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Abstract
Intestinal dysfunction is frequently driven by abnormalities of specific genes, microbiota, or microenvironmental factors, 
which usually differ across individuals, as do intestinal physiology and pathology. Therefore, it’s necessary to develop per-
sonalized therapeutic strategies, which are currently limited by the lack of a simulated intestine model. The mature human 
intestinal mucosa is covered by a single layer of columnar epithelial cells that are derived from intestinal stem cells (ISCs). 
The complexity of the organ dramatically increases the difficulty of faithfully mimicking in vivo microenvironments. How-
ever, a simulated intestine model will serve as an indispensable foundation for personalized drug screening. In this article, 
we review the advantages and disadvantages of conventional 2-dimensional models, intestinal organoid models, and cur-
rent microfluidic intestine-on-a-chip (IOAC) models. The main technological strategies are summarized, and an advanced 
microfluidic primary IOAC model is proposed for personalized intestinal medicine. In this model, primary ISCs and the 
microbiome are isolated from individuals and co-cultured in a multi-channel microfluidic chip to establish a microengineered 
intestine device. The device can faithfully simulate in vivo fluidic flow, peristalsis-like motions, host-microbe crosstalk, and 
multi-cell type interactions. Moreover, the ISCs can be genetically edited before seeding, and monitoring sensors and post-
analysis abilities can also be incorporated into the device to achieve high-throughput and rapid pharmaceutical studies. We 
also discuss the potential future applications and challenges of the microfluidic platform. The development of cell biology, 
biomaterials, and tissue engineering will drive the advancement of the simulated intestine, making a significant contribution 
to personalized medicine in the future.
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Introduction

The intestine is a primary organ for digestion, absorption, 
and metabolism of nutrients and drugs, as well as a major 
site for the host-commensal microbiota interaction and 
mucosal immunity [1]. The intestinal epithelium is one of 
the most frequently renewed tissues in humans and mam-
mals. The architecture of the small and large intestinal 
epithelia is different. The small intestinal epithelium is 
composed of a typical crypt-villus axis, with at least six 
crypts linking to each villus. In the colon, the villus is spe-
cialized into a flat luminal surface associated with multiple 
inner crypts, accommodating the secretion of feces [2]. 
The intestinal epithelium is covered by a monolayer of 
enterocytes, including absorptive cells and secretory types 
of goblet cells, enteroendocrine cells, tuft cells and Paneth 
cells [3]. The absorptive cells account for more than 90 % 
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of the enterocytes in the adult small intestinal epithelium, 
while goblet cells account for 5 %, enteroendocrine and 
tuft cells account for 1 % and Paneth cells account for 
10–15 cells per crypt [4–6]. The villous absorptive entero-
cytes secrete hydrolytic enzymes to facilitate digestion of 
luminal food and then absorb the digested nutrients. The 
goblet cells are scattered throughout the crypt-villus axis 
and secrete mucins to form a mucosal physical barrier and 
to facilitate the passage of stool towards the colon. The 
Paneth cells are restricted to the small intestinal crypts, 
produce bactericidal substrates such as lysozyme and 
cryptidins, and serve as the nurse cells of intestinal stem 
cells (ISCs) [7]. Currently, two populations of ISCs have 
been identified in the intestinal epithelium: fast-cycling 
Lgr5+ stem cells and quiescent stem cells [8]. The small 
populations of enteroendocrine cells are essential for hor-
mone production, allowing these cells to control intestinal 
motility, regulate appetite and metabolism, and orchestrate 
mucosal immunity [9, 10]. Additionally, the intestinal epi-
thelium contains at least three other cell types named cup 
cells [11], tuft cells [12], and microfold (M) cells [13] with 
limited defined functions, such as mucosal immunity. Fur-
thermore, by using single-cell mRNA sequencing, rare cell 
types, such as the revival stem cell, have been identified 
in both healthy and diseased organs [14, 15]. Summarily, 
the architecture and function of human intestine is funda-
mentally dependent on the constitution and organization 
of specialized cell lineages.

The intestine is also the major site for crosstalk between 
the intestinal epithelium, the commensal microbiome resi-
dent in the intestinal mucus layer, and immune cells from the 
lamina propria and subepithelial regions, as well as other cell 
types of enteric nerve cells, vascular endothelial cells and 
myofibroblasts [16, 17]. The crosstalk between the intestinal 
epithelium, microbiome, mucosal immunity, and endothelial 
cells is complex, dynamic and context-dependent. Recent 
advances in microbiome studies indicated that the intestinal 
microbiome actively impacts multiple gastrointestinal and 
extra-intestinal functions, including circadian rhythmicity, 
nutritional responses, metabolism and immunity [18]. Stud-
ies showed that gut-vascular barrier impairment can leads to 
systemic dissemination of bacteria and metastasis of colo-
rectal cancer [19, 20]. Therefore, it’s critical to integrate 
vascular endothelial cells into a simulated intestinal model 
to improve the predictive accuracy of in vitro drug screening 
[21]. The disruption of the intestine microbiome, impair-
ment of host-microbiota interactions, disruption of gut-vas-
cular barrier, and alterations of the immune system usually 
lead to susceptibility to pathogenic infection and dysfunction 
of immunity [20, 22]. Additionally, perturbing homeostasis 
of the intestinal epithelium can result in a variety of diseases 
within and beyond the intestine, such as inflammatory bowel 
disease (IBD) [23], celiac disease [24], metabolic syndrome 

[25], rheumatic arthritis [26], neurodegenerative disorder 
[27], and carcinoma [28].

The commonly used conventional intestine models 
include in vitro intestinal epithelial cell lines [29], ex vivo 
everted sacs [30] and Ussing chambers [31], and in vivo 
animal models [32], as well as Transwell inserts embed-
ded with intestinal epithelial cell lines [33], among which 
human intestinal epithelial cell lines are most commonly 
used. Importantly, there are species-specific differences in 
intestinal architecture, physiology, and pathology, and thus, 
there has been a great urge to establish new models to accu-
rately recapitulate living human intestine instead of animal 
models [34]. Although human intestinal cancer-derived cell 
lines historically have been valuable in intestinal research, 
they fail to recapitulate the physiological 3-dimensional (3D) 
architecture or emulate the functional properties of the liv-
ing human intestine to some extent [35]. The emergence 
of 3D intestinal organoids derived from either intestinal 
crypts containing endogenous intestine stem cells or induced 
pluripotent stem cells (iPSc) has revolutionized the field of 
intestinal models by maintaining various intestinal lineages 
and the functions of mucus production and villi formation 
[36]. However, intestinal organoids also have limitations, for 
instance, they lack other supporting cells that exist in living 
intestines, such as immune cells and vascular endothelial 
cells, which are important for pharmacokinetics analysis of 
drugs [37]. Happily, these shortcomings have recently been 
overcome by the development of microfluidic organ chip 
models of the human intestine. A microfluidic intestine-on-
a-chip (IOAC) can be generally defined as a microfabricated 
cell culture device that mimics the functional units of the 
intestine in vitro [38]. The emergence of microfluidic IOAC 
models will offer a powerful new approach to promote the 
development of personalized medicine.

In this article, we summarized the advantages and dis-
advantages of in vitro and ex vivo conventional intestine 
models, intestinal organoid models (from 3D organoids to 
2D monolayers), and microfluidic models (from gut-on-a-
chip to intestinal organoid-on-a-chip). We then proposed a 
primary IOAC (pIOAC) model and determined its future 
prospects in personalized medicine, expecting to help pro-
mote the simulation degree of the IOAC model and its use 
in personalized medicine.

Current Intestine Models

Conventional Intestine Models (in Vitro and ex Vivo)

In past decades, conventional in vitro and ex vivo intestine 
models, including classic cell culture, everted sacs, Tran-
swell inserts, and Ussing chambers, have made a significant 
contribution to intestinal research and played a vital role in 
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understanding the physiology and pathology of the human 
intestine. However, many processes of the human intestine 
are difficult to recapitulate when using in vivo animal models 
and ex vivo human intestinal samples. In vitro models are 
widely employed for the study of complex in vivo responses, 
due to their accessibility for high-throughput testing under 
well-controlled and repeatable conditions and relatively 
good human predictive power for the in vivo situation [39]. 
With appropriate approaches, in vitro cell models create 
an opportunity to improve cellular biology studies, while 
reducing the ethical issues and expense associated with the 
application of human intestinal samples and animals [40].

Primary cells are isolated from intestinal biopsies and 
retain the majority of their in vivo properties, particularly 
gene expression patterns. Thus, the retained genome is 
highly supportive of personalized therapy, but the repro-
ducibility of results may vary from one cell to another [41]. 
Perreault et al. [42] reported a primary culture of viable 
differentiated enterocytes generated from the human fetal 
small intestine. However, they survive only a few days in a 
conventional culture system. Fully differentiated enterocytes 
isolated from human intestinal biopsies are rarely used in 
practice due to a wide range of limitations, such as ethics 
and regulatory issues, that govern the collection and trans-
port of biopsies and isolation, storage and use of these cells. 
Alternatively, immortalized cell lines derived from gut ade-
nocarcinoma, such as Caco-2, HT-29, T84, SW480, LS174T 
cells and so on, are widely used in biological mechanistic 
studies.

Caco-2 cells were isolated from colorectal adenocarci-
noma of a 72-year-old male and are commonly used as a 
model of the human intestinal epithelium. When cultured in 
a 2D interface, Caco-2 cells grow into a confluent monolayer 
and then differentiate, polarize, and connect to each other, 
forming an apical brush border structure and expressing 
genes and proteins relevant to human intestine [43]. When 
grown on collagen-coated porous membranes of Transwell 
inserts, they should represent a valuable model to evaluate 
transport, barrier and interaction for the intestinal epithe-
lium [44, 45]. Another immortalized cell line, HT-29, was 

isolated from the colorectal adenocarcinoma of a 44-year-
old female in 1964 [46]. Ultrastructural examination showed 
that these cells have a rich microvillar surface, a moderate 
amount of intermediate filaments, a few desmosomes, few 
primary and many secondary lysosomes, and a well-devel-
oped intercellular lumina [47]. T84 colon carcinoma cells 
present considerable heterogeneity in their morphology, an 
irregular cellular surface, many large vesicles in the periph-
eral cytoplasm, pleomorphic microvilli, and well-demar-
cated enlarged nuclei [48]. Usually, results obtained from 
adenocarcinoma-derived immortalized cell lines cannot be 
directly applied to make conclusions about the responses 
of the living human intestine. It is important to establish 
consistent and reliable models that faithfully mimic in vivo 
conditions.

Intestinal Organoid Models (from 3D Organoids 
to 2D Monolayers)

Intestinal organoids can be derived from induced pluripotent 
stem cells [49], embryonic stem cells [50], and ISCs isolated 
from an intestinal biopsy [51]. Commonly, enteroids and 
colonoids refer to organoids derived from the small intestine 
and colon, respectively [52]. Mimicking the in vivo niche, 
ISCs spontaneously develop into a crypt-villus hierarchy 
containing multiple intestinal epithelial cell types, includ-
ing enterocytes, goblet cells, Paneth cells, enteroendocrine 
cells and so on, under conditions with a 3D extracellular 
matrix (ECM) and special growth factors [53, 54]. Intesti-
nal organoids undergo self-renewal and intestinal histogen-
esis for prolonged periods when cultured in an appropriate 
environment (Fig. 1). The culture of intestinal organoids has 
greatly developed since the first in vitro culture of intestinal 
crypts isolated from rats in 1992 [55]. Currently, intestinal 
organoid models have been applied to human [56], mouse 
[57], pig [58], horse [59], bovine [60] and so on. It is worth 
noting that a tissue-engineered intestine is established based 
on intestinal organoids, scaffolds, and receptor animals [61].

The development of intestinal organoid models is a mile-
stone in studies on intestinal health. Intestinal organoids can 

Fig. 1   Derivation of small intes-
tinal organoids. Small intestinal 
epithelium (b) is isolated from 
intestinal biopsies (a), and is 
applied to crypt (c) isolation. 
Crypts and crypt derived crypt 
cells and intestinal stem cells 
can expand to form organoids 
(d), under conditions with a 3D 
extracellular matrix and special 
growth factors
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be derived from an intestinal biopsy of an individual and 
provide intestinal epithelium-like morphology that contains 
multiple differentiated intestinal epithelial cell types [62]. In 
addition, compared with the limited lifespan of several ex 
vivo models, such as the everted sac and the Ussing cham-
ber, the long-term intestinal organoid model is sufficient to 
expand its application for developing intestinal disease mod-
els and mimicking normal intestinal physiology [63]. Pres-
ently, intestinal organoids have been introduced to explore 
intestinal nutrition [64, 65], wound healing [66, 67], host-
microbiota interactions [68], inflammatory bowel diseases 
[69], toxicology [70–72], signaling transduction [73], malig-
nancies [74], and regenerative medicine [75]. Regardless of 
its advantages, such as spontaneous histogenesis, long-term 
culture, and gene manipulation possibilities, there still are 
several limitations of intestinal organoid models in mimick-
ing the in vivo intestine.

A major limitation of conventional intestinal organoids 
is their 3D closed cyst-like configuration in which villi pro-
trude into the inside lumen of the organoids. This is inverted 
from the in vivo intestinal epithelium and makes the apical 
side inaccessible for peripheral stimuli, such as nutrients, 
toxins, and pathogens. Apical-out 3D intestinal organoids 
were developed to reverse organoid polarity, thus enabling 
the apical surface to face ECM and culture media. However, 
the 3D intestinal organoids lack a lumen, resulting in the 
diffusion of intestinal epithelial secretions, such as mucins, 
into the culture media [76]. One of the common solutions 
is microinjection. However, this technique is microinjection 
apparatus- and skillful operator-dependent and inefficient, 
thus limiting its application [77]. Additionally, organoids 
growing in 3D ECM are variable in size, shape, morphol-
ogy, and localization. Thus, the opportunity to access media 
differs from one organoid to another, and it is difficult to 
achieve real-time monitoring [78]. Furthermore, nutrient 
supply, gas exchange, and waste removal are extraordinar-
ily restricted at the interior of the organoids [79]. Then, 3D 
intestinal organoid-derived monolayers were firstly devel-
oped by Moon and colleagues in 2013 [80]. In the monolayer 
model, essentially, the apical side faces outwards, while the 
basolateral side is attached to an ECM-coated surface [78]. 
Importantly, the monolayer model reveals an autonomous 
WNT and bone morphogenetic proteins (BMP) circuit con-
trolling a homeostasis state with balanced proliferation, 
differentiation, and apoptosis and can be used for high-
throughput microscopy-based experiments [81]. Thus, the 
monolayer model can potentially overcome the shortcomings 
described above [82].

Another obstacle in conventional intestinal organoid 
models is the lack of several essential components of in 
vivo intestine, such as microflora, immune system, vascular 
system, and nervous system [82]. Hou and colleagues [83] 
built a co-culture system with intestinal organoids, lamina 

propria lymphocytes, and L. reuteri and found that lamina 
propria lymphocytes and L. reuteri can improve the anti-
inflammatory ability of the intestinal organoids to some 
extent. However, the microbiome diversity, interaction 
period, uniformity, and reproducibility of the model are lim-
ited. Considering the shortcomings of closed cyst-like con-
figuration, co-culture models based on 3D intestinal orga-
noids are not described here. The application of 2D intestinal 
organoid models, which actually form crypt-villous axis-like 
3D structures like living human intestine, recently has been 
presented as an alternative to 3D intestinal organoid models 
[84]. Roodsant et at. [85] established a monolayer model 
of the human intestinal polarized epithelium characterized 
for epithelial cell lineages, polarization, barrier function, 
and gene expression. Enterovirus A71 infection and Lis-
teria monocytogenes translocation for several hours were 
evaluated in this model, demonstrating it is a valuable tool 
to study host-pathogen interactions. Additionally, interac-
tions between intestinal epithelium and mucosal immune 
cells [86], between the intestinal epithelium and enteric 
nerve cells [17], and between the intestinal epithelium and 
subepithelial myofibroblasts and vascular endothelial cells 
[87] are also explored using 2D intestinal organoid models. 
The development of these co-culture systems has greatly 
recapitulated the cellular composition, structure, and func-
tional properties of the human intestine in vitro. However, 
even though they are much more advanced in simulating 
in vivo intestinal epithelial morphology than 3D intestinal 
organoid models, 2D intestinal organoid models are still 
far from a faithful model mimicking the human intestine 
in vivo due to several vital drawbacks such as time-limited 
host-microbe crosstalk, a lack of fluid flow, the absence of 
peristaltic movement, and deficiencies in intestinal mucus 
formation and cytochrome P450-based metabolism [85, 88].

Microfluidic Models (from Gut‑on‑a‑chip 
to Intestinal Organoid‑on‑a‑chip)

The emergence of engineering-derived models is comple-
mentary to biology-based techniques and provides new 
approaches to simulate the complex anatomical, mechanical, 
and biophysical properties of human intestine in vitro. An 
organ-on-a-chip is a microfluidic cell culture device contain-
ing continuously perfused microchannels inhabited by living 
cells [89]. These devices simulate the activities, mechanics 
and physiological responses of an entire organ or organs, 
producing a type of artificial organ functionality not possible 
with conventional 2D or 3D models [90]. Microfluidic IOAC 
models are developed to overcome the shortcomings of con-
ventional intestine models and intestinal organoid models 
in recent years, depending on the advances of biomaterial-
based microfabrication techniques [91]. However, the devel-
opment of IOAC models does not happen overnight.
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Pocock et al. [92] used hydrophobic polydimethylsilox-
ane to fabricate a single-channel IOAC model embedded 
with a monolayer of differentiated Caco-2 cells and demon-
strated its ability to mimic intestinal fluidic conditions and 
its potential to evaluate the uptake of silica particulate drug 
carriers. However, it was not possible to evaluate transcel-
lular transportation using this model because of the lack of 
a permeable surface [93, 94]. Therefore, the application of 
single-channel IOAC models to simulate intestinal proper-
ties in vivo is limited greatly. Generally, an IOAC contains 
two hollow microchannels separated by a porous, flexible, 
and ECM-coated membrane. Intestinal epithelial cells 
and other cell types can be co-cultured on opposite sides 
of the membrane, emulating a transmural lumen-capillary 
interface in the human intestine [95]. In the past few years, 
Caco-2 cells have been widely used in establishing intesti-
nal microchips, which have a special name: gut-on-a-chip 
models [96, 97]. Under peristalsis-like fluid flow and cyclic 
mechanical motions, Caco-2 cells in a gut-on-a-chip device 
spontaneously differentiate into a monolayer with 3D vil-
lous structure, which partly recapitulates characteristics of 
human intestine [98]. Several sub-types of these models are 
fabricated to emulate living human intestine for studies on 
barrier integrity [99], digestive functions [100], immune 
modulation [101], drug metabolism [102], and host-microbe 
crosstalk [103]. Kim et al. [104] established a human gut-
on-a-chip model in the presence of vascular and lymphatic 
endothelium and immune cells, which permits analysis of 
individual contributors to the pathophysiology of intestinal 
diseases over a period of weeks and studies on the underly-
ing mechanisms when coupled with peristalsis-like fluidic 
flow and cyclic mechanical deformations. However, co-cul-
ture with the microbiome in the present study is limited to 
eight strains of beneficial probiotic bacteria, and the interac-
tion time is no more than 3 days.

The human gut harbors a complex community of over 100 
trillion microbial cells that play vital roles in maintenance 
of human health [105]. Imbalances of the microbiome in 
the gut can contribute to the development of various patho-
logical disorders, particularly within the intestine, includ-
ing inflammatory bowel disease, colorectal carcinoma, and 
necrotizing enterocolitis [106–108]. Compared to co-culture 
with human cells, crosstalk with the microbial community 
in an in vitro model is much more challenging. Several 
models, including Transwell inserts [109], intestinal orga-
noids [110], and specialized bioreactor models [111], were 
tested to sustain complex populations of human intestinal 
microbiota in contact with living human tissues to mimic 
physiologically and pathologically related human intestine-
microbiome crosstalk. In Transwell models, co-culture with 
bacteria could only be carried out within hours, due to the 
uncontrolled overgrowth of bacteria [112]. This is also a fun-
damental issue in 3D organoid models, in addition to their 

inwards orientation of the epithelia. A human-microbiota 
interaction model was developed to co-culture Caco-2 cells 
with aerobic and anaerobic microbes under an oxygen gradi-
ent, which increases the co-culture time to 48 h. However, 
the microbes need to be separated from the Caco-2 cells by 
a porous membrane, preventing direct contact between the 
two sides [113]. Recently, Jalili-Firoozinezhad et al. [114] 
reported a microfluidic anaerobic IOAC that permits the 
control and real-time assessment of the transluminal hypoxia 
gradient in the chip, allowing co-culture and maintenance 
of a complex human intestinal microbiome containing over 
200 unique operational taxonomic units from 11 different 
genera for at least 5 days. Furthermore, this experimental 
approach was applied to co-culture the fresh gut microbiome 
with primary human intestinal epithelial cells, resulting in 
accurately recapitulated bacterial richness. Aguilar-Rojas 
and colleagues [115] provide a detailed review on the use 
of various intestinal models to study the interaction between 
the intestine and microbes, which will not be discussed fur-
ther in this article.

The intestinal epithelial surface is covered by mucus, 
which provides a niche for commensal microbiota [116]. 
Changes in mucus layer homeostasis can influence intesti-
nal barrier function and the crosstalk between bacteria and 
immune cells [117]. Therefore, a mucus layer with a physi-
ologically relevant structure and constitution is another core 
challenge for modeling intestine-microbiota interactions 
in vitro. The use of cancer-derived human intestinal epithe-
lial cell lines usually results in secretion of the gastric mucin 
MUC5AC, but not the predominant intestinal gel-forming 
mucin MUC2 [118, 119]. Primary human intestinal orga-
noids can extensively retain the mucin secretion character-
istics of living human intestine, but the secreted mucins are 
entrapped in the central lumen of the organoids due to their 
inwards orientation [120]. Moreover, the thickness of the 
mucus layer in an in vitro intestine model is far behind that 
of the 600-µm human colonic mucus layer, which is another 
obstacle to recapitulating living human intestinal mucus 
[121, 122]. Based on a microfluidic organ-on-a-chip device 
embedded with primary 2D colonoids, Sontheimer-Phelps 
et al. [123] established a new model that supports spontane-
ous goblet cell differentiation and MUC2 secretion, forming 
a physiologically relevant bilayer structure with a thickness 
similar to that observed in the human colon. The presence 
of 2D intestinal organoid monolayer derived from 3D orga-
noid and primary crypt can emulate the features of the liv-
ing human intestinal epithelium better than 3D organoids 
and intestinal cell line-derived 2D monolayer, achieving a 
homeostatic state with balanced proliferation, differentia-
tion, and apoptosis [124]. Kasendra et al. [125] reported a 
primary human IOAC embedded with a 2D intestinal orga-
noid monolayer in the presence of the human intestine-spe-
cific microvascular endothelium, and demonstrated that the 
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established intestine chip better recapitulates the genome, 
cell lineages and morphology of the intestinal segment from 
which it was derived than any of the other in vitro intestinal 
models, including a Caco-2-derived gut-on-a-chip model, 
Caco-2 Transwell models, and 3D intestinal organoids. The 
summary of current intestine models is shown in Table 1.

Proposed Primary Intestine‑on‑a‑chip 
(pioac) Model

Collectively, the constitution of intestinal epithelial cell lin-
eages, mucosal immunity, gut-vascular barrier, prolonged 
host-commensal microbiota interaction, and mechanical 
forces (fluid flow and peristalsis-like motions) are key con-
tributors to normal intestinal physiology and disease devel-
opment and are vital to faithfully mimic living human intes-
tine in an IOAC model. Nowadays, there are several terms 
referring to intestinal microfluidic chips, such as IOAC 
[126], gut-on-a-chip [127], and organoid-on-a-chip [38]. We 
primarily use pIOAC to refer to a proposed microengineered 
intestine model in this review.

Inevitably, the cellular composition of an intestine model 
is the crucial factor for its outcomes. As described in the 
previous sections, a 2D primary intestinal organoid mon-
olayer is valuable as a preferred cell origin to establish a 
microfluidic chip model, at least in emulating cell lineages, 
morphology, luminal access and interface, and mucosal 
immunity of the living human intestine [85]. To improve 
the physiological relevance of primary intestinal organoid 
monolayers, there are still other microenvironmental factors, 
including biological, mechanical, and topological, that must 
be incorporated into organoid monolayer culture devices to 
recapitulate the physiological and pathological states of the 
living intestine. In proper combination, a microfluidic chip 
device can co-culture and sustain a complex human intes-
tinal microbiome for at least 5 days [114]. Hence, we here 
propose a pIOAC, based on a 2D primary intestinal organoid 
monolayer, fluid flow, peristalsis-like motions, and oxygen 
gradient, as well as other cell types such as gut microbe, 
mucosal immune cells, enteric nerve cells, endothelial cells 
and myofibroblasts. To maximize the retention of biologi-
cal characteristics of living human intestine and meet the 
requirements of personalized medicine, primary ISCs and 
gut microbiota, as well as other cell types that need to be 
incorporated into the chip, should be isolated from an indi-
vidual. The preparation of these cells is referenced in the lit-
erature listed in Table 2. Additionally, a summary of bioma-
terial-based microfabrication techniques used to enhance the 
complexity and mechanical cues of the microfluidic organ 
chip has been published by Rahmani et al. [84].

The design principle to construct a pIOAC device is to 
emulate intestinal functions of an individual to the maximum 

extent based on the simplification of essential elements. The 
first step is to have a reductionist analysis of the functional 
units of the living human intestine that has been described 
in detail in the previous section. In summary, the intestinal 
epithelial monolayer is covered by one layer of mucus in 
the small intestine segment and two layers of mucus in the 
large intestine segment, while the microbiome is attached to 
the mucus. There are other cell types, such as immune cells, 
enteric nerve cells, vascular endothelial cells and myofibro-
blasts, in the lamina propria, subepithelial, and intraepithe-
lial regions (Fig. 2). Next, an analogous model is constructed 
with polydimethylsiloxane (PDMS) and contains 2 parallel 
microchannels that are separated by a PDMS porous mem-
brane. An oxygen-sensing organ chip is fabricated as previ-
ously described, and an oxygen gradient relevant to living 
intestine should be established before cell seeding [114]. 
Primary intestinal epithelial cells/organoid fragments and 
other needed cell types are embedded in the upper and lower 
interfaces of the porous membrane, respectively, thus bring-
ing these cell types into physiological proximity. The cells 
are cultured statically until they form monolayers on both 
sides of the membrane. Then, relevant culture media are 
perfused at a desired flow rate through the upper and lower 
channels, cyclic suction is applied to hollow side chambers, 
and peristalsis-like stretching motions are exerted on the 
porous membrane (Fig. 3). Grown for about 2 weeks under 
these conditions, 2D organoid monolayers will transform 
into 3D villi-crypt structures, similar to the in vivo situation, 
and then can be applied to morphological analyses, mucus 
detection, and paracellular permeability measurement. 
Finally, antibiotic is excluded in the perfusing medium, and 
an appropriate amount of microbiota isolated from individu-
als or any other target microbe should be added to the upper 
channel embedded with differentiated intestinal epithelia.

For details, in addition to primary ISCs and organoid 
fragments, biopsy-derived crypt cells that contain large 
amounts of ISCs can also be applied to form intestinal orga-
noid monolayers. Most importantly, the crypt cells are able 
to undergo gene editing, and the application of these cells 
can greatly decrease the expense of experimental time and 
cost [58]. Furthermore, as one of the distinctive proper-
ties of microfluidic organ chip devices, monitoring sensors 
and post-analysis abilities can also be incorporated into the 
device to achieve high-throughput and rapid pharmaceutical 
studies. For example, a microfluidic chip with an integrated 
electrical cell-impedance sensor can efficiently capture sin-
gle cells on microelectrode arrays for sequential impedance 
measurement and cell migration [138]. Many sensors, such 
as sensors of temperature [139], pH and cations [140], thera-
peutic drugs and metabolites [141, 142], and cellular param-
eters [143], and sensor combinations [144] are incorporated 
in a microfluidic chip and confer the ability to perform con-
tinuous monitoring.

2142



Stem Cell Reviews and Reports (2022) 18:2137–2151

1 3

Ta
bl

e 
1  

S
um

m
ar

y 
of

 c
ur

re
nt

 in
te

sti
ne

 m
od

el
s

In
te

sti
na

l m
od

el
s

A
dv

an
ta

ge
Li

m
ita

tio
n

A
pp

lic
at

io
n

Re
fe

re
nc

es

  C
on

ve
nt

io
na

l i
nt

es
tin

e 
m

od
el

s
 in

te
sti

na
l b

io
ps

ie
s

cl
os

el
y 

re
se

m
bl

es
 th

e 
in

 v
iv

o 
pr

op
er

tie
s

et
hi

cs
 a

nd
 re

gu
la

to
ry

 is
su

es
; a

 sm
al

l 
po

pu
la

tio
n 

of
 sa

m
pl

es
; u

na
bl

e 
to

 b
e 

cu
ltu

re
d 

fo
r l

on
g 

pe
rio

ds

di
ffe

re
nt

ia
tio

n;
 p

er
m

ea
bi

lit
y

[3
0]

 p
rim

ar
y 

in
te

sti
na

l c
el

ls
th

e 
re

ta
in

ed
 g

en
om

e 
is

 h
ig

hl
y 

su
pp

or
tiv

e 
of

 p
er

so
na

liz
ed

 th
er

ap
y

et
hi

cs
 a

nd
 re

gu
la

to
ry

 is
su

es
; l

im
ite

d 
po

pu
la

tio
n 

of
 c

el
ls

; u
na

bl
e 

to
 b

e 
cu

l-
tu

re
d 

fo
r l

on
g 

pe
rio

ds

pr
ol

ife
ra

tio
n;

 m
ig

ra
tio

n;
 c

el
l i

nt
er

ac
tio

n;
 

ho
st-

m
ic

ro
be

 in
te

ra
ct

io
n

[4
1,

 4
2]

 im
m

or
ta

liz
ed

 c
el

l l
in

es
 (s

uc
h 

as
 C

ac
o-

2,
 

H
T-

29
, T

84
, S

W
48

0,
 L

S1
74

T 
ce

lls
 

an
d 

so
 o

n)

ac
ce

ss
ib

ili
ty

 fo
r h

ig
h-

th
ro

ug
hp

ut
 te

sti
ng

 
un

de
r w

el
l-c

on
tro

lle
d 

an
d 

re
pe

at
ab

le
 

co
nd

iti
on

s

lim
ite

d 
pr

ed
ic

tiv
e 

po
w

er
 fo

r t
he

 in
 v

iv
o 

si
tu

at
io

n
pr

ol
ife

ra
tio

n;
 m

ig
ra

tio
n;

 c
el

l i
nt

er
ac

tio
n;

 
ho

st-
m

ic
ro

be
 in

te
ra

ct
io

n
[4

3,
 4

7,
 4

8]

 T
ra

ns
w

el
l i

ns
er

ts
re

pr
es

en
t a

 v
al

ua
bl

e 
m

od
el

 to
 e

va
lu

at
e 

tra
ns

po
rt,

 b
ar

rie
r a

nd
 in

te
ra

ct
io

n 
fo

r t
he

 
in

te
sti

na
l e

pi
th

el
iu

m

co
-c

ul
tu

re
 w

ith
 b

ac
te

ria
 c

ou
ld

 o
nl

y 
be

 
ca

rr
ie

d 
ou

t w
ith

in
 h

ou
rs

pe
rm

ea
bi

lit
y;

 c
el

l i
nt

er
ac

tio
n;

 h
os

t-
m

ic
ro

be
 in

te
ra

ct
io

n
[4

4,
 4

5,
 1

12
]

  I
nt

es
tin

al
 o

rg
an

oi
d 

m
od

el
s

 3
D

 o
rg

an
oi

ds
sp

on
ta

ne
ou

s h
ist

og
en

es
is

; l
on

g-
te

rm
 c

ul
-

tu
re

; g
en

e 
m

an
ip

ul
at

io
n 

po
ss

ib
ili

tie
s

cl
os

ed
 c

ys
t-l

ik
e 

co
nfi

gu
ra

tio
n 

w
hi

ch
 is

 
in

ve
rte

d 
fro

m
 th

e 
in

 v
iv

o 
in

te
sti

na
l 

ep
ith

el
iu

m

pr
ol

ife
ra

tio
n;

 d
iff

er
en

tia
tio

n;
 p

er
m

e-
ab

ili
ty

; c
el

l i
nt

er
ac

tio
n;

 h
os

t-m
ic

ro
be

 
in

te
ra

ct
io

n;
 ti

ss
ue

 re
ge

ne
ra

tio
n

[5
8,

 7
2]

 a
pi

ca
l-o

ut
 3

D
 o

rg
an

oi
ds

en
ab

lin
g 

th
e 

ap
ic

al
 su

rfa
ce

 to
 fa

ce
 e

xt
ra

-
ce

llu
la

r m
at

rix
 a

nd
 c

ul
tu

re
 m

ed
ia

la
ck

 o
f a

 lu
m

en
pr

ol
ife

ra
tio

n;
 d

iff
er

en
tia

tio
n;

 p
er

m
e-

ab
ili

ty
; c

el
l i

nt
er

ac
tio

n;
 h

os
t-m

ic
ro

be
 

in
te

ra
ct

io
n;

 ti
ss

ue
 re

ge
ne

ra
tio

n

[7
6]

 2
D

 o
rg

an
oi

ds
ac

tu
al

 c
ry

pt
-v

ill
ou

s a
xi

s-
lik

e 
3D

 st
ru

c-
tu

re
s l

ik
e 

liv
in

g 
hu

m
an

 in
te

sti
ne

tim
e-

lim
ite

d 
ho

st-
m

ic
ro

be
 c

ro
ss

ta
lk

; a
 

la
ck

 o
f fl

ui
d 

flo
w

; t
he

 a
bs

en
ce

 o
f p

er
i-

st
al

tic
 m

ov
em

en
t; 

de
fic

ie
nc

ie
s i

n 
in

te
s-

tin
al

 m
uc

us
 fo

rm
at

io
n 

an
d 

cy
to

ch
ro

m
e 

P4
50

-b
as

ed
 m

et
ab

ol
is

m

di
ffe

re
nt

ia
tio

n;
 p

er
m

ea
bi

lit
y;

 c
el

l i
nt

er
ac

-
tio

n;
 h

os
t-m

ic
ro

be
 in

te
ra

ct
io

n;
 ti

ss
ue

 
re

ge
ne

ra
tio

n

[8
5,

 1
24

]

  M
ic

ro
flu

id
ic

 m
od

el
s

 C
ac

o-
2-

de
riv

ed
 g

ut
-o

n-
a-

ch
ip

sp
on

ta
ne

ou
sly

 d
iff

er
en

tia
te

 in
to

 a
 m

on
-

ol
ay

er
 w

ith
 3

D
 v

ill
ou

s s
tru

ct
ur

e 
w

hi
ch

 
pa

rtl
y 

re
ca

pi
tu

la
te

s c
ha

ra
ct

er
ist

ic
s o

f 
hu

m
an

 in
te

sti
ne

la
ck

 o
f m

ul
tip

le
 c

el
l l

in
ea

ge
s i

n 
liv

in
g 

in
te

sti
ne

; s
ec

re
tio

n 
of

 th
e 

ga
str

ic
 m

uc
in

 
M

U
C

5A
C

, b
ut

 n
ot

 th
e 

pr
ed

om
in

an
t 

in
te

sti
na

l g
el

-fo
rm

in
g 

m
uc

in
 M

U
C

2

pe
rm

ea
bi

lit
y;

 c
el

l i
nt

er
ac

tio
n;

 h
os

t-
m

ic
ro

be
 in

te
ra

ct
io

n;
 ti

ss
ue

 re
ge

ne
ra

tio
n

[9
6,

 1
04

, 1
18

, 1
19

]

 3
D

/2
D

 o
rg

an
oi

d-
on

-a
-c

hi
p

be
tte

r r
ec

ap
itu

la
te

s t
he

 g
en

om
e,

 c
el

l l
in

e-
ag

es
 a

nd
 m

or
ph

ol
og

y 
of

 th
e 

in
te

sti
na

l 
se

gm
en

t

lim
ite

d 
de

gr
ee

 o
f i

nt
eg

ra
tio

n 
of

 fl
ui

di
c 

flo
w

, p
er

ist
al

si
s-

lik
e 

m
ot

io
ns

, h
os

t-
m

ic
ro

be
 c

ro
ss

ta
lk

, a
nd

 m
ul

ti-
ce

ll 
ty

pe
 

in
te

ra
ct

io
ns

, a
s w

el
l a

s m
on

ito
rin

g 
se

n-
so

rs
 a

nd
 p

os
t-a

na
ly

si
s a

bi
lit

ie
s

di
ffe

re
nt

ia
tio

n;
 p

er
m

ea
bi

lit
y;

 c
el

l i
nt

er
ac

-
tio

n;
 h

os
t-m

ic
ro

be
 in

te
ra

ct
io

n;
 ti

ss
ue

 
re

ge
ne

ra
tio

n;
 p

hy
si

ol
og

y;
 th

e 
pa

th
ol

og
y 

of
 c

er
ta

in
 d

is
ea

se
 p

ro
ce

ss
es

[1
14

, 1
25

]

2143



Stem Cell Reviews and Reports (2022) 18:2137–2151	

1 3

Future Perspectives in Personalized 
Medicine

It is reported that the results from animal experiments 
often fail to predict the safety and effectiveness of poten-
tial drug candidates, due to the distortion of an animal 
model and the biological differences between species 
[145]. Numerous models, such as Caco-2 monolayer cul-
ture on a Transwell insert and 3D intestinal organoids, 
have been applied to mimic human intestinal diseases and 
evaluate the pharmacokinetics and pharmacodynamics of 
novel drugs in humans. It is well known that the emer-
gence of organ-on-a-chip models allows the recapitulation 
of biological characteristics found in native human tissues 
and enables studies of physiology and the pathology of 

certain disease processes. Thus, the application of these 
models can potentially provide new insights into disease 
mechanisms and the possibility for advanced drug screen-
ing and personalized medicine [146].

To date, a few studies on disease models using micro-
fluidic intestine chip devices have been published, most 
of which were carried out with gut-on-a-chip models. For 
instance, a human gut-on-a-chip microfluidic device embed-
ded with Caco-2 cells and vascular endothelial cells was 
introduced to model the radiation injury response of the 
human intestine when exposed to γ-radiation [147]. Based 
on the same framework of this gut-on-a-chip device, a more 
complex model was fabricated to study the independent 
contributions of the gut microbiome, inflammatory cells, 
and peristalsis-like mechanical deformations to intestinal 
bacterial overgrowth and inflammation, and the results 

Table 2   The preparation of 
cell types related to primary 
intestine-on-a-chip

Cell types Origin References

Lactobacilli and enterococci Infant gut [128]
Bacteria Fresh human feces [129, 130]
T cells Human colon biopsies [131]
Immune subsets Lamina propria of human intestinal 

biopsies
[132]

Macrophages Human blood [133]
Inflammatory cells and colon Epithelial cells Human colon biopsies [123]
Enteric nerve cells Human postnatal gut [134]
Intestinal microvascular endothelial cells Human intestinal biopsies [135]
Human umbilical vein endothelial cells Human umbilical cord [136]
Myofibroblasts Colon [137]

Fig. 2   Schematic representation of native 3D architecture of the small 
intestinal epithelial tissue. The mature human intestinal mucosa is 
covered by a single layer of columnar epithelial cells that are classi-
fied as intestinal stem cells, absorptive cells, goblet cells, enteroen-
docrine cells, Paneth cells, M cells, tuft cells and so on. These cells 

are strictly organized and interact with each other, laying the founda-
tion for building the intestinal mucosa. In addition, the interactions 
between the intestinal mucosa and submucosal vascular endothelia, 
immune cells, neurons, and fibroblasts, as well as lumenal microor-
ganisms and digesta, form a functional intestine
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demonstrated that this gut-on-a-chip device can be used 
to establish human intestinal disease models and gain new 
insights into gut pathophysiology [104]. Furthermore, this 
kind of device is potential to be improved in a patient-spe-
cific manner to advance personalized medicine in the future, 
since the cellular components of the model, such as pri-
mary intestinal epithelial cells, connective tissues, immune 
cells, and commensal gut microbial communities, can be 
varied independently [104]. Thus, this gut-on-a-chip device 
was approved in association with IBD [148]. In addition to 
recapitulating disease phenotypes, the gut-on-a-chip mod-
els have also been applied to substrate transport and drug 
discovery. For instance, a gut-on-a-chip model combined 
with gas chromatography-high resolution mass spectrom-
etry was developed to assess the transport of individual 
dioxin congeners [149]. Beaurivage et al. [150] established 
a robust high throughput gut-on-a-chip model allowing the 
recapitulation of key aspects of IBD pathogenesis. Moreo-
ver, they demonstrated, for the first time, the use of on-chip 
adenoviral shRNA transduction to knockdown of key inflam-
matory regulators RELA and MYD88, allowing for larger 
scale disease modeling, target validation and drug discovery 
purposes. Similarly, a gut-on-a-chip model was applied to 
determine the permeability coefficients of lipophilic prod-
rugs of 7-ethyl-10-hydroxycamptothecin, and results showed 
that this device is more biologically relevant than Caco-2 
Transwell models, and the magnitude of permeability coef-
ficients is higher than that of standard Ussing chamber set 
up with rat tissues [126].

  Because of the many limitations of cancer-derived cell 
lines in personalized medicine, an intestine chip microflu-
idic model using biopsy-derived organoids was developed 
and applied to evaluate nutrient digestion, mucus secretion, 

and intestinal barrier function [125]. Gazzaniga et al. [151] 
have developed a primary mouse IOAC model that support 
co-culture with living gut microbe and is able to evaluate 
living gut related characteristics such as barrier function, 
mucus production, and cytokine release for the analysis of 
pathogenic bacterial infections. The results of 16 S rRNA 
sequencing confirmed that Enterococcus faecium contributes 
to the promotion of host tolerance to Salmonella typhimu-
rium infection, confirming findings obtained in previous 
experiments in mice. In addition, a pIOAC incorporating 
intestinal epithelial cells derived from human intestinal 
organoids and monocyte-derived macrophages has been 
successfully fabricated to simulate key aspects of the intes-
tine of individuals with IBD. Intriguingly, the inflammatory 
trigger-induced gene expression profile in this model was 
similar to those in patients with IBD, opening the doors to 
personalized medicine [152]. Recently, studies with human 
intestinal organoids have shown that severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) preferentially 
infects mature enterocytes over enteroendocrine and goblet 
cells [153]. However, there are several limitations in the use 
of organoid technology. Importantly, these organoids are less 
complex than their counterparts and do not interact with the 
local microenvironment of the body [154]. Simultaneously, 
Guo and colleagues [155] created a gut-on-a-chip model that 
allows the recapitulation of living human intestinal patho-
physiology induced by SARSCoV-2, allowing to accelerate 
coronavirus disease 2019 research and develop novel thera-
pies. Encouragingly, the proposed pIOAC model shows the 
ability to overcome the deficiencies of 3D organoids and gut-
on-a-chip models based on cancer-derived cell lines and rep-
resents a crucial tool in the fight against current and future 
pandemics. It is worth looking forward to the widespread 

Fig. 3   Schematic of the primary 
intestine-on-a-chip device. (a) 
Schematic representation of an 
analogous model with 2 paral-
lel microchannels and 2 side 
chambers. (b) An analogous 
model is constructed from three 
layers to bring primary intesti-
nal epithelial cells, microbiota 
(added to the top channel), and 
other cell types into physiologi-
cal proximity
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application of an improved pIOAC model and its help in 
advancing personalized medicine.

Conclusions

In this article, we reviewed the progress of current intestine 
models, including conventional intestine models, intestinal 
organoid models, and microfluidic chip models, and pro-
posed a pIOAC model to emulate the structure, function, 
physiology, and pathology of the living human intestine. 
There are four vital components of this model: an individ-
ual intestine-derived 2D organoid monolayer, mechanical 
forces, an oxygen gradient relevant to the living intestine, 
and a prolonged host-commensal microbiota interaction. 
The ability of a primary intestinal organoid monolayer to 
emulate the morphology and functions of the native intestine 
and to maintain an individual host’s genetic profile provides 
an unparalleled opportunity for modeling human intestinal 
diseases. Mechanical forces and spatial oxygen gradient col-
lectively create a hypoxic microenvironment and mechanical 
deformation similar to a living intestine, which provide the 
possibility of long-term host-microbiota interaction under a 
controllable situation. The microfluidic pIOAC may provide 
unique perspectives for the advancement of personalized 
medicine. Although the proposed pIOAC models can faith-
fully mimic many physiological and pathological responses 
of the human intestine, there are still many limitations that 
might play a significant role in some disorders that must 
be overcome. For example, in this model, the crosstalk 
between polarized intestinal monolayer, mucosal immune 
cells, enteric nerve cells, vascular endothelial cells, and 
myofibroblasts is restricted to a porous membrane interface, 
rather than the lamina propria, subepithelial and intraepi-
thelial regions as in the living intestine. However, micro-
fluidic intestine chip models have more advantages over 
conventional culture systems, and the progress in biology 
and microengineering will overcome these deficiencies in 
the future. Overall, the evolution of complex IOAC devices 
has greatly accelerated in vitro models of the living human 
intestine, which will improve our knowledge of intestinal 
development, biology, physiology, and pathophysiology. 
Looking forward, pIOAC devices will provide efficient and 
clinically relevant alternatives for personalized medicine.
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