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Abstract

Background: The ongoing global coronavirus disease 2019 (COVID-19) pandemic is posing a serious public health threat to nations
worldwide. Understanding the pathogenesis of the disease and host immune responses will facilitate the discovery of therapeutic
targets and better management of infected patients. Metabolomics technology can provide an unbiased tool to explore metabolic
perturbation.

Methods: Twenty-six healthy controls and 50 COVID-19 patients with mild, moderate, and severe symptoms in the Fifth Medical
Center of PLA General Hospital from January 22 to February 16, 2020 were recruited into the study. Fasting blood samples were
collected and subject to metabolomics analysis by liquid chromatography–mass spectrometry. Metabolite abundance was
measured by peak area and was log-transformed before statistical analysis. The principal component analysis, different expression
analysis, and metabolic pathway analysis were performed using R package. Co-regulated metabolites and their associations with
clinical indices were identified by the weighted correlation network analysis and Spearman correlation coefficients. The potential
metabolite biomarkers were analyzed using a random forest model.

Results:We uncovered over 100metabolites that were associated with COVID-19 disease andmany of them correlated with disease
severity. Sets of highly correlated metabolites were identified and their correlations with clinical indices were presented. Further
analyses linked the differential metabolites with biochemical reactions, metabolic pathways, and biomedical MeSH terms, offering
contextual insights into disease pathogenesis and host responses. Finally, a panel of metabolites was discovered to be able to
discriminate COVID-19 patients from healthy controls, and also another list for mild against more severe cases. Our findings
showed that in COVID-19 patients, citrate cycle, sphingosine 1-phosphate in sphingolipid metabolism, and steroid hormone
biosynthesis were downregulated, while purine metabolism and tryptophan metabolism were disturbed.

Conclusion: This study discovered key metabolites as well as their related biological and medical concepts pertaining to COVID-19
pathogenesis and host immune response, which will facilitate the selection of potential biomarkers for prognosis and discovery of
therapeutic targets.
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Introduction

Coronavirus disease 2019 (COVID-19), which is caused by the
severe acute respiratory coronavirus 2 (SARS CoV-2), had
infected more than 141 million people and taken more than 3
million lives worldwide as of April 18, 2021.[1] The clinical
manifestation of the virus infection can be quite diverse, including
asymptomatic infection, fever, cough, loss of taste and smell,
lymphocytopenia, mild upper respiratory tract illness, gastroin-
testinal symptoms, viral pneumonia with respiratory failure, and
even death.[2] Laboratory findings showed that non-survivors
had an increased level of white blood cell count, anemia, alanine
transaminase, lactate dehydrogenase, creatine kinase, high-
sensitivity cardiac troponin, D-dimer, serum ferritin, IL-6 and
procalcitonin, and decreased level of lymphocyte count, platelet
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count, and albumin.[3] In addition to viral virulence, disease
severity also depends on host factors, such as immune response to
infection. Some evidence showed that rapid deterioration in some
patients can be attributed to cytokine storm, which is a hyper-
inflammatory phenotype characterized by the dysregulated
release of cytokine, leading to vascular damage, acute respiratory
distress syndrome, multi-organ failure, and death.[4–6] Therefore,
it is critical to discover the fundamental mechanism underlying
viral pathogenesis and immunity abnormalities, to guide clinical
management of the disease.

Multiple omics technologies, including genomics, transcrip-
tomics, proteomics, metabolomics, and lipidomics, have been
successfully applied to obtain a comprehensive view of the
interaction between viruses and the host system. Infections
caused by various viruses were reported to alter host metabolic
profiles, even years after recovery.[7] Small molecular metabolites
like nucleic acids, amino acids, and fatty acids are also essential
for rapid virus replication. A recent study leveraged a combina-
tion of transcriptomics, proteomics, and metabolomics technol-
ogies to identify blood molecular markers associated with
COVID-19 immunopathology and multi-organ damage, and
found that chronic activation of neutrophils, IFN-I signaling, and
a high level of inflammatory cytokines was associated with severe
disease progression.[8] Malic acid in citrate cycle (TCA cycle) and
carbamoyl phosphate of the urea cycle, sphingosine 1-phosphate
(S1P) in sphingolipid metabolism pathway, kynurenine in
tryptophan–nicotinamide pathway, and cytosine metabolism
were also identified in other metabolomics studies to be linked to
COVID-19.[9–13]

In this study, we performed untargeted high-resolution mass
spectrometry on the plasma of 26 healthy controls and 50
COVID-19 patients with mild, moderate, and severe disease. We
systematically investigated key differential metabolites and
metabolic pathways related to COVID-19 pathogenesis.
Methods

Ethical approval

The study was performed in accordance with the Declaration of
Helsinki principle for ethical research. The study protocol was
approved by Ethics Committee of the Fifth Medical Center of
PLA General Hospital. Written informed consent was waived by
the Ethics Committee of the designated hospital for emerging
infectious disease.
Study design and population

Fifty patients diagnosed with SARS-CoV-2 infection by the
nucleic acid test were recruited from January 22 to February 16,
2020, in the Fifth Medical Center of PLA General Hospital.
Twenty-six healthy individuals consisting of doctors, nurses, and
researchers from the same hospital were enrolled as controls. The
blood samples were collected from COVID-19 patients and
healthy controls after overnight fasting (Fig. 1). For patients, their
blood samples were collected within 24hours upon hospital
admission. Metabolite extraction was carried out according to a
modified Bligh and Dyer protocol.[14] Chromatographic separa-
tion was performed on a reversed-phase ACQUITY UPLC HSS
T3 1.8mm column (i.d. 3.0 � 100mm) (Waters, Dublin, Ireland)
using an ultra-performance liquid chromatography (LC) system
(Agilent 1290 Infinity II; Agilent Technologies) as described
previously.[15] Mass spectrometry (MS) was performed using a
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high-resolution time-of-flight (TOF) mass spectrometer (5600
Triple TOF Plus, Sciex) equippedwith an ESI source as previously
reported.[16] Metabolite identities were manually annotated,
taking into account the exact mass, the retention time of the
standard references, MS/MS spectrum signatures which were
compared with records in HMDB (https://hmdb.ca) and
METLIN (https://metlin.scripps.edu), and literature records.
Reference database identifiers were assigned according toHMDB
and KEGG (https://www.kegg.jp). Metabolite quantitation was
achieved using a cocktail of 45 spiked-in isotopically labeled
internal standards that were purchased from Cambridge
Laboratories, including L-phenylalanine-d8, L-tryptophan-d8, L-
isoleucine-d10, L-asparagine-13C4, L-methionine-d3, L-valine-d8,
L-proline-d7, L-alanine-d7, DL-serine-d3, DL-glutamic acid-d5, L-
aspartic acid-d3, L-arginine-d7, L-glutamine-d5, L-lysine-d9, L-
histidine-d55 taurine-d2, betaine-d11, urea-(13C,15N2), L-lacta-
te-13C3, trimethylamine N-oxide-d9, choline-d13, malic acid-d3,
citric acid-d4, succinic acid-d4, fumaric acid-d4, hypoxanthine-d3,
xanthine-15N2, thymidine (13C10,

15N2), inosine-15N4, cytidi-
ne-13C5, uridine-d2, methylsuccinic acid-d6, benzoic acid-d5,
creatine-d3, creatinine-d3, glutaric acid-d4, glycine-d2, kynurenic
acid-d5, L-citrulline-d4, L-threonine-(13C4,

15N), L-tyrosine-d7, P-
cresol sulfate-d7, sarcosine-d3, trans-4-hydroxy-L-proline-d3,
and uric acid-(13C; 15N3). Metabolite peak area was normalized
using its isotopically labeled internal standard if available, or
otherwise another internal standard of the same class, compara-
ble peak intensities, and similar retention time, and it was verified
by examining coefficient of variance (CoV) in quality control
samples. The severity of the disease condition was determined
based on the guidelines for the diagnosis and management of
COVID-19 patients (7th edition) by the National Health
Commission of China. Detailed sample processing and LC–MS
analysis methods were described in our previous paper.[17]

Statistical analysis

Metabolite abundance was measured by peak area and was log-
transformed before statistical analysis.

The principal component analysis (PCA) was conducted on
centered and scaled values using R package “FactoMineR”.[18]

The orthogonal partial least square discriminant analysis
(OPLSDA) was performed using R package “ropls”.[19] Over-
fitting was assessed by pR2Y and PQ2 derived from permutation
analysis (20 times) with 7-fold cross-validation. Hierarchical
clustering with complete linkage and Euclidean distance was
visualized using R package “pheatmap”. Metabolite set enrich-
ment analysis (MSEA)[20] was performed based on the
metabolites with Welch’s t test false discovery rate (FDR)<
0.05 over the small molecules pathway database[21] using R
package “MetaboAnalystR”.[22] The over-representation test for
MSEA is hypergeometric test using all the annotated metabolites
that can be mapped to HMDB IDs as the reference metabolome.
Only metabolite sets with more than two hits (significant
metabolites) were included.

Different expression analyses were performed on the 358
metabolites, (model 1) between healthy controls (n=26) and
patients (n=50), and (model 2) between controls and severity
groups (mild=18, moderate=19, and severe=13), respectively,
using R package “limma”.[23] The linear models were adjusted
for age, sex, and body mass index (BMI), and estimated log fold
change was moderated by the empirical Bayes method toward a
global trend. The Benjamini–Hochberg (BH) procedure was
employed to control the FDR. The adjusted P-value (FDR) was
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Figure 1: The schematic diagram of study participants, sample collection procedure, and analysis workflow.
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considered statistically significant if it is lower than 0.05. Results
from models 1 and 2 were combined and presented in Figure 2.
The upset plots showing co-occurring metabolites among
different comparisons were made using R package “UpSetR”.

Metabolic pathway analysis (MetPA)[24] was performed using
differential metabolites (FDR<0.5) from the linear models
against the human metabolic pathway database from KEGG. P-
values were derived from a hypergeometric test with the reference
metabolome defined by all the annotated metabolites that can be
mapped to KEGG IDs. Enrichment fold was calculated as the
ratio of the observed number of differential metabolites in the
pathway over the expected number. Pathway impact (range from
0 to 1) was defined as the sum of individual metabolite impact
within a pathway network, which was derived from the number
of connections (reactions) to other metabolites, such that highly
connected metabolites impact the pathway at a higher level. Up-
regulated and down-regulated metabolites were determined
based on the log fold change from the linear models.

For the integration of metabolomics data and KEGG reaction
information, the biochemical reactions were based on KEGG
RPAIR (http://www.genome.jp/kegg/reaction/, ftp://ftp.gen-ome.
jp/pub/db/rclass/rpair) substrate-product reaction database. Up-
regulated and down-regulated metabolites were determined
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based on the log fold change and adjusted P-value (FDR<
0.05) from the linear models. The biochemical reaction network
was generated using R package “igraph”.[25]

For enrichment analyses of Medical Subject Headings (MeSH)
terms, MeSH terms associated with the metabolites were
retrieved from Metab2MeSH (http://metab2mesh.ncibi.org),
which is a database of metabolite-MeSH co-occurrence relation-
ship generated by text mining of biomedical literature, via
Cytoscape plugin “MetDisease”.[26] Hypergeometric test was
employed for the over-representation analysis, using all the
differential metabolites from the linear models that can be
mapped to KEGG IDs as the reference.

To identify co-regulated metabolites and their association with
clinical indices, weighted correlation network analysis was
performed on the differential metabolites from the linear models
using R package “WGCNA”.[27] Spearman correlation coef-
ficients were calculated between module eigenvalues and clinical
indices, the same for the metabolites assigned to each module.
Only correlations with FDR<0.05 were colored, while non-
significant correlations were shown as white. Rows or columns
without any significant correlations were excluded.

To identify potential metabolite biomarkers that can distin-
guish COVID-19 patients from healthy controls, as well as

http://www.genome.jp/kegg/reaction/
http://metab2mesh.ncibi.org/
http://www.idi-cma.org


Li et al., Infectious Diseases & Immunity 2021;1(2) www.idi-cma.org
between different severity groups, a random forest (RF) model
was employed. The RF model was chosen mainly for three
reasons: (1) it can handle thousands of variables and is robust
with respect to non-informative variables and collinearity; (2)
RF model can estimate variable importance in the classification;
and (3) It is less susceptible to over-fitting.[28] The whole data
set was repeatedly split into a training set and an external
validation set. The inner loop of repeated cross-validation
trains and tunes an RF model, and an up-sampling step helps
balance sample sizes of the groups. Also, the outer loop
evaluates the model using hold-out samples. Receiver operating
characteristic (ROC) was selected for model performance
evaluation because it is less biased for unbalanced data, and
was calculated using R package “pROC”.[29] A permutation
procedure was also implemented to assess the likelihood of
model over-fitting. The machine learning procedure was
implemented using R package “caret”.

All statistical analyses were performed in R 4.0.2 (https://
www.R-project.org/).
Results

Untargeted metabolomics analysis of plasma serum samples from
26 healthy control and 50 COVID-19 patients was carried out on
an LC–MS platform. Four hundred and four metabolites were
manually annotated and quantitated using internal standards,
from which 358 metabolites were included in the analysis after
removing lipid species covered in the targeted lipidomics data set
in our previous paper.[13] The PCA (Fig. 2A) presented a strong
association between disease status and plasmametabolome along
with its second component, which accounts for 12.63% of the
Table 1: Results of MetPA of differential metabolites.

Groups KEGG Pathway

Hits/Total,
Enrichment,
Impact P value

Patient–control
Sphingolipid
metabolism
(hsa00600)

4/5,
2.12,
0.21

0.065

Citrate cycle
(TCA cycle)
(hsa00020)

4/6,
1.76,
0.20

0.142

Steroid hormone
biosynthesis
(hsa00140)

3/4,
1.99,
0.01

0.149

Purine
metabolism
(hsa00230)

5/9,
1.47,
0.16

0.211

Severe–mild
Steroid hormone
biosynthesis
(hsa00140)

4/4,
15.00,
0.04

5.87E-06

Severe–moderate
Steroid hormone
biosynthesis
(hsa00140)

3/4,
13.50,
0.04

3.35E-04

MetPA: metabolic pathway analysis.
Only the top pathways (ranked by P-value) with hits >2 are listed.
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overall variance. Besides, mild and moderate cases tend to be
closer to controls comparedwith severe cases. Similar to the PCA,
the hierarchical clustering analysis (Fig. 2C) also achieved fair
aggregation of healthy controls and COVID-19 patients and
revealed distinct patterns of co-regulated metabolites. The
OPLSDA (Fig. 2B) further confirmed that COVID-19 cases
could be well distinguished from healthy controls, with good
prediction generalizability (empirical P by 20 permutations:
pR2Y=0.05, pQ2=0.05). Seventy-five down-regulated and 45
up-regulated metabolites were identified by Welch t test (FDR<
0.05) and shown in the volcano plot (Fig. 2D), whichwere further
shown to be enriched in purine metabolism (Fig. 2E/2F, P<0.05,
7/11 hits). A large number (≥3) of significantmetabolites were also
found to locate in other pathways, like sphingolipid metabolism,
citric acid cycle, aspartate metabolism, arginine and proline
metabolism, Warburg effect, and tryptophan metabolism.

Baseline characteristics of the study cohort, including age, sex,
and BMI were compared in the previous paper, showing positive
associations between age (P<0.001) and BMI (P=0.013) with
disease severity.[17] To account for potential confounders, two
linear models, adjusting for age, sex, and BMI were constructed
to compare healthy controls and COVID-19 patients, as well as
between healthy controls and patients with different disease
severity. Thirty-one metabolites were identified to be associated
with disease status, as well as disease severity. Among them, 21
metabolites were down-regulated in patients, and also were
decreased in the severe group, compared with the mild and
moderate group; while 10 metabolites were increased in patients,
and also were higher in the moderate group compared with the
mild group (Fig. 3A). In total, 125 metabolites were down-
regulated in the COVID-19 patients and 30 metabolites were
Metabolites (up-regulated/down-regulated)

Down-regulated:
Sphingosine 1-phosphate (C06124), Sphinganine 1-phosphate
(C01120), Sphinganine (C00836), Phytosphingosine (C12144)

Down-regulated:
Succinate (C00042), (S)-Malate (C00149), Citrate (C00158),
Fumarate (C00122)

Down-regulated:
Aldosterone (C01780), Etiocholan-3alpha-ol-17-one 3-glucuronide
(C11136), Androsterone glucuronide (C11135)

Up-regulated:
Xanthine (C00385), Hypoxanthine (C00262)
Down-regulated:
IMP (C00130), Adenosine (C00212), Urate (C00366)

Down-regulated:
Aldosterone (C01780), Cortisol (C00735), Etiocholan-3alpha-ol-17-one
3-glucuronide (C11136), Androsterone glucuronide (C11135)

Down-regulated:
Aldosterone (C01780), Cortisol (C00735), Androsterone glucuronide
(C11135)
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Figure 2: Global metabolic perturbation in COVID-19 patients compared with healthy controls. (A) The principal component analysis shows the overall
distribution pattern in plasma metabolites in healthy controls and COVID-19 patients. The first and second components from the principal component
analysis explained 18.11% and 12.63% total variance. Concentration ellipses are at a 95% level based on a multivariate normal distribution. (B) The
OPLSDA analysis shows the classification of healthy controls and COVID-19 patients based on the annotated metabolites, where predictive component
(t1) and first orthogonal component (o1) explain 10% and 14% total variance in X (X: metabolomics data, Y: class label). pR2Y and pQ2 were derived from
repeated permutations (20 times) with 5-fold cross-validation. (C) The hierarchical clustering analysis using all the annotated metabolites. (D) The volcano
plot shows log2 fold change (based on original peak area) and FDR (cut-off at 0.05) based on Welch t-test P-values of the annotated metabolite. (E) The
barplot shows the enrichment fold for metabolite sets with more than 2 hits in increasing order of P-value from top to bottom. The P-values are indicated in
each bar. The numbers of identified metabolites in each metabolite set that are statistically significant (FDR<0.05) and not significant are shown (F).
COVID-19: coronavirus disease 2019; OPLSDA: orthogonal partial least square discriminant analysis; FDR: false discovery rate.
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Figure 3: Differential analyses using linear models. (A) The forest plot shows log fold change (logFC) of 31 metabolites, adjusted for age, sex, and BMI
using a linear model. Green color indicates logFC<0 and FDR<0.05, red color indicates logFC>0 and FDR<0.05, and the black color indicates FDR>
0.05. Two linear models were fitted: the first one compared COVID-19 patients (n=50) with healthy controls (n=26), and model 2 did pair-wise
comparisons between healthy controls (n=26) and patients in different severity groups (mild=18, moderate=19, and severe=13). Only differential
metabolites with FDR<0.05 for patient vs. control, at least one FDR<0.05 in severity subgroup vs. control, and at least one FDR<0.05 in severity
subgroup comparison are presented. (B) and (C) The upset plots show the number of co-occurring metabolites in each comparison. BMI: body mass
index; FDR: false discovery rate; COVID-19: coronavirus disease 2019.
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up-regulated (Fig. 3B and 3C). Next, MetPA identified a steroid
hormone biosynthesis pathway that was enriched by the
differential metabolites from the linear models. Aldosterone,
cortisol, and androsterone glucuronide were down-regulated in
the severe group compared with the mild and the moderate
group. In the comparison of healthy control and patients, the
steroid hormone biosynthesis pathway was also identified among
the top enriched pathways. Additionally, although P values were
not significant (P>0.05) for pathways like sphingolipid
metabolism, TCA cycle, and purine metabolism, there were still
a large fraction of metabolites that were differentially regulated in
these pathways, indicating that these pathways were largely
affected by the disease condition (Table 1). The annotated
metabolites were then mapped to KEGG RPAIR reaction
substrate-product database based on their KEGG IDs (Fig. 4).
The majority of the metabolites were down-regulated in COVID-
19 patients. Node size indicates the absolute log fold change of
the metabolite. Based on their node sizes, sphinganine,
sphinganine 1-phosphate, and S1P could be easily identified as
the most significantly down-regulated metabolites (Fig. 4A).
Besides, metabolites from the TCA cycle pathway, like fumaric
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acid, succinic acid, L-malic acid, and citric acid were also down-
regulated. Differential metabolites from the linear models were
further annotated by MeSH terms using Metab2MeSH (http://
metab2mesh.ncibi.org) database and top enriched terms were
shown in Figure 5 for each comparison. More MeSH terms were
significantly enriched for the differential metabolites from the
comparison of mild and severe patients, such as “genital diseases,
female”, “sleep disorder, intrinsic”, “chronic disease”, etc. For
comparison of healthy controls and patients, “water-electrolyte
imbalance”, “tumor virus infections”, “Lesch-Nyhan syndrome”
were the top three enriched terms.

Subsequently, co-regulated metabolites were identified from
50 COVID-19 patients, and their associations with clinical
indices were assessed using Spearman correlation. Nine modules
were identified by weighted gene correlation network analysis
(WGCNA) (Fig. 6A). Among these modules (Fig. 6B), the
turquoise module was positively associated with total bilirubin,
hemoglobin, and albumin. The yellow module was negatively
associated with C-reactive protein, lactate dehydrogenase, and
interleukin-6. The grey module was positively associated with
serum creatinine. The black module was positively associated
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Figure 4: Integration of metabolomics data and KEGG reaction information in an undirected network. Node shape indicates biochemical functions of the
metabolite. Edges were generated based on KEGG RPAIR substrate-product reaction database. (A) Differential metabolites (FDR<0.05) from the
comparison of healthy controls and patients are mapped to the network. Node size indicates the absolute log fold change of the metabolites. (B) to (D)
Differential metabolites (P<0.05) from the comparison of mild andmoderate patients, mild and severe, moderate and severe are mapped to the network,
respectively.
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with the serum ferritin, and the brown module was negatively
associated with the onset of symptoms to sampling in days.
Individual metabolite’s correlation with clinical indices was
shown in Figure 6C. For example, short peptides in the turquoise
module, like “Arg Trp Cys His”, “Asp Asp Phe”, “Met Glu Ser”,
“Phe AspAsp”, and “Pro AspVal Val”were positively associated
with hemoglobin, total bilirubin, and albumin consistent with the
results in Figure 6B.

To discover potential metabolite biomarkers that can distin-
guish healthy controls from COVID-19 patients, as well as more
severe patients from milder cases, a conservative classification
procedure with external validation and permutation was
implemented (Fig. 7A). The RF model was able to classify
controls and patients very well (median AUC: 1.000), while the
median AUC was 0.600 for the permuted data (Fig. 7B). The
model was also able to classify mild against moderate and severe
cases, at a moderate accuracy (median AUC 0.750), compared
with median AUC 0.583 for the permuted data. The severe
patients could not be well separated from the mild and moderate
cases, as the permuted data yielded the same AUC as the original
data (P=0.600). The top ten metabolites of the highest variable
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importance obtained from the corresponding RF model were
listed in Figure 7B.

Discussion

The results from this study showed that plasma metabolites are
associated with COVID-19 disease status and severity, and
highlighted key pathways related to metabolic alterations in
COVID-19 pathogenesis.

So far, several case–control studies have been published which
investigated the association between blood metabolome and
SARS CoV-2 virus infection, as well as disease severity and
clinical outcome prognosis.[9,10,13,30,31] Overall, a profound
metabolic disturbance was observed in COVID-19 patients
compared with healthy individuals. Circulating levels of S1P in
the sphingolipid metabolism pathway, kynurenine in the
tryptophan–nicotinamide pathway, and suppression of energy
metabolism were found to be potential biomarkers with good
discriminant ability in multiple studies.

Sphingolipids are a class of lipids that are important signaling
molecules. S1P playing a key role in sphingolipid metabolism,

http://www.idi-cma.org


Figure 5: Enrichment analyses of MeSH terms based on the differential metabolites (FDR<0.05 from the linear models) for each comparison: (A) control
and patient, (B) mild and moderate, (C) mild and severe, and (D) moderate and severe. MeSH: medical subject headings; FDR: false discovery rate.
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functions as a pro-survival signal, and enhances cell proliferation
and differentiation. In our analysis, S1P, sphinganine 1-
phosphate, and sphinganine, from the sphingolipid metabolism
pathway were found to be down-regulated in COVID-19
patients. S1P was reported to be reduced in COPD and
COVID-19 and is a good marker of disease severity.[17,32,33]

Of note, the S1P–S1P receptor signaling system plays an
important role in the inflammatory processes.[34]

TCA cycle metabolites were also reduced in COVID-19
patients compared with healthy controls. The same was also
reported in several other clinical studies.[8,9] Enzymes in TCA
cycle, including ACO2, IDH, OGDH, DLD, SDH, and MDH
were reduced, while essential enzymes for fatty acids synthesis
like ACAC and FASN were increased. An animal study that
constructed a murine model by expressing ACE2 transgene in
multiple tissues also found suppression of mitochondrial function
based on blood metabolites and gene expression.[35] It was
postulated that the reduction in TCA cycle metabolites could be
due to viral replication competing for malic acid and aspartate for
purine and pyrimidine nucleotide biosynthesis. Besides, hypo-
xanthine and xanthine in the purine metabolism pathway were
found to be elevated in COVID-19 patients, in accordance with
the previous studies.[9,36] Blood hypoxanthine concentration is a
sensitive marker of hypoxia and it was proposed that an
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increased level of hypoxanthine could be produced from the
breakdown of ATP, which was excreted to extracellular space,
triggered by inflammation and hypoxia.[36] In summary, these
pieces of evidence reveal energy metabolism dysregulation at a
large scale in COVID-19.

We found that three out of nine metabolites in tryptophan
metabolism were significantly different in COVID-19 patients
compared with healthy controls (Fig. 2F). 5-Hydroxy-L-
tryptophan was up-regulated in patients, and L-tryptophan,
indole acetaldehyde were down-regulated. Tryptophan is an
essential amino acid that can be metabolized to kynurenines, a
family of compounds with important physiological roles,
involved in inflammation, immune response, and excitatory
neurotransmission. The tryptophan-kynurenine pathway
accounts for more than 90% of tryptophan depletion, by
enzyme Trp 2,3-dioxygenase in the liver and indoleamine 2,3-
dioxygenase (IDO) in other tissues. It was proposed that
Interferon IFN-g-induced IDO depletes plasma tryptophan
and produces kynurenine, underpinning the antibacterial,
antiparasitic, and antiviral effects of cytokine.[37] On the other
hand, 5-hydroxytryptophan (5-HTP) was reported to exhibit
a proviral effect for the human parainfluenza virus.[38] It was
shown in Figure 6C that tryptophan was negatively correlated
with D-dimer, and positively correlated with albumin,
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Figure 6: Weighted correlation network analysis and correlation with clinical indices. (A) Metabolite dendrogram obtained by average linkage hierarchical
clustering. The color strip below the dendrogram shows the corresponding module assignment. (B) Correlation heatmap shows Spearman correlation
(FDR<0.05) between module eigenvalues and clinical indices. (C) The correlation heatmap shows the Spearman correlation (FDR<0.05) of the
metabolites in each module and clinical indices. FDR: false discovery rate.
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Figure 7: Discovery of potential metabolite biomarkers for COVID-19. (A) The schematic diagram shows the RF model training and validation workflow.
(B) The boxplots show the area under the ROC based on the original and permuted data set in 20 repeated experiments, for the three models that classify
controls against patients, mild and moderate against severe, and mild against moderate and severe, respectively. Mann-Whitney U test P values were
indicated above the boxplot. The corresponding barplots show the normalized variable importance obtained from the RF models in the repeated
experiments for the top 10 metabolites. COVID-19: coronavirus disease 2019; RF: random forest; ROC: receiver operating characteristic.
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suggesting an association with good liver function and
vascular health. 5-HTP was negatively correlated with
lymphocyte count, T cell count, and CD4+T cell count, and
positively correlated with age, potentially associated with a
worse prognosis. Taken together, the shift from tryptophan-
kynurenine to tryptophan-5-HTP pathway could indicate the
patients were at a stage of rapid virus replication, organ
damage, and suboptimal immune response at the beginning of
hospitalization.

Our results also showed that steroid hormone biosynthesis was
down-regulated in the severe cases, including aldosterone,
cortisol, etiocholan-3alpha-ol-17-one 3-glucuronide, and an-
drosterone glucuronide. A recent study reported an association
between high serum total cortisol concentrations and mortality
from COVID-19,[39] which seems to contradict our results. But
later correspondence to the article stated that both adrenocorti-
cotropic hormone and cortisol are pulsatile and have large inter-
individual variation.[40] A one-time point plasma cortisol
measurement by untargeted LC–MS method might be biased,
compared with the reference method. But its wide coverage of
metabolites in the steroid hormone biosynthesis pathway can
help shed light on the mechanism of cortisol in critically ill
COVID-19 patients.

In this study, we profiled plasma metabolites of blood samples
collected from 50 COVID-19 patients and 26 healthy controls
upon hospital admission. This case–control study design is
susceptible to sample bias, and the sample size is relatively small
with respect to the large number of metabolites measured using
an omics approach. Although common confounders such as age,
sex, and BMI were adjusted in the linear models, residual
confounding could still exist and other potential confounders
were not included due to the small sample size. Although log fold
change value was moderated using Bayes approach toward a
common trend, subtle differences might be missed due to lack of
power. Disease severity of COVID-19 patients was assessed at the
point of blood sample collection, but the time from showing
symptoms to hospital admission was different among patients
(from 1 to 19 days, the median is 4 days). Another potential
confounding factor is the treatment prescribed before blood
collection (summary shown in the supplementary material of our
previous paper[13]). A nested case-control within an ongoing
cohort study that stores blood sample at baseline (healthy state),
and also collect samples at different stages (showing symptoms,
diagnosed, admitted to hospital, discharge, and follow-up),
together with data from electronic health record would control
for these potential confounders, avoid sample bias and address
more meaningful clinical and biological questions, like the
association of metabolome and disease progression in patients
that follows different disease progression trajectories, etc.
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