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ABSTRACT

The nuclear receptor vitamin D receptor (VDR) is
known to associate with two vitamin D response
element (VDRE) containing chromatin regions of
the insulin-like growth factor binding protein 3
(IGFBP3) gene. In non-malignant MCF-10A human
mammary cells, we show that the natural VDR
ligand 1a,25-dihydroxyvitamin D3 (1a,25(OH)2D3)
causes cyclical IGFBP3 mRNA accumulation with a
periodicity of 60 min, while in the presence of the
potent VDR agonist Gemini the mRNA is continu-
ously accumulated. Accordingly, VDR also showed
cyclical ligand-dependent association with the
chromatin regions of both VDREs. Histone
deacetylases (HDACs) play an important role both
in VDR signalling and in transcriptional cycling.
From the 11 HDAC gene family members, only
HDAC4 and HDAC6 are up-regulated in a cyclical
fashion in response to 1a,25(OH)2D3, while even
these two genes do not respond to Gemini.
Interestingly, HDAC4 and HDAC6 proteins show
cyclical VDR ligand-induced association with both
VDRE regions of the IGFBP3 gene, which coincides
with histone H4 deacetylation on these regions.
Moreover, combined silencing of HDAC4 and
HDAC6 abolishes the cycling of the IGFBP3 gene.
We assume that due to more efficient VDR inter-
action, Gemini induces longer lasting chromatin
activation and therefore no transcriptional cycling
but monotonically increasing IGFBP3 mRNA.
In conclusion, 1a,25(OH)2D3 regulates IGFBP3 tran-
scription through short-term cyclical association of
VDR, HDAC4 and HDAC6 to both VDRE-containing
chromatin regions.

INTRODUCTION

The natural vitamin D receptor (VDR) ligand 1a,25-
dihydroxyvitamin D3 (1a,25(OH)2D3) has an important
role in the regulation of calcium and phosphate homoeo-
stasis and bone mineralization (1). In addition to this clas-
sical role, there is both epidemiological and pre-clinical
evidence that 1a,25(OH)2D3 is an anti-proliferative agent
(2). The anti-proliferative effects of 1a,25(OH)2D3 include
induction of a G1/G0 cell cycle arrest and stimulation
of apoptosis, which are mediated by the up-regulation
of tumour suppressors, such as the cyclin-dependent
kinase inhibitory proteins p21 and p27 (3), and the
down-regulation of oncogene products including Bcl-2
(4) and Myc (5). Mitogens, such as the insulin-like
growth factors (IGFs), have also been reported to be
down-regulated by 1a,25(OH)2D3 (6). In addition, also
the up-regulation of factors that control the actions of
mitogens, such as IGF binding proteins (IGFBPs), have
important anti-cancer effects (7). Three members of the
IFGBP gene family, IGFBP1, IGFBP3 and IGFBP5,
respond to 1a,25(OH)2D3 (8), of which the IGFBP3 gene
is the most prominent (9). This increases the impact of
IGF-1 and the regulation of its circulating amounts
by IGFBPs in models of the anti-proliferative action
of 1a,25(OH)2D3 and its synthetic analogues (10). In
addition, IGFBPs mediate IGF-independent actions,
including the activation of the p21 gene, causing cell
cycle arrest or cell death through induction of apoptosis
(11). However, bound to cellular membranes, IGFBPs can
have mitogenic, IGF-dependent effects on cellular growth
(12,13).

As a member of the nuclear receptor superfamily, VDR
acts as a transcription factor that binds to specific vitamin
D response elements (VDREs) within the regulatory
regions of its primary target genes (14). Most VDR
target genes contain multiple VDREs (8,15–17). For
example, the IGFBP3 gene has a tandem of two VDREs
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at position �400 and the other VDRE at position �3350
relative to the transcription start site (TSS) (8). In the
absence of ligand, VDR associates via co-repressor
proteins with histone deacetylases (HDACs) (18).
HDACs can also inactivate directly non-histone
proteins, such as p53, E2F or a-tubulin by deacetylation
(19–21). Therefore, HDACs have multiple influences in
cellular processes. At present 11 human HDACs are
known (22). HDACs 1, 2, 3 and 8 belonging to Class I
are ubiquitously expressed and seem to be involved more
in general cellular processes. The Class II HDACs 4, 5, 6,
7, 9 and 10 have more tissue-specific functions and distri-
butions, while HDAC11 forms its own class (23,24). All
these HDACs are sensitive to the inhibitor trichostatin A
(TSA) (25). In addition to the classical HDACs, on which
we are focusing in this study, there is a family of function-
ally related HDACs, referred to as sirtuins (26). The seven
members of this family are not sensitive to TSA but use
NAD+ as an essential co-factor.

Recently, cyclical models have been proposed for the
activation of transcription by nuclear receptors, including
those for oestrogen receptor a on the trefoil factor-1 gene
(27), for peroxisome proliferater-activated receptor d on
the pyruvate dehydrogenase kinase 4 gene (28) and for
VDR on the genes 24-hydroxylase (CYP24) (29) and
cyclin-dependent kinase inhibitor 1A (CDKN1A) (30). In
these models, the ligand-dependent transcription is seen
as a cyclical process, where alternating de-repressing,
activating and initiation actions are required, providing
means to stringently regulate the endurance and strength
of the transcriptional response (28).

More than 3000 synthetic analogues of 1a,25(OH)2D3

are presently known and majority of them carry a modi-
fication in their aliphatic side chain (31). The
1a,25(OH)2D3 analogues have been developed with a
goal to improve the biological profile of the natural
hormone for therapeutic application either in hyper-
proliferative diseases, such as psoriasis and different
types of cancer, or in bone disorders, such as osteoporosis
(32). Most of the analogues described to date are agonists,
with a few having been identified as antagonists. An
interesting exception is Gemini, which is the first
1a,25(OH)2D3 analogue that carries two side chains
(33,34). Molecular dynamics simulations of the Gemini–
VDR complex showed that the analogue can bind the
VDR-LBD in two different conformations (35,36). In
one of these conformations Gemini acts as an agonist
with one side chain taking the same position as that of
the natural hormone. In contrast, in its other conform-
ation Gemini acts as an inverse agonist, since both of its
side chains take alternative positions to that of
1a,25(OH)2D3 (37).

In this study, we performed detailed time course experi-
ments and observed transcriptional cycling of IGFBP3
mRNA after 1a,25(OH)2D3 stimulation, but not in
response to Gemini. This is reflected by ligand-dependent
VDR association with both VDREs and histone 4 acetyl-
ation on the chromatin region of the more proximal
VDRE of the IGFBP3 gene. The genes HDAC4 and
HDAC6 are also up-regulated in a cyclical fashion in
response to 1a,25(OH)2D3, whereas they do not respond

to Gemini. Both HDACs are essential for the cycling of
the IGFBP3 gene. Accordingly, HDAC4 and HDAC6
proteins show VDR ligand-induced association with
both IGFBP3 VDREs. In conclusion, 1a,25(OH)2D3 regu-
lates IGFBP3 transcription through cyclical association of
HDAC4 and HDAC6 to its VDRE-containing chromatin
regions.

EXPERIMENTAL PROCEDURES

Cell culture

MCF-10A cells (38) were cultured in a mixture of DMEM
and Ham’s F12 medium (1:1) with 20 ng/ml of epidermal
growth factor, 100 ng/ml of cholera toxin, 10 mg/ml
insulin, 500 ng/ml hydrocortisone, 0.1mg/ml strepto-
mycin, 100U/ml penicillin and 5% horse serum in a
humidified 95% air/5% CO2 incubator. Twenty-four
hours prior to the treatment, the cells were seeded into
medium with 5% charcoal-treated fetal bovine serum
(FBS) instead of horse serum. RWPE-1 adherent human
prostate epithelial cells are derived from the peripheral
zone of a histologically normal healthy 54-year-old
male’s prostate (39). The cells were cultured in
Keratinocyte serum free medium (SFM) containing L-glu-
tamine, 2.5 mg human recombinant epidermal growth
factor, 25mg bovine pituitary extract, 0.1mg/ml strepto-
mycin and 100U/ml penicillin. For mRNA extractions,
the cells were seeded in the culture medium and grown
to a density of 45–60%. For stimulation, the medium of
cell supernatant was supplemented with stock solutions of
the compounds but not changed. 1a,25(OH)2D3 and its
two side chain analogue Gemini (33) (kindly provided
by Dr Milan Uskokovic, BioXell Inc., Nutley, NJ, USA)
were used at a final concentration of 10 nM. The ligand
stocks were diluted first in ethanol to 100 mM and then in
DMEM medium to 1 mM.

RNA extraction and real-time PCR

Total RNA was extracted using the RNA Isolation kit
(Roche) and cDNA synthesis was performed for 30min
at 55�C using 1 mg of total RNA as a template and
100 pmol oligodT18 primers (Roche). Real-time quantita-
tive polymerase chain reaction (PCR) was performed
using a LightCycler� 480 System (Roche). The reactions
were performed using 4 pmol of reverse and forward
primers, 4 ml cDNA template and the MaximaTM SYBR
Green/Fluorescein qPCR Master Mix (Fermentas,
Vilnius, Lithuania) in a total volume of 10 ml. In the
PCR reaction the DNA templates were pre-denaturated
for 10min at 95�C, followed by amplification steps
cycles of 20 s denaturation at 95�C, 20 s annealing at
primer-specific temperatures (Supplementary Table S1),
20 s elongation at 72�C and a final elongation for 10min
at 72�C.
Fold inductions were calculated using the formula

2�(��Ct), where ��Ct is �Ct(stimulus)��Ct(solvent), �Ct is
Ct (target gene)�Ct(contol gene) and the Ct is the cycle, at
which the threshold is crossed. Basal expression levels
were calculated using the formula 2�(�Ct). The sequences
of gene-specific primer pairs are given in Supplementary
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Table S1. PCR product quality was monitored using
post-PCR melt curve analysis.

Chromatin immunoprecipitation assays

Nuclear proteins were cross-linked to DNA by adding
formaldehyde directly to the medium to a final concentra-
tion of 1% for 5min at room temperature. Cross-linking
was stopped by adding glycine to a final concentration of
0.125M and incubating for 5min at room temperature on
a rocking platform. The medium was removed and the
cells were washed twice with ice-cold phosphate buffered
saline (PBS). The cells were then collected in ice-cold PBS
and cell pellets were resuspended in lysis buffer (1% SDS,
10mM EDTA, protease inhibitors, 50mM Tris–HCl,
pH 8.1) and the lysates were sonicated by a Bioruptor
UCD-200 (Diagenode, Liege, Belgium) to result in DNA
fragments of 300–1000 bp in length (Supplementary
Figure S8). Cellular debris was removed by centrifugation
and the lysates were diluted 1:10 in ChIP dilution buffer
(0.01% SDS, 1.1% Triton X-100, 1.2mM EDTA, 167mM
NaCl, protease inhibitors, 16.7mM Tris–HCl, pH 8.1).
Chromatin solutions were incubated at 4�C with
rotation with 5 ml of antibodies against VDR (sc-1008),
HDAC4 (sc-11418) and HDAC6 (sc-11420) (all from
Santa Cruz Biotechnologies) or with 1 ml of anti-acetylated
histone H4 (anti-acH4) antibody or control IgG (both
from Upstate Biotechnology, Lake Placid, NY, USA).
The immuno-complexes were collected with 60 ml of
protein A agarose slurry (Upstate Biotechnology) for 1 h
at 4�C with rotation. The beads were precipitated by cen-
trifugation for 1min at room temperature with 100g and
washed sequentially for 4min by rotation with 1ml of the
following buffers: low salt wash buffer (0.1% SDS, 1%
Triton X-100, 2mM EDTA, 150mM NaCl, 20mM Tris–
HCl, pH 8.1), high salt wash buffer (0.1% SDS, 1%
Triton X-100, 2mM EDTA, 500mM NaCl, 20mM
Tris–HCl, pH 8.1) and LiCl wash buffer (0.25mM LiCl,
1% Nonidet P-40, 1% sodium deoxycholate, 1mM
EDTA, 10mM Tris–HCl, pH 8.1). Finally, the beads
were washed twice with 1ml TE buffer (1mM EDTA,
10mM Tris–HCl, pH 8.1). The immuno-complexes were
then eluted by adding 500ml of elution buffer (25mM
Tris–HCl, pH 7.5, 10mM EDTA, 0.5% SDS) and
incubating for 30min at 65�C. The cross-linking was
reversed and the remaining proteins were digested by
adding 2 ml of proteinase K (Fermentas) to a final concen-
tration of 80 mg/ml and incubating overnight at 64�C. The
DNA was recovered by phenol/chloroform/isoamyl
alcohol (25:24:1) extractions and precipitated with 0.1
volume of 3M sodium acetate, pH 5.2 and 2 volumes of
ethanol using glycogen as carrier. Immuno-precipitated
chromatin DNA was then used as a template for
real-time quantitative PCR.

PCR of chromatin templates

For both of the VDRE-carrying regions of the IGFBP3
gene, genomic primers were designed (Supplementary
Table S2) and for their quantification 6-carboxy-
fluorescein (6-FAM) and Black Hole Quencher 1
(BHQ-1)-modified hydrolysis probes were used

(Supplementary Table S3). All oligonucleotides used in
this study were obtained from Eurogentec (Liege,
Belgium). Real-time quantitative PCR was performed
with the Maxima Probe qPCR master mix (Fermentas)
on a LightCycler� 480 System (Roche). The PCR
cycling conditions were: pre-incubation for 10min at
95�C, 50 cycles of 20 s at 95�C, 60 s at 60�C. The PCR
products were also resolved on 2% agarose gels to control
correct product size. Relative association of chromatin-
bound protein or histone modifications were calculated
using the formula 2�(�Ct), where �Ct is Ct(output)�
Ct(input), output is the immuno-precipitated DNA and
input is the purified genomic DNA from starting
material of the ChIP assay. Results were normalized
with respect to input and non-specific IgG using the
formula [2�(�Ct) (specific antibody)�2�(�Ct) (non-specific
IgG)]�100, where �Ct is the Ct(immunoprecipitated DNA)�

Ct(input). The input was corrected by the respective
dilution factors.

Small inhibitory RNA transfection

MCF-10A cells (350 000) were reverse transfected with
Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s instructions using
a mixture of three double-stranded small inhibitory RNA
(siRNA) oligonucleotides per gene (Eurogentec, 200 pmol
of each siRNA, Supplementary Table S4). Cells were
treated 24 h after plating and RNA extraction, real-time
quantitative PCR was carried out as described above.
Silencing at the protein level was verified by western
blotting using 25 mg of whole cell extract and the same
antibodies as used for ChIP and anti-b-actin antibody
(Sigma). Cellular proteins were separated on 12% SDS
polyacrylamide gels. The blotted proteins were detected
using IR800 fluorescence labelled secondary antibodies
(Thermo Scientific, Rockford, IL, USA) and an Odyssey
reader (Li-Cor Biotechnology, Nebraska, USA).

RESULTS

Cyclical induction of IGFBP3 mRNA expression by
1a,25(OH)2D3 but not by Gemini

The IGFBP3 gene has initially been shown to respond
to 1a,25(OH)2D3 in prostate cancer cells (8,9). Since
(i) IGFBP3 has also important functions in the growth
regulation of mammary cells (40) and (ii) we are mainly
interested in the cancer-preventive actions of
1a,25(OH)2D3, we used the human non-tumourigenic epi-
thelial cell line MCF-10A (38) as a cellular model. In order
to elucidate the dynamics of IGFBP3 induction, we per-
formed real-time quantitative PCR analysis of IGFBP3
mRNA expression after stimulation with 1a,25(OH)2D3

and Gemini (10 nM in all experiments of this study) in a
detailed time course of 240min with 15-min intervals
(Figure 1). In response to 1a,25(OH)2D3, the first signifi-
cant peak of IGFBP3 mRNA expression appeared after
90min (1.6-fold induction), the second at time point
150min (1.8-fold induction) followed by a third peak at
time point 210min (2.6-fold induction), i.e. the peaks
showed a periodicity of 60min (Figure 1A). After each
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peak, the accumulation of IGFBP3 mRNA ceased result-
ing in a decrease of IGFBP3 mRNA levels. It has to be
noted that the cells had not been synchronized. Thus,
1a,25(OH)2D3 itself seems to be sufficient for the induc-
tion of cyclicity in IGFBP3 transcription. In contrast,
in response to Gemini the IGFBP3 mRNA expression
continuously increased without any signs of cycling to a
5.5-fold induction after 240min (Figure 1B). As a control
for the potency of Gemini versus 1a,25(OH)2D3, we
measured with the same samples CYP24 induction
(Supplementary Figure S1). Furthermore, with this gene,
Gemini induced a continuous accumulation of mRNA [up
to 25 000-fold after 240min, (Supplementary Figure S1B)],
whereas the response to 1a,25(OH)2D3 showed a more
staircase-like profile (Supplementary Figure S1A). As a
further control, we measured IGFBP3 mRNA accumula-
tion of in RWPE-1 non-malignant human prostate cells in
response to 1a,25(OH)2D3 (Supplementary Figure S2A)

and Gemini (Supplementary Figure S2B). Interestingly,
in this cellular model IGFBP3 mRNA increased steadily
without any sign of cycling also after stimulation with
1a,25(OH)2D3. It has to be noted that the basal expression
of IGFBP3 mRNA in RWPE-1 prostate cells is signifi-
cantly higher as in MCF10A breast cells (data not shown).
Taken together, the natural VDR ligand 1a,25(OH)2D3

induces IGFBP3 transcription only for short periods at
selected time points, while the strong synthetic VDR
agonist Gemini seems to continuously activate the gene.

Cyclical enrichment of VDR on 1a,25(OH)2D3-
responsive regions

In order to study whether the cyclical induction of
IGFBP3 mRNA in response to 1a,25(OH)2D3 is based
on parallel cyclical association of VDR with the regula-
tory regions of the IGFBP3 gene, we performed in
1a,25(OH)2D3- and Gemini-treated MCF-10A cells ChIP
assays with antibodies against VDR (Figure 2). We
analysed the time period of 0–150min with 15-min inter-
vals, in which the IGFBP3 mRNA peaked two times
(Figure 1). On the chromatin templates, we determined
by real-time quantitative PCR using TaqMan probes the
VDR ligand-induced enrichment of the two previously
identified VDR-associated regions RE1/2 and RE3 (8) in
comparison to that in untreated cells. After 1a,25(OH)2D3

treatment, VDR showed cyclical association both with
RE1/2 (Figure 2A) and with RE3 (Figure 2C) showing
peaks at 30 and 105min. However, in the first cycle
(0–75min), the VDR association with RE1/2 is far lower
than in the second cycle. In contrast, in response to
Gemini, we did not observe any statistically significant
increase of VDR binding to the region of RE1/2 and no
signs of cycling (Figure 2B). Interestingly, Gemini could
induce VDR association with RE3 in a cyclical fashion
with maximal levels at time points 45 and 120min and
minima at 90 and 150min (Figure 2D).
In summary, the association of VDR with both

VDRE-containing regions of the IGFBP3 gene shows a
cyclical behaviour after 1a,25(OH)2D3 treatment with
peaks at 30 and 105min, while in response to Gemini
VDR cycles were observed only on RE3 with peaks at
45 and 120min.

HDAC4 and HDAC6 are targets of 1a,25(OH)2D3

but not of Gemini

In a previous project, we studied the effects of
1a,25(OH)2D3 and HDAC inhibitors on the growth
of mammary cells (41). Therefore, we screened in
MCF-10A cells whether any of the 11 HDAC gene
family members are direct targets of 1a,25(OH)2D3 or
Gemini. While the basal mRNA expression of HDAC1,
HDAC2 and HDAC3 is very high, HDAC4, HDAC5,
HDAC10 and HDAC11 are expressed more than 100
times lower (Supplementary Figure S3). The basal expres-
sion of HDAC6, HDAC7 and HDAC8 is between these
two groups and HDAC9 expression is not detectable by
real-time quantitative PCR. In response to 1a,25(OH)2D3,
only HDAC4 (Figure 3A) and HDAC6 (Figure 3C)
showed to be primary targets. Within the measuring
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Figure 1. Cyclical induction of IGFBP3 transcription by 1a,25
(OH)2D3. Real-time quantitative PCR was performed in order to
measure the time-dependent mRNA expression of the IGFBP3 gene
in MCF-10A cells after treatment with 10 nM 1a,25(OH)2D3 (A) or
10 nM Gemini (B). The data were normalized to the expression of
the housekeeping gene ribosomal protein large P0 (RPLP0) and fold
inductions were calculated in reference to vehicle control. Data points
indicate the means of at least three independent cell treatments and the
bars represent standard deviations. A two-tailed Student’s t-test was
performed to determine the significance of the stimulation in reference
to vehicle-treated control and for the comparison of the peaks to the
minima (*P< 0.05; **P< 0.01; ***P< 0.001; NS, not significant).
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period of 240min HDAC4 mRNA showed four maxima
at 30min (1.4-fold induction), 75min (1.8-fold induction),
150min (1.4-fold induction, although statistically not sig-
nificant) and 210min (1.6-fold induction) (Figure 3A),
while significant peaks were observed for HDAC6
mRNA only at time points 30min (1.6-fold induction)
and 75min (1.5-fold induction) (Figure 3C). This indicates
that HDAC4 and HDAC6 are early 1a,25(OH)2D3

responding genes. Accordingly, an in silico screening for
VDREs in both genes (Supplementary Figure S4) showed
that within the first 10 kB upstream of the HDAC4 TSS
two VDREs are located and the comparable region of the
HDA6 gene carries even three potential VDREs. In
contrast, none of the remaining eight HDAC gene family
members, which were expressed in MCF-10A cells, was
significantly regulated by 1a,25(OH)2D3 (Supplementary
Figure S5). In contrast, neither HDAC4 (Figure 3B),
HDAC6 (Figure 3D) nor any other HDAC gene family
members (Supplementary Figure S6) was significantly
regulated by Gemini.
Taken together, from all members of the HDAC gene

family only HDAC4 and HDAC6 were responsive to
1a,25(OH)2D3, but interestingly also in a cyclical
fashion. In contrast, none of the HDAC genes was signifi-
cantly regulated by Gemini.

Association of HDAC4 and HDAC6 and chromatin
activation in response to 1a,25(OH)2D3 and Gemini
on IGFBP3 VDRE regions

In order to test whether HDAC4 and HDAC6 show a
physical interaction with the two VDRE regions of the
IGFBP3 promoter and to monitor general chromatin ac-
tivation of these regions, we performed ChIP assays with
MCF-10A cells under the same conditions as in Figure 2,
i.e. stimulation with 1a,25(OH)2D3 or Gemini and meas-
urements every 15min for a time period of 150min,
but now using antibodies against HDAC4, HDAC6
and AcH4 (Figure 4). The region of RE1/2 showed a
high basal association with HDAC4, which after
1a,25(OH)2D3 stimulation significantly reduces within
30min, restores at 75min, diminishes again at 90min
and shows another maximum at 120min, i.e. there is
obvious cycling of HDAC4 on RE1/2 (Figure 4A). The
basal HDAC4 binding to RE3 is less prominent than that
to RE1/2, and also reduces in response to 1a,25(OH)2D3

with a minimum at 30min, a maximum at 45min, another
minimum at 90–105min and a last (non-significant)
maximum at 120min (Figure 4C). In addition, Gemini is
able to reduce the association of HDAC4 with the regions
of RE1/2 and RE3 for the time frame of 15–45min
(Figure 4B and D). On both VDRE regions HDAC4
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binding restores at 60min and shows a second maximum
at 135min.

There is also basal association of HDAC6 with the
regions of both RE1/2 and RE3. Treatment with
1a,25(OH)2D3 reduces HDAC6 binding at time points
15–30, 60, 90 and 120min on RE1/2 leaving maxima at
time points 45, 75 and 105min (Figure 4E). On RE3
HDAC6 shows a short maximum at 30min and long
minimum at 75–120min (Figure 4G). Also Gemini is
able to reduce the basal HDAC6 association levels on
both VDRE regions, but with a different profile from
1a,25(OH)2D3. HDAC6 binding to RE1/2 abolishes
after 15–30min, restores to higher than basal association
levels at time point 60min, is low again at 90 and 135min
and peaks in between at 105min (Figure 4F). On RE3
HDAC6 levels are reduced after 15min, peak at 60min,
are down at 90–120min and show a last peak at 135min
(Figure 4H).

On RE1/2, we observed in response to 1a,25(OH)2D3

significant increase of chromatin activation only at time
points 15 and 30 with a maximum at 30min (Figure 4I),
which coincides with a minimum of both HDAC4 and
HDAC6 association to this region, while a second
maximum at 105min was not statistically significant
(Figure 4I). After Gemini treatment significant chromatin

activation could be measured at time points 15, 45 and
135min, where it was also stronger than the induction
by 1a,25(OH)2D3 (Figure 4J). Interestingly, on RE3
1a,25(OH)2D3 showed maxima at 60–75min and
120min (Figure 4K), while Gemini induced a rather
high rate of chromatin activation, which was at nearly
all time points higher than that induced by
1a,25(OH)2D3 (Figure 4L).
In summary, HDAC4 and HDAC6 both associate with

the two VDRE regions of the IGFBP3 gene. Moreover,
both 1a,25(OH)2D3 and Gemini reduce these basal levels
after 15–45min and induce rather individual profiles of as-
sociation and dissociation of both HDACs. Interestingly,
on RE1/2 both agonists show a similar acetylation pattern
but with shifted maxima, while the chromatin on the
region of RE3 is nearly constantly activated in response
to Gemini. This suggests that the cycling of acetylation
levels that were induced by Gemini cannot be related to
HDAC expression levels (Figure 3).

Silencing HDAC4 and HDAC6 diminishes cycling of
IGFBP3

The observation that HDAC4 and HDAC6 are cycling
target genes of 1a,25(OH)2D3 but not of Gemini led us

Figure 3. Cyclical induction of HDAC4 and HDAC6 transcription by 1a,25(OH)2D3. Real-time quantitative PCR was performed in order to
measure the time-dependent mRNA expression of the genes HDAC4 (A and B) and HDAC6 (C and D) in MCF-10A cells after treatment with
10 nM 1a,25(OH)2D3 (A and C) or 10 nM Gemini (B and D). The data were normalized to the expression of the housekeeping gene RPLP0 and fold
inductions were calculated in reference to vehicle control. Data points indicate the means of at least three independent cell treatments and the bars
represent standard deviations. A two-tailed Student’s t-test was performed to determine the significance of the stimulation in reference to
vehicle-treated control and for the comparison of the peaks to the minima (*P< 0.05; **P< 0.01; ***P< 0.001; NS, not significant).
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Figure 4. Recruitment of HDAC4 and HDAC6 to and histone acetylation of VDRE regions of the IGFBP3 promoter. Chromatin was extracted
from MCF-10A cells that had been treated for indicated time points with 10 nM 1a,25(OH)2D3 (A, C, E, G, I and K) or 10 nM Gemini (B, D, F, H, J
and L). ChIP experiments were performed using antibodies against HDAC4 (A–D), HDAC6 (E–H) and AcH4 (I–L). Real-time quantitative PCR
using Taqman probes was performed with primers specific for the VDRE containing regions RE1/2 (A, B, E, F, I and J) and RE3 (C, D, G, H, K
and L) of the IGFBP3 promoter. PCR conducted on chromatin input template served as a positive control and that on IgG-precipitated template as
specificity control. Data points indicate the means of three to six independent cell treatments and the bars represent standard deviations. A two-tailed
Student’s t-test was performed to determine the significance of the stimulation in reference to vehicle-treated control and for the comparison of the
peaks to the minima (*P< 0.05, **P< 0.01, ***P< 0.001).
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to the hypothesis that the cycling phenomenon on the
IGFBP3 gene may involve these two HDACs. Therefore,
we silenced both HDACs simultaneously by gene-specific
siRNA transfection of MCF-10A cells using a mixture of
three gene-specific siRNAs (Figure 5). The efficiency of
the silencing was 87.5% for HDAC4 and 83.4% for
HDAC6 on mRNA level (Supplementary Figure S7A)
and 62.1 and 87.9% on protein level (Supplementary
Figure S7B). By real-time quantitative PCR, we moni-
tored in the time period of 120–240min every 15min
IGFBP3 mRNA accumulation in response to stimulation
with 1a,25(OH)2D3 and Gemini. In control siRNA-
transfected cells, we could repeat the results of Figure 1
that 1a,25(OH)2D3 induced peaks at approximately the
same time points (Figure 5A), while Gemini stimulated
continuous IGFBP3 mRNA accumulation (Figure 5B).
Interestingly, while the knock-down of HDAC4 and
HDAC6 did not significantly change the profile of the
response of IGFBP3 mRNA accumulation to Gemini
(Figure 5D), it diminished the cycling of the IGFBP3

gene in response to 1a,25(OH)2D3 (Figure 5C). This ob-
servation confirmed our hypothesis.
Taken together, silencing HDAC4 and HDAC6

abolishes the cycling of the IGFBP3 gene in response to
1a,25(OH)2D3, but had no effect on the response of the
gene to Gemini.

DISCUSSION

In this study, we used the well-known gene IGFBP3 as a
model to describe how a simple signal, such as a stimula-
tion with the natural VDR ligand 1a,25(OH)2D3 or its
potent synthetic analogue Gemini, can lead to a rather
different result in mRNA accumulation. While
1a,25(OH)2D3 induces in MCF-10A cells cyclical mRNA
accumulation with phases of RNA synthesis and degrad-
ation of a periodicity of 60min, a stimulation with Gemini
results in a steady accumulation of IGFBP3 mRNA.
Therefore, after 240min the IGFBP3 gene is already
5.5-fold induced by treatment with Gemini, while in the
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Figure 5. Silencing of HDAC4 and HDAC6 diminishes transcriptional cycling of the IGFBP3 gene. MCF-10A cells were transfected for 24 h with
200 pmol unspecific control siRNA (A and B) or siRNAs against HDAC4 and HDAC6 (C and D). Then the cells were stimulated for indicated time
points with 10 nM 1a,25(OH)2D3 (A and C) or 10 nM Gemini (B and D) and real-time quantitative PCR was performed to measure IGFBP3 gene
expression. The data were normalized to the expression of the housekeeping gene RPLP0 and fold inductions were calculated in reference to vehicle
control. Data points indicate the means of at least three independent cell treatments and the bars represent standard deviations. A two-tailed
Student’s t-test was performed to determine the significance of the stimulation in reference to vehicle-treated control (*P< 0.05; **P< 0.01;
***P< 0.001).

Nucleic Acids Research, 2011, Vol. 39, No. 2 509



same time period 1a,25(OH)2D3 stimulation leads only to
a 2.5-fold mRNA accumulation. Possibly due to the
cell-specific stability of IGFBP3 mRNA, transcriptional
cycling is observed only in cell lines such as MCF-10A,
where the mRNA has a short half-life, but not in others
such as RWPE-1, where a longer half-life can be assumed.
Due to a continuous mRNA accumulation in the latter
type of cells 1a,25(OH)2D3 stimulation leads to similar
inductions as a treatment with Gemini.
Transcriptional cycling is a rather recently discovered

process of nuclear receptor target genes (27–30), and has
also been observed with NF-kB target genes (42). mRNA
cycling is reflected by cyclical association of transcription
factors, RNA polymerase II and their co-factors. In this
study, we show cyclical association of VDR, HDAC4 and
HDAC6 and chromatin activation on both VDRE
regions. The natural ligand 1a,25(OH)2D3 seems to have
more prominent effects via the more proximal region
RE1/2 and induces cycling, while the analogue Gemini
appears to work preferentially via RE3. Importantly,
high association levels of VDR coincide with low levels
in HDAC4 binding. This indicates that both proteins
belong to different phases of the cycling process (discussed
below). Moreover, chromatin activation at region RE1/2
correlates well with mRNA accumulation. This sug-
gests that rather the VDREs in RE1/2 mediate the
1a,25(OH)2D3-dependent cycling of the IGFBP3 gene
and that the region of RE3 may have only a minor
contribution.
Transcriptional cycling is subdivided into three phases.

In the first phase, the deactivation phase, co-repressors
and HDACs bind to the regulating chromatin regions con-
taining REs and the TSS. In the second activation phase
they are replaced by transcription factors and their
associated co-activators and in the third initiation phase
RNA polymerase II and mediator proteins are associated
with the regulatory regions (28,43). Therefore, an
up-regulation of HDACs is enhancing and probably pro-
longing the deactivation phase in which mRNA degrad-
ation but no new RNA synthesis occurs.
The 1a,25(OH)2D3 analogue Gemini differs in a

number of interesting functional properties from the
natural VDR ligand: (i). Gemini induces more efficient
association of VDR with RE3 than 1a,25(OH)2D3,
which results in a prolonged phase of low levels of
HDACs and suggest that there is more mRNA synthesis
than degradation, i.e. no occurrence of mRNA cycling,
(ii). The genes HDAC4 and HDAC6 are early targets of
1a,25(OH)2D3 but not of Gemini. Due to the negative
feedback control mechanism of HDACs on primary
VDR target genes, such as IGFBP3, Gemini activates
the latter more efficiently than 1a,25(OH)2D3, (iii) In
previous studies (36,44), we have shown that Gemini is
the more efficient in stabilizing of the active conformation
of the VDR than the natural ligand. This leads to a pro-
longed stability of the VDR–ligand complex and prolongs
the phase of active mRNA synthesis.
Via the feed-back loop control mechanism on transcrip-

tional cycling HDACs seem to control overboarding re-
sponses of cells to natural nuclear receptor ligands. Only
in cases, when reasonable amount of mRNA degradation

occurs, such as after up-regulation of HDACs by
1a,25(OH)2D3, transcriptional cycling can be observed.
This may be one explanation, why 1a,25(OH)2D3 but
not Gemini is inducing transcriptional cycling of the
IGFBP3 gene. As discussed above, the lack of HDAC
up-regulation may shorten the de-activation phase. This
suggests that potent VDR agonists, such as Gemini, may
have an advantage over the natural ligand, because they
bind the VDR so efficiently that the phases of induced
RNA synthesis are longer than that of RNA degradation
and no cycling is observed.

Loss of HDAC4 has already been shown to increase the
basal expression of CDKN1A and to severely disturb its
mRNA accumulation pattern upon ligand treatment (30).
Interestingly, HDAC4 is also essential for optimal chro-
matin looping from VDREs to the TSS of the CDKN1A
gene in response to the ligand. As the binding and sub-
strate specificity as well as protein associations of HDAC4
are still largely unknown, the reason for its crucial import-
ance in the 1a,25(OH)2D3 response of the genes CDKN1A
and IGFBP3 remains unresolved.

In the previous studies (41,45), we could demonstrate
that the level of HDAC expression varies significantly
between non-malignant and malignant cells and this
affects the interference of nuclear receptors and HDACs
on the regulation of important cell cycle regulatory genes,
such as CDKN1A and Cyclin C. So far it was assumed that
nuclear receptor ligands, such as 1a,25(OH)2D3, interact
primarily with the actions of HDAC inhibitors, such as
TSA. This study now adds an additional level of complex-
ity to the interference of nuclear receptor and HDAC
signalling by suggesting that HDAC levels affect the
cycling of nuclear receptor target genes. In this way,
both the cell-specific basal levels of HDAC genes as well
as their primary response to nuclear receptor ligands are
important.

In conclusion, 1a,25(OH)2D3 induces a dynamic and
orchestrated response of the IGFBP3 gene, where
cyclical binding of VDR, HDAC4 and HDAC6 leads to
repeated induction of IGFBP3 mRNA production. This
feed-back loop mechanism is not used by Gemini, so that
treatment with the compound does not lead to transcrip-
tional cycling and consequently to stronger inductions of
VDR target genes.
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