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Purpose: To develop deep learning (DL) models based on multiphase dual-energy
spectral CT for predicting lymph nodes metastasis preoperatively and noninvasively in
papillary thyroid cancer patients.

Methods: A total of 293 lymph nodes from 78 papillary thyroid cancer patients who
underwent dual-energy spectral CT before lymphadenectomy were enrolled in this
retrospective study. The lymph nodes were randomly divided into a development set and
an independent testing set following a 4:1 ratio. Four single-modality DL models based on
CT-Amodel, CT-Vmodel, Iodine-Amodel and Iodine-Vmodel and amultichannel DLmodel
incorporating all modalities (Combined model) were proposed for the prediction of lymph
nodes metastasis. A CT-feature model was also built on the selected CT image features.
Themodel performance was evaluated with respect to discrimination, calibration and clinical
usefulness. In addition, the diagnostic performance of the Combined model was also
compared with four radiologists in the independent test set.

Results: The AUCs of the CT-A, CT-V, Iodine-A, Iodine-V and CT-feature models were
0.865, 0.849, 0.791, 0.785 and 0.746 in the development set and 0.830, 0.822, 0.744,
0.739 and 0.732 in the testing set. The Combined model had outperformed the other
models and achieved the best performance with AUCs yielding 0.890 in the development
set and 0.865 in the independent testing set. The Combined model showed good
calibration, and the decision curve analysis demonstrated that the net benefit of the
Combined model was higher than that of the other models across the majority of threshold
probabilities. The Combined model also showed noninferior diagnostic capability
compared with the senior radiologists and significantly outperformed the junior
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radiologists, and the interobserver agreement of junior radiologists was also improved
after artificial intelligence assistance.

Conclusion: The Combined model integrating both CT images and iodine maps of the
arterial and venous phases showed good performance in predicting lymph nodes metastasis
in papillary thyroid cancer patients, which could facilitate clinical decision-making.
Keywords: thyroid cancer, dual-energy CT (DECT), lymph nodes metastasis, multiphase, deep learning
INTRODUCTION

Approximately 30%-80% of patients with papillary thyroid cancer
(PTC) have cervical lymph nodes (LNs) metastasis, especially to
the lateral neck (1, 2). Recognizing the presence of metastatic LNs
is pivotal for determining a correct therapeutic strategy for
patients and is beneficial to the clinical command and prognosis
evaluation of PTC. At present, there are many ways to evaluate the
benign and malignant status of LNs in patients with PTC.
Although the 2015 American Thyroid Association (ATA)
guidelines consider preoperative ultrasonography (US) the
preferred technique for the assessment of LNs status in PTC
patients (3), this technique has deficiencies when evaluating LNs at
low cervical levels, such as the retropharyngeal area and upper
mediastina, and depends heavily on the clinical experience of the
operator. Computed tomography (CT) can compensate for the
above partial defects by relying on excellent tissue and spatial
resolution. However, the subjective nature of morphologic criteria
such as node size, degree and pattern of enhancement, necrosis,
and extranodal extension for visually evaluating whether cervical
LNs are benign or metastatic results in diminished reproducibility
and objectivity, especially for small LNs without specific
morphological features.

With the widespread application of dual-energy spectral CT
(DECT) called gemstone spectral imaging (GSI), some studies
have found that CT image features with higher spatial resolution
and energy spectrum parameters provided by DECT can be
conducive to the detection and evaluation of LNs status in PTC
(4). Several studies have suggested that the slope of the spectral
Hounsfield unit curve (lHU), the normalized iodine
concentration (NIC), and the normalized effective atomic
number are effective parameters for diagnosing LNs metastasis
in patients with PTC (1, 4, 5)

In recent years, artificial intelligence (AI) based on deep
learning (DL) has been a frontier computational method that
simulates brain structures connecting a large number of neurons,
can complete image-recognition tasks in a short time without
subjective assessment and includes nonvisual image details,
which have a high-dimensional association with clinical issues
(6–8). Theoretically, the combination of dual-energy CT and
deep learning methods may potentially improve the preoperative
predictive performance for LNs metastasis in patients with PTC.

The purpose of our study was to investigate the usefulness of
DL models based on multiphase DECT for predicting LNs
metastasis in patients with PTC and to compare them with
radiologists’ assessments.
2

MATERIALS AND METHODS

Patient Enrollment
The study was approved by the institutional review board of our
hospital, and the requirement for informed consent was waived.
Dual-energy spectralCT images of papillary thyroid cancer patients
from April 2018 to December 2020 were retrospectively collected.
The inclusion criteria were as follows: 1) preoperative dual-energy
CT was performed within two weeks before surgery; 2) patients
underwent lymphadenectomy, and the tumor metastasis of lymph
nodes was pathologically confirmed. The exclusion criteria were as
follows: 1) patients had received any anti-cancer treatment before
surgery; 2) patients had suffered fromother cancer at the same time;
3) low CT image quality or lymph nodes less than 5mm.

Ultimately, a total of 117 lymph nodes with tumor metastasis
and 176 lymph nodes without tumor metastasis from 78 patients
were enrolled in this study. The patient enrollment flowchart is
shown in Figure 1. These lymph nodes were divided into a
development set (140 nonmetastatic and 94 metastatic) and an
independent testing set (36 nonmetastatic and 23 metastatic) at a
ratio of 4:1 using computer-generated random numbers.

Acquisition of CT Images
All patients underwent dual-energy CT examinations in gemstone
spectral imaging (GSI) mode (GE Discovery CT750 HD scanner;
GE Healthcare, Princeton, NJ, USA). DECT scans were from the
skull base to the aortic arch level and in the head-foot direction. The
DECT scan parameters were as follows: 64×0.625-mm detector
collimation; 0.8-sec tube rotation time; 0.984 pitch; 1.25-mm-thick
sections; 1.5-mm-thick section increments; rapid switching of high
(140 kVp) and low (80 kVp) tube voltages; 360-mA tube current.
For contrast-enhanced scans, patients were injectedwith 1.6mL/kg
of nonionic iodinated contrast medium (300 mg I/mL) by a pump
injector at a rate of 3.5 mL/s into the antecubital vein. Images of
arterial and venous phases were performed after 25- and 55-sec
delays, respectively.

Iodine maps of both arterial and venous phases at a 1.5-mm
slice thickness can be autogenerated by DECT.

Pathological Diagnosis of Lymph
Nodes Metastasis
In this study, we adopted the labeling method of LNs imaging and
pathological subregion comparison proposed by Park et al. (9).
According to the LNs location standard established by the
American Joint Committee on Cancer (AJCC), cervical LNs are
divided into I-VII regions (10). The final histopathologic reports of
April 2022 | Volume 12 | Article 869895
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the surgical neck dissection samples served as the reference
standard for nodal metastasis. After obtaining the numbers of
metastatic and nonmetastatic LNs in each region, DECT images
were compared by a radiologist with 10 years of experience in head
and neck radiology. If pathological results showed metastasis in all
LNs in a subregion, the LNs seen in the image area were marked as
metastatic LNs. If the pathological results showed no metastasis in
any of the LNs in a subregion, the LNs seen in the imaging region
were marked as nonmetastatic LNs. In addition, if there were both
metastatic and nonmetastatic LNs in the subregion, the levels with
mixed LNs were ruled out in further research.

Qualitative Analysis of Lymph Nodes and
Development of the CT-Feature Model
Eight morphological CT features of the lymph nodes from CT
images were analyzed by two radiologists with 12 and 10 years of
Frontiers in Oncology | www.frontiersin.org 3
experience in head and neck imaging, including size, shape,
margin, degree of enhancement, pattern of enhancement,
calcification, cystic change, and extra-nodal extension. Size
was determined by using the maximal short axis diameter.
Degree of enhancement was assessed based on the
neighboring muscle. Uniformity of enhancement was
evaluated based on the arterial phase. Fuzzy boundaries
and/or invasion into contiguous structures were deemed as
extra-nodal extension (11). A third senior radiologist with
more than 10 years of experience was consulted for the final
decision if disagreements occurred. All radiologists were not
aware of the pathological results.

The differences of CT image features were assessed in the
development set through multivariate analysis using stepwise
selection logistic regression. Only the CT image features with p <
0.05 were selected to build the CT-feature model.
FIGURE 1 | Flowchart of patient enrollment and study design.
April 2022 | Volume 12 | Article 869895
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Segmentation of Lymph Nodes
The lymph nodes were manually segmented on both arterial
phase and venous phase CT images, and the iodine maps shared
the same segmentations with the corresponding CT images.
Three-dimensional segmentation was performed by a
radiologist with more than 10 years of experience, and the
region of interest (ROI) was manually drawn freehand strictly
within the border of lymph nodes on each slice of the CT images
using ITK-SNAP software (v3.8.0, http://www.itksnap.org). The
cystic change, necrosis, and calcification regions were carefully
excluded to obtain a more homogenized dataset (12). All the
ROIs were confirmed by another senior radiologist with more
than 20 years of experience in head and neck imaging. Both
radiologists were blind to the pathological results.

Data Pretreatment for the DL Models
Before the development of the DL models, each manually labeled
ROI was transformed and defined as follows: (i) a three-
dimensional (3D) patch of 96*96*16 pixels containing the
cropped lymph nodes region, whose size was determined based
on the largest ROI; (ii) tumor masks, in which non-lesion areas
were left padded with zero, were manually labeled pixelwise; and
(iii) the pathologically identified label of tumor metastasis.

Owing to the limited amount of training data, we also used data
augmentation approaches, including flipping (perpendicular to
the x and y axes), random rotation (90, 180, and 270 degrees
perpendicular to the z axis), and random brightness contrast (80%,
90%, 110% and 120%) in the development set. After data
augmentation, the sample size increased to 10 times that of the
original, yielding a total of 2340 samples for the development of
the DL models.

Development of the Deep Learning Models
The MobileNetV2 network was used as the backbone structure of
the DL model due to the faster calculation speed than other classic
neural networks (e.g., IncePtionV3 andVGG16)whilemaintaining
similar accuracy and greatly simplifying the number of parameters,
which reduces the risk of overfitting for small sample sizes. In
addition, the original MobilenetV2 model was entered into a 3D
version according to the data characteristics in this study. More
details about the modification of the 3D MobileNetV2 network
were presented in the Supplementary Data. Two kinds of DL
models were proposed in this study: a single-channel neural
network for each modality of the DECT images (arterial phase
CT images, venous phase CT images, arterial iodine maps and
venous iodine maps) and a multichannel neural network that
integrated four modalities of the DECT images (Figure 2).

Therefore, a total of five DL models were proposed in our
study: four single-modality DL models based on arterial phase
CT images (CT-A model), venous phase CT images (CT-V
model), arterial iodine maps (Iodine-A model) and venous
iodine maps (Iodine-V model), and a multichannel DL model
using ROIs from all modalities as input (Combined model).

To improve the robustness of the model and achieve better
performance, transfer learning methods were also applied. The
neural networks used in this study were first pretrained on
natural images from The ImageNet natural image dataset and
Frontiers in Oncology | www.frontiersin.org 4
were then pretrained on multiple medical image datasets from
The Cancer Imaging Archive (TCIA) database.

The proposed DL models were trained based on the binary
cross-entropy loss function, which is commonly used for
classification tasks. Adam was used as the optimizer in the
training stage owing to its fast convergence and weight-
dependent learning rate. The initial learning rate and the weight
decay were set to 0.0001 and 0.01, respectively. The minibatch size
was set to 24, and the dropout rate was set to 0.5. The weight
parameters of the initialized hidden layer were randomly allocated,
and other parameters were set as default. During model
development, 5-fold cross-validation was applied to avoid
overfitting, and the weighted ensemble method was applied to
integrate a weighted average result from those cross-validation
models. The training was stopped when the loss function was
stable. The relationship between the model efficiency (AUC) and
the cross-entropy loss function index at each epoch during the
model development process is presented in Figure 3.

The supervised training process of the DL models was
performed on the InferScholar platform version 3.5
(InferVision, China) with a Core i7-7700 K central processing
unit (Intel, Santa Clara, Calif), 32 GB memory, and a GeForce
GTX 2070 graphics processing unit (NVIDIA, Santa Clara,
Calif). Python 3.6.8 (https://www.python.org) and the Mxnet
1.5.0 framework for neural networks (https://mxnet.incubator.
apache.org) were used to construct the DL models. The code of
the DL models was available at https://github.com/Sarah-
huiling/DL_ThyroidLymphNode.git.

Performance Evaluation of the
Predictive Models
The discriminative efficacy of the DL models was evaluated by
receiver operating characteristic (ROC) analysis with respect to the
area under the curve (AUC). In addition, the sensitivity, specificity,
positivepredictivevalue (PPV)andnegativepredictivevalue (NPV)
of each model were also calculated under the optimal threshold
according to the maximum Youden index (13).

Calibration and Decision Curve Analysis
The consistency between the predicted metastasis probability
and actual metastasis rate was evaluated through calibration
curves using the 1,000 bootstrapping resamples method, and the
Hosmer–Lemeshow test was conducted to assess the goodness-
of-fit of the predictive models in both the development and
independent testing sets (14). Decision curve analysis (DCA) was
used to assess the clinical utility of the predictive models by
estimating the net benefits for a range of threshold probabilities
in the independent testing set (15).

Performance Comparison Between
Artificial Intelligence (AI) and
the Radiologists
We used the independent testing set to compare the diagnostic
performance of the AI (the combined model) with that of 4
radiologists (2 senior radiologists with 15 and 12 years of
experience and 2 junior radiologists with 4 and 5 years of
experience). To evaluate the actual impact of the DL model in
April 2022 | Volume 12 | Article 869895
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clinical practice, all radiologists first diagnosed the lymph nodes in
the independent testing set independently, and they were asked to
diagnose the same lymph nodes again with AI assistance after a
washout period of 4 weeks. All the radiologists were aware that the
cases in the independent testing set had undergone biopsy or
surgery, but they were blinded to the pathological reports.

Statistical Analysis
Statistical analyses were performed using SPSS software (version
23.0) and MedCalc software (version 20.0). Continuous variables
were compared by Student’s t-test or theMann–WhitneyU test, and
categorical variables were compared by the chi-square test or Fisher’s
exact test, where appropriate. The difference between two AUCs of
differentmodelswas comparedwithDelong’s test (16) or theHanley-
McNeil test (17), where appropriate. The weighted kappa value was
used toassess the interobserveragreementof the tworadiologists.The
calibration curve was plotted using the “rms” package, and the
decision curve was plotted using the “rmda” package. A two-sided
p < 0.05 was considered statistically significant.
RESULTS

Patient Characteristics
A total of 319 patients from April 2018 to December 2020 in our
hospital were initially recruited. According to the inclusion and
Frontiers in Oncology | www.frontiersin.org 5
exclusion criteria, 22 men (mean age, 40.9 ± 14.6 years) and 56
women (mean age, 40.7 ± 11.9 years) were enrolled in the study.
There was no significant difference in the prevalence of lymph
nodes metastasis (chi-square test, p = 0.868) between the
development set (40.2%, 94/234) and the independent testing
set (39.0%, 23/59).

Analysis of the CT Image Features
As shown in Table 1, the CT image features were compared
between nonmetastatic and metastatic lymph nodes in the
development set and independent testing set. Shape,
enhancement degree and enhancement pattern were selected
through multivariate logistic regression analysis (Supplementary
Table 1), and the prediction value of the CT-feature model was
calculated using following formula:

Prediction value

= −1:5411 + 1:08356� Shape Regular = 0, Irregular = 1ð Þ
+ 1:19649� Enhancement pattern(Homogeneous

= 0, Heterogeneous

= 1) + 0:90834

� Enhancement degree Mild�moderate = 0, Strong = 1ð Þ :
A

B

FIGURE 2 | Conceptual architecture of the single-modality DL model (A) and the multichannel DL model integrating all ROIs from the CT images and iodine maps (B).
April 2022 | Volume 12 | Article 869895
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Performance Evaluation of the
Predictive Models
The ROC analysis of the predictive models in the development
and independent testing sets was shown in Figure 4. The AUCs
of the CT-feature model were 0.746 (95% CI, 0.685~0.800) in the
development set and 0.732 (95% CI, 0.601~0.839) in the
independent testing set. The CT-A, CT-V, Iodine-A, and
Frontiers in Oncology | www.frontiersin.org 6
Iodine V models achieved AUCs of 0.865 (95% CI,
0.814~0.906), 0.849 (95% CI, 0.797~0.892), 0.791 (95% CI,
0.733~0.841) and 0.785 (95% CI, 0.727~0.836) in the
development set, and the AUCs of these models were 0.830
(95% CI, 0.709~0.915), 0.822 (95% CI, 0.701~0.910), 0.744 (95%
CI, 0.614~0.849) and 0.739 (95% CI, 0.608~0.845) in the testing
set, respectively. In general, the CT image-based models showed
A B

C

E

D

FIGURE 3 | AUC-loss curve of the DL models during development stage. (A) CT-A model, (B) CT-V model, (C) Iodine-A model, (D) Iodine-V model ,(E) Combined model.
April 2022 | Volume 12 | Article 869895
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higher performance than the iodine map-based models; Only
one group was significantly different (CT-A model vs. Iodine-A
model, p = 0.043 in the development set), with no significant
differences seen in the remaining three groups (CT-A model vs.
Iodine-A model, p = 0.151 in the independent testing set; CT-V
model vs. Iodine-V model, p = 0.074 in the development set and
p = 0.273 in the independent testing set). There were no
significant differences between the arterial phase image-based
models and venous phase image-based models (CT-A model vs.
CT-V model, p = 0.655 in the development set and p = 0.870 in
the independent testing set; Iodine-A model vs. Iodine-V model,
p = 0.889 in the development set and p = 0.957 in the
independent testing set).

The Combined model, incorporating both arterial and venous
phase CT images and the corresponding iodine maps, showed
the highest accuracy in predicting lymph nodes metastasis, with
AUCs achieving 0.890 (95% CI, 0.842~0.927) in the development
set and 0.865 (95% CI, 0.751~0.940) in the independent testing
set. The AUCs of the Combined model were significantly higher
than those of the Iodine-A model (p = 0.007), Iodine-V model
(p = 0.004) and CT-feature model (p < 0.001) in the development
set. Although not statistically significant, the Combined model
showed better performance than the CT-A model (p = 0.427)
and CT-V (p = 0.225) in the development set and all the other
predictive models in the independent testing set (p = 0.096 vs. the
CT-feature model, p = 0.330 vs. the CT-A model, p = 0.237 vs.
the CT-V model, p = 0.074 vs. the Iodine-A model, p = 0.085 vs.
the Iodine-V model). The detailed sensitivity, specificity, PPV
and NPV of these models in the development set and the
independent testing set are summarized in Tables 2, 3
respectively. In addition, subsequent ROC analysis according
Frontiers in Oncology | www.frontiersin.org 7
to the size of lymph nodes (5~10 mm or >10mm) was performed
(Supplementary Figure 1), and the performance of the
Combined model was consistent across lymph node size
(Supplementary Table 2).

Calibration and Clinical Utility Analysis
The Combined model showed good consistency between the
predicted lymph nodes metastasis probability and the actual
metastasis rate in both the development and independent testing
sets (Figure 5). The calibration curve suggested no significant
deviation from an ideal fitting, with the nonsignificant statistic of
the Hosmer–Lemeshow test achieving p = 0.070 and 0.803 in the
development and independent testing sets, respectively.

The decision curve analysis for the DL models in the
independent testing set indicated that the Combined model
showed a higher overall net benefit in differentiating metastatic
LNs from nonmetastatic LNs than other single-modality DL
models, which demonstrated the superiority of the Combined
model compared with other models in terms of clinical
usefulness (Figure 6).

Comparison of the Combined Model and
Radiologists in the Independent
Testing Set
Although not statistically significant, the Combined model
achieved a higher AUC than senior radiologist #1 (p = 0.180)
and senior radiologist #2 (p = 0.262), while it significantly
outperformed the two junior radiologists (both p values <
0.05) in the independent testing set. All radiologists benefited
from AI assistance, with the AUCs of the two senior radiologists
increasing from 0.760 to 0.830 (p = 0.359) and 0.780 to 0.838
TABLE 1 | Comparison of CT image features between no-metastatic and metastatic lymph nodes.

CT image features Development set Independent testing set

Nonmetastatic (n=140) Metastatic (n=94) p Nonmetastatic (n=36) Metastatic (n=23) p

Size 0.549 0.735
5~10 mm 109 70 25 15
>10 mm 31 24 11 8
Shape <0.001 0.250
Regular 117 55 27 14
Irregular 23 39 9 9
Margin 0.075 0.071
Clear 115 68 27 12
Unclear 25 26 9 11
Enhancement degree <0.001 0.006
Mild-moderate 94 36 21 5
Strong 46 58 15 18
Enhancement pattern <0.001 0.006
Homogeneous 112 45 27 9
Heterogeneous 28 49 9 14
Calcification 0.005 0.010
Yes 3 10 0 4
No 137 84 36 19
Cystic change <0.001 0.313
Yes 0 14 1 2
No 140 80 35 21
Extra-nodal extension 0.001 0.207
Yes 0 7 0 1
No 140 87 36 22
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A B

C D

E F

FIGURE 4 | ROC analysis of the predictive models in the development and independent testing sets. ROC curves of the (A) CT-feature model, (B) CT-A model, (C)
CT-V model, (D) Iodine-A model (E) Iodine-V model, and (F) Combined model in the delelopment and testing sets, respectively.
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(p = 0.335). The AUCs of the two junior radiologists also increased
from 0.669 to 0.810 (p = 0.020) and 0.709 to 0.802 (p = 0.258),
respectively. In addition, the interobserver agreement between the
two junior radiologists also improved after AI assistance, with a
weighted kappa of 0.334 (95% CI, 0.104~0.564) increasing to 0.593
(95% CI, 0.387~0.798). The results of the ROC analysis are
presented in Figure 7, and the detailed sensitivity, specificity,
PPV, NPV, and AUC are summarized in Table 4.
DISCUSSION

In this study, we developed five deep learning models based on
multiphase dual-energy spectral CT to predict lymph nodes
metastasis preoperatively and noninvasively in papillary thyroid
cancer patients. Using the independent testing set, our study showed
that the combined DL model possessed superior diagnostic
Frontiers in Oncology | www.frontiersin.org 9
capability compared to that of the other four single-modality DL
models, with AUCs of 0.865. Meanwhile, the combined DL model
showed high diagnostic efficacy across the size of LNs with AUCs
achieving 0.845,0.898 in LNs of 5-10mm and >10mm, respectively.
Although not statistically significant, we found that single-modality
DL models based on the arterial phase achieved a better sensitivity
and diagnostic performance whether CT images or iodine maps
were used. The results were consistent with previously published
studies, and these studies considered that arterial phase CT could
highlight the difference between metastatic and benign LNs because
tumor angiogenesis and recruitment of capsular vessels increased
tumor perfusion in metastatic LNs (18).

The thyroid gland is the main organ with the capacity for
iodine intake in the human body, and metastatic LNs from PTC
can take up iodine. In addition, increased tumor vascularity in
metastatic LNs may contribute to an increase in iodine uptake (1,
19). Hence, the utilization of iodine maps for the evaluation of
TABLE 2 | Performance comparison of different models in the development set.

Model AUC (95% CI) p-value Threshold Sensitivity Specificity PPV NPV

CT-feature 0.746 (0.685~0.800) <0.001 >0.3753 55.3% 85.7% 72.2% 74.1%
CT-A 0.865 (0.814~0.906) 0.427 >0.4518 88.3% 72.1% 68.0% 90.2%
CT-V 0.849 (0.797~0.892) 0.225 >0.4202 85.1% 72.9% 67.8% 87.9%

Iodine-A 0.791 (0.733~0.841) 0.007 >0.3491 81.9% 62.9% 59.7% 83.8%
Iodine-V 0.785 (0.727~0.836) 0.004 >0.4097 86.2% 57.9% 57.9% 86.2%
Combined 0.890 (0.842~0.927) reference >0.4239 91.5% 75.7% 71.7% 93.0%
April 2022 | Vo
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TABLE 3 | Performance comparison of different models in the independent testing set.

Model AUC (95% CI) p-value Threshold Sensitivity Specificity PPV NPV

CT-feature 0.732 (0.601~0.839) 0.096 >0.6248 60.9% 86.1% 73.7% 77.5%
CT-A 0.830 (0.709~0.915) 0.330 >0.3818 82.6% 75.0% 67.9% 87.1%
CT-V 0.822 (0.701~0.910) 0.237 >0.6009 65.2% 86.1% 75.0% 79.5%

Iodine-A 0.744 (0.614~0.849) 0.074 >0.3785 91.3% 52.8% 55.3% 90.5%
Iodine-V 0.739 (0.608~0.845) 0.085 >0.3473 82.6% 61.1% 57.6% 84.6%
Combined 0.865 (0.751~0.940) reference >0.4387 87.0% 69.4% 64.5% 89.3%
A B

FIGURE 5 | Calibration curve of the Combined model in the development set (A) and the independent testing set (B). The X axis and Y axis represent the predicted
lymph nodes metastasis probability and the actual metastasis rate, respectively. A closer fit to the diagonal gray dash line represents a better prediction.
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metastatic LNs from PTC has certain advantages. However, the
results from our study showed inconsistency with the above
theory, which found that the iodine map-based models were not
better than the CT image-based models, regardless of arterial
phase or venous phase. The reasons for the inconsistency of the
results may be that although iodine maps can highlight the
difference of iodine intake in tissues, it is inferior to conventional
CT image in the display of morphological features, such as
boundary and internal structure. Nevertheless, the DL models
based on iodine maps exhibited relatively high sensitivity (91.3%
of the iodine-A model, 82.6% of the iodine-V model) in the
independent testing set.
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The conventional approach to diagnose metastatic cervical LNs
is according to the morphologic characteristics of the nodes,
including size or shape, central necrosis or cystic degeneration,
degree and pattern of enhancement and extra-nodal extension
(20). This approach is not only controversial but also challenging,
especially for unskilled radiologists. The current studies could not
come to an agreement. Zhou et al. indicated that morphological
features larger than 10 mm in size, with irregular shape, unclear
margins, strong enhancement, heterogeneous enhancement, and
extra-nodal extension were highly suggestive of metastatic LNs
(19). However, Liu et al. reported that the degree and pattern of
enhancement were only valuable indicators for differentiating LNs
status (1). Moreover, a study from J.E. Park et al. reported that the
method for the detection of cervical LNs using morphologic
characteristics had relatively low sensitivity, with a value of only
46.8% (9).Our study found that the degree and pattern of
enhancement and calcification showed significant differences
both in development and independent testing set. but, the shape,
cystic change, and extra-nodal extension showed significant
differences only in development set. The reasons for the results
may be that the sample size of independent testing set was not
large enough to reflect the difference. The result also manifested
that evaluating LNs by the morphological features was
controversial. In addition, our study found the Combined model
had better performance than the CT-feature model but there was
significant difference only in the development set. This reasonmay
be that the CT features were evaluated by senior radiologists, and
the Combined model did not include CT-feature model, which
was in accordance with the result of comparison between the
Combined model and the senior radiologists.

The results of this study showed that the Combined model
significantly outperformed two junior radiologists (both p values
< 0.05) and showed noninferior diagnostic capability compared
with the senior radiologists in the independent testing set.
Notably, our study found that all radiologists benefited from
AI assistance, the junior radiologists received more help from AI
assistance than the junior radiologists, and the interobserver
FIGURE 6 | Decision curve analysis for the predictive models in the independent testing set. The gray line and black line represented situations in which all lymph
nodes were metastatic and no lymph nodes were free of cancer, respectively.
FIGURE 7 | Performance comparison of the Combined model and
radiologists in the independent testing set.
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agreement between the two junior radiologists significantly
increased from a kappa of 0.334 to 0.593. Our findings were
consistent with those of the recent work by Lee et al., which
demonstrated that deep learning-based computer-aided
diagnosis could help resident physicians gain confidence in
diagnosis, improve diagnostic accuracy and increase overall
confidence levels for CT diagnosis of cervical LNs metastasis
from thyroid cancer using a large clinical cohort (21).

Some limitations of this study should be noted. First, our
dataset was obtained from a single center, and all patients
underwent unified contrast-enhanced CT protocols, which can
cause biases. Further study will require a larger sample size from
multiple centers to validate our results and increase their
repeatability. Second, the deep learning model was not
combined with clinical data, which should be incorporated in
further studies. Third, this study only excluded lymph nodes less
than 5mm to avoid a partial volume effect. However, malignant
nodes smaller than 5 mm are often encountered. Further studies
need to improve the ability of LNs segmentation to include
smaller lymph nodes, which will be better able to reflect reality.

In conclusion, a Combined model integrating both CT images
and iodine maps of the arterial and venous phases showed good
performance in predicting lymph nodes metastasis in thyroid
cancer patients, which could facilitate clinical decision-making.
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