence of complexity measures are in
accordance with our current work.
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TABLE 4 | Values of correlation dimension, Lyapunov exponent, and approximate
entropy for randomly generated and bandpass filtered time courses.

Frequency range Correlation
dimension

Lyapunov
exponent

Approximate
entropy

0.01–0.1 Hz 1.95 ± 0.15 0.85 ± 0.26 1.73 ± 0.11

0.1–0.2 Hz 1.94 ± 0.14 0.84 ± 0.16 1.72 ± 0.10

0.01–0.2 Hz 1.96 ± 0.15 0.84 ± 0.21 1.72 ± 0.09

HCP data 3.26 ± 0.73 0.27 ± 0.07 1.60 ± 0.07

Differences in average frequency and bandwidth have negligible impact on the
complexity measures. Values for HCP data are shown for comparison.

TABLE 5 | Values of correlation dimension, Lyapunov exponent, and approximate
entropy for randomly generated and bandpass filtered time courses with various
levels of Gaussian noise added.

Added noise Correlation
dimension

Lyapunov
exponent

Approximate
entropy

None 1.97 ± 0.13 3.49 ± 0.06 0.62 ± 0.01

0.2σ 1.96 ± 0.15 1.32 ± 0.07 1.55 ± 0.04

0.5σ 1.95 ± 0.14 0.92 ± 0.06 1.7 ± 0.02

HCP data 3.26 ± 0.73 0.27 ± 0.07 1.60 ± 0.07

Noise impacts the calculation of the Lyapunov exponent and approximate entropy,
but has relatively little effect on the correlation dimension. Values for HCP data are
shown for comparison.

Complexity of rs-fMRI Signals
The brain can be described as a complex dynamical system.
At the simplest level of analysis, researchers have examined
the complexity of the time course of activity from a given
region of interest, using measures like entropy. For methods that
measure neural activity directly (e.g., EEG or local field potential
recording), these types of analysis are expected to reflect the
complexity of the brain’s activity and provide insight into the
underlying dynamic structure of the brain. For rs-fMRI, however,
the signal time course is only loosely tied to the underlying
neural activity (Zhang et al., 2019a,b), partially because of the
filtering imposed by neurovascular coupling and partially because
of physiological and other noise. This raises the question of how
well complexity measurements made on the rs-fMRI signal reflect
the complexity of the underlying brain activity. Liu et al. (2019)
recently addressed this question using voltage imaging in mice,
which was then used to simulate rs-fMRI data. They found that
some of the information captured in multi-scale entropy of the
optical data was preserved in the simulated BOLD data. Extensive
prior work has shown that despite the inherent filtering and
noise, aspects of neural activity are preserved in the BOLD signal
(Logothetis et al., 2001; Pan et al., 2011, 2013; Magri et al., 2012;
Thompson et al., 2013, 2014), and it appears that this extends to
complexity as well.

Complexity vs. Frequency
There is no inherent reason that WAF should affect metrics
of complexity. This is clear from the measurements made on
the simulated data filtered into different frequency bands and
from the moderate correlation between the full complexity and
frequency matrices (∼0.6). We suspect that the relationship

instead arises from common factors that influence both metrics.
In this context, it is interesting that the highest correlations
(> 0.9) are found between complexity measures and WAFs
that are averaged across subjects to obtain values for each
parcel. This suggests that there is something specific to each
parcel, whether in the frequency of the spontaneous BOLD
oscillations, the contribution of particular noise sources, or the
overall level of SNR, that produces reliably distinct frequency
distributions and measures of complexity. It seems likely that a
combination of these contributions is responsible for the parcel-
wise differences, rather than any single factor, and the weighting
of the contributions may vary across brain areas.

Parcels with high WAFs are especially common in the limbic
system and other areas near the base of the brain. These
areas exhibit low signal intensity and low tSNR. In contrast,
parcels near the top of the brain (e.g., the dorsal attention and
frontoparietal networks) tend to have lower WAFs. Given the
known variations in both image quality and coil sensitivity across
the brain, the location of the parcels with high WAFs suggests
that signal dropout, reduced coil sensitivity, and physiological
noise may all be contributing factors. If this is the case, it would
suggest that the relatively broader frequency profile in these
regions indicates higher noise contributions that may obscure the
desired signal. Our analysis of simulated data demonstrated that
the addition of noise can substantially alter complexity metrics.
The relatively low tSNR in the limbic system, for example,
could account for the higher WAF and greater entropy (less
predictability) observed there, along with reduced correlation.
The lower Lyapunov exponent in the limbic system, which
describes the tendency for divergence in trajectories that start
from nearby points, may be the result of the manifold structure
being degraded by noise. Effects like these that may result from
fundamental aspects of image acquisition like coil sensitivity
and signal dropout should be considered when interpreting any
secondary signal features.

It is noteworthy that while WAF was very strongly correlated
with complexity measures, tSNR was much more weakly related
to complexity. This suggests that while complexity is affected by
noise, it also reflects other processes that are captured by the
WAF and which may be neuronal in origin. Further work with
simultaneous measures of MRI and neural activity will be needed
to better disentangle the relative contributions of noise and brain
activity to metrics of complexity.

Limitations
The WAF used as a metric in this study is a simplistic description
of the actual frequency distribution. The primary difference in
power distributions across parcels was in the width of the low
frequency peak, suggesting that the full width half maximum of
the distribution may also prove a useful metric.

There are arguments to be made for using unfiltered data for
the calculation of correlation dimension, Lyapunov exponent,
and approximate entropy, but for the primary analysis in
this study, we have used data filtered to the range typically
used for functional connectivity studies, with the rationale
of minimizing noise. However, filtering undoubtedly discards
relevant information in the higher frequencies along with the
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noise (Lee et al., 2013). It may prove possible to identify an “ideal”
frequency profile from the full spectral range that could be used to
identify and discard areas with high noise contributions, a topic
worth further investigation.

Unsurprisingly, the full matrices of complexity metrics were
less reliable across scans and across days than basic signal
properties. The phase space reconstruction and subsequent
calculation of entropy and Lyapunov exponent benefit from the
use of large numbers of time points. A better estimate might be
obtained by concatenating all four resting state scans, but at the
expense of examining the reliability of the metrics.

CONCLUSION

We have shown that the frequency distribution varies within the
band of BOLD fluctuations used to map functional connectivity,
particularly across parcels. Complexity metrics like Lyapunov
exponent and approximate entropy show similar variation,
suggesting that common factors impact both types of metrics.
Given the location of the parcels with the highest WAFs,
we believe that the differences partially reflect greater noise
contributions. These fundamental sources of variation should be
considered during the interpretation of measures of complexity.
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