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Abstract

Long noncoding RNAs (lncRNAs) are a group of transcripts that are longer than 200 nucleotides (nt) without coding poten-
tial. Over the past decade, tens of thousands of novel lncRNAs have been annotated in animal and plant genomes because
of advanced high-throughput RNA sequencing technologies and with the aid of coding transcript classifiers. Further, a con-
siderable number of reports have revealed the existence of stable, functional small peptides (also known as micropeptides),
translated from lncRNAs. In this review, we discuss the methods of lncRNA classification, the investigations regarding their
coding potential and the functional significance of the peptides they encode.
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Introduction

Long noncoding RNAs (lncRNAs) are a heterogeneous group of
RNAs >200 nucleotides (nt) in length that lack coding potential,
but their gene structures resemble those of RNA polymerase II
products, such as mRNAs [1–3]. For a decade, since their discovery
in the 1990s, lncRNAs were arguably considered to be junk or by-
products of transcription [4]. In 2007, with the aid of high-
throughput sequencing technologies, the ENCODE project
unveiled an extensive set of noncoding elements with biochem-
ical functions, which largely overlapped with the lncRNA
gene loci from mammalian genomes [5]. Since then, researchers
have been exploring these cryptic yet possibly functional noncod-
ing transcripts from genomes. As lncRNAs are known to be
expressed in specific cell types and developmental stages, early
studies aimed at the computational identification of novel tran-
scribed regions, using complementary DNA (cDNA); RNA
sequencing (RNA-seq); chromatin immunoprecipitation followed
by sequencing (ChIP-seq), 3P-seq and many other types of tran-
scriptome data; and the transcriptome assembly of high-
throughput short reads from different cell types and stages [6–13].

As only sequence and locus information were available for
candidate noncoding transcripts, lncRNA classifications were ini-
tially based on the features that could be derived from sequences,
such as predicted open reading frame (ORF) length, sequence con-
servation and sequence similarity to known coding genes [10–23].
However, the introduction of high-throughput sequencing of
ribosome-protected fragments (Ribo-seq) helped us to examine
the ribosome association of candidate transcripts in vivo [24].
Surprisingly, many studies repeatedly reported that some
lncRNAs showed a strong association with ribosomes, although
the association does not always imply that they are actively trans-
lated [9, 25–29]. To address whether the ribosomes associated
with lncRNAs actively translate them, several studies attempted
to detect either movement of the translating ribosome along the
lncRNA transcripts, using Ribo-seq [26, 30–36] or peptides coded
by lncRNAs, using mass spectrometry (MS), which is an analytical
tool that ionizes peptides and measures their mass-to-charge
ratio to identify their amino acid (aa) sequences [37–39].

Meanwhile, functional studies of a few well-conserved
lncRNAs, such as XIST [40–42], OIP5-AS1 [7], NEAT1 [43, 44] and
MALAT1 [45–47], and of cancer-related lncRNAs, such as GAS5,
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LUCAT1, HOTAIR and ANRIL [48–51], have shed light on the vari-
ous regulatory roles of lncRNAs in cells. On investigating the
functions of lncRNAs, a few studies confirmed that some lncRNAs
indeed had small open reading frames (sORF, length <300 nt)
that could code for a short peptide with key biological functions
[52–63]. The presence of functional small peptides coded by the
lncRNAs suggests that these lncRNAs could play dual roles, with
both RNA and peptides, and therefore should be reclassified as
bifunctional RNAs [64–66]. This review provides a brief overview
of computational and combinatorial approaches for the classifica-
tion of coding/noncoding RNAs and for the systematic identifica-
tion of small peptides coded by these transcripts and summarizes
functional small peptides encoded by invertebrate and vertebrate
lncRNAs. Finally, this review discusses the clinical implications of
these small peptides and their host lncRNAs.

Classification and annotation of coding and
noncoding RNAs
Computational approaches for lncRNA classification

The advancement in RNA-seq and bioinformatics technologies
led to the genome-wide identification of novel transcripts from
plant and animal genomes. Although the assessment of coding
potential was originally devised to detect novel protein-coding
genes, the large number of novel transcripts sequenced with
RNA-seq motivated researchers to apply it to distinguish protein-
coding and noncoding RNAs. Early methods of estimating coding
potential were intended to predict characteristics of translated
RNAs from the sequence and locus information of novel tran-
scripts. Intrinsic sequence features, including ORF length, se-
quence homology to known protein sequences, sequence
conservation, nucleotide composition, substitution ratio and

secondary structure, were invented and used for the calculation
of coding potential (Table 1). ORF length is one of the most com-
monly used features. The use of ORF length is based on the prem-
ise that genuine protein-coding genes would include ORFs of
sufficient lengths [10, 13–16, 19–22]. Other features include ORF in-
tegrity (whether the ORF includes start and stop codons to define
its range) [22]. Protein homology is used to search for conserved
segments among protein families and is often assessed by align-
ment with a protein database [14, 15, 20, 21, 67]. Conservation is
considered to be a powerful feature because it is known that
lncRNAs are less conserved than mRNAs [14, 18, 20, 23, 67].
Nucleotide composition refers to the frequency of certain k-mers
or codon usage in coding or noncoding sequences [10–14, 16, 17,
19, 20, 22, 23]. The substitution ratio is the ratio between syn-
onymous and nonsynonymous mutations in a given sequence
and is used to assess whether the mutation profile of a given se-
quence is better explained by those of protein-coding sequence or
those of noncoding sequence [17, 18, 67]. Secondary structures
were applied to lncRNAs, as it was hypothesized that functional
noncoding RNAs would have different secondary structures from
mRNAs [12, 14, 23]. However, prediction algorithms available at
the time did not consider the biological characteristics of
lncRNAs, and, therefore, some features could be less accurate [12].
To train a computational coding-potential model without any
biases, many tools adopted machine learning techniques using
known coding and noncoding transcripts as training/test data
sets. The most popular method, the coding potential calculator
(CPC), takes advantage of BLAST-related features (sequence hom-
ology) and ORF-related features to train their model using a sup-
port vector machine (SVM) [15]. CPC is favored by many
researchers, because of its robust performance, despite relatively
long running times. Recently, an updated version of CPC, coding
potential calculator 2 (CPC2), was introduced [22]. Unlike the

Table 1. Computational lncRNA classification

Method Machine
learning
technique

Feature Result Reference

ORF
length

Protein
homology

Conservation Nucleotide
composition

Substitution
ratio (dN/dS)

Secondary
structure

sORF
detection

Coding/
noncoding
prediction

P value

CONC SVM O O O O O O [14]
CPC SVM O O O [15]
PORTRAIT SVM O O [16]
sORF finder – O O O O O [17]
PhyloCSF EM O O O [18]
RNAcode – O O O O O [67]
CNCI SVM O O O [10]
CPAT Logistic

regression
O O [19]

iSeeRNA SVM O O O O O [20]
PLEK SVM O O [11]
Linc-SF GA-SVM O O ? ? [12]
LncRNA-ID Balanced

random
forest

O O ? [21]

lncRNA-MFDL Deep
stacking
network

O O ? ? [13]

CPC2 SVM O O O O [22]
COME Balanced

random
forest

O O O O [23]

Note: ‘?’ mark indicates that the corresponding information could not be found.
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original version, CPC2 excludes the time-consuming sequence
alignment step and examines four intrinsic features: Fickett
TESTCODE score [68], ORF length, ORF integrity and isoelectric
point (the pH at which the peptide carries zero net charge), as
implemented in other computational tools (Table 1). In addition to
CPC and CPC2, other SVM-powered computational approaches,
such as CONC, PORTRAIT, CNCI, iSeeRNA and PLEK, have also
been developed with different intrinsic features (Table 1).
Moreover, Linc-SF combines genetic algorithm and SVM (GA-SVM)
techniques to optimize the classification model [12]. Other ma-
chine learning approaches, such as logistic regression [coding po-
tential assessment tool (CPAT)], random forest (LncRNA-ID,
COME), deep stacking network (lncRNA-MFDL), and the expect-
ation–maximization (EM) algorithm (PhyloCSF), have also been
applied to classify the coding/noncoding transcripts (Table 1).
Although there have been a few other approaches, such as
RNAcode [67], that avoid the training process to enable a more
generic use of the algorithm, this trend toward using machine
learning approaches continued after the ribosome profiling data
were used in the field of classifying coding/noncoding transcripts.

Classification of lncRNA using experimental data

Ribosome profiling, also known as ribosome footprinting, was
introduced in 2009 by Ingolia and his colleagues [24]. Ribosome
profiling is a technique that reads ribosome-protected RNA frag-
ments (RPFs), which are obtained by stalling ribosomes on RNA
with translation-inhibiting chemicals, applying RNase to elim-
inate unprotected RNAs and sequencing the remaining RNA
molecules [24]. Ribosome profiling has enabled the observation
of the global translation status and the computational analysis
of in vivo translation. A short time after its introduction, Ribo-
seq was applied to examine not only ribosome association but
also ribosome dynamics during translation to classify coding/
noncoding transcripts (Table 2). Ingolia and his colleagues first
devised ribosome association as a measure of translation and
later adjusted the value with the expression level of each genes,
which was termed the translation efficiency (TE) [24, 69]. As an
initial metric, TE was based on the amount of RPFs associated
with a transcript, and it could not distinguish translating

ribosomes from either nonspecific or nontranslating ribosome
interactions. To address this issue, diverse derivatives of RPF
coverage have been developed as extensions, and some were fed
into machine learning algorithms in combinatorial methods.
Shortly after the introduction of TE, a method that compares the
RPF depth within ORFs to those in untranslated regions (UTRs)
was introduced by two groups [26, 70]. Although the metrics they
used to measure the features were similar, their conclusions
were different with respect to the translation activity of
lncRNAs. One study claimed that most lncRNAs are not actively
translated [26], while the other claimed that some lncRNAs con-
tain actively translating regions [70]. Many others also deduced
conclusions similar to the latter study on implementing certain
forms of RPF coverage or the coverage of RPFs with specific
lengths [27, 30–33, 39, 71] (Table 2). To further emphasize the
characteristics of active translation using RPFs, features repre-
senting ribosome dynamics were described in following studies.
Bazzini et al. [30] suggested a new metric, ORFscore, which tests
the presence of three-nucleotide periodicity. The periodicity
originates from the codon-base translocation of ribosomes dur-
ing translation along mRNAs, which is often represented by the
coverage of ribosome reads mapped to the first, second and third
nucleotide positions of a codon (also called sub-codon position),
with the fraction of the mapped reads being skewed toward the
first position [72]. To assign the mapped reads to a certain nu-
cleotide position, it is essential to predict the position of the ribo-
some P-site on the reads. Normally, mammalian ribosome
covers approximately 30 nt of RNA, and, therefore, the P-site is
considered to be located at the 15th nucleotide from the 50-end
of the protected read. The three-nucleotide periodicity was
adopted by most succeeding methods, such as RibORF classifier,
riboHMM, SPECtre, RiboTaper, Rp-Bp and TERIUS (Table 2) [31–
36]. As the P-site in Ribo-seq reads can vary according to the RPF
read length, these methods should include the information for
the P-site to calculate the three-nucleotide periodicity. For in-
stance, RiboTaper requires users to manually detect the P-sites
in reads with certain lengths [34], whereas Rp-Bp automatically
infers P-sites by Bayesian inference [35].

However, the type of experimental data used to detect trans-
lated ORFs is not limited to Ribo-seq. MS spectra and global

Table 2. Combinatorial lncRNA classification

Method Experimental
data

Feature Result Reference

Three-nucleotide
periodicity

RPF
coverage

RPF
length
distribution

sORF
detection

Coding/
noncoding
prediction

P value

RRS Ribo-seq O [26]
TOC Ribo-seq O ? ? ? [70]
FLOSS Ribo-seq O O [27]
ORFscore Ribo-seq O O [30]
PROTEOFORMER Ribo-seq, MS O O O [39]
ORF-RATER Ribo-seq O O O [71]
RibORF Ribo-seq O O O O O [31]
riboHMM Ribo-seq,

RNA-seq
O O O [32]

SPECtre Ribo-seq O O O O [33]
RiboTaper Ribo-seq,

RNA-seq
O O O O [34]

Rp-Bp Ribo-seq O O [35]
TERIUS Ribo-seq O O [36]

Note: ‘?’ mark indicates that the corresponding information could not be found.
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translation initiation sequencing (GTI-seq) have also been incor-
porated into classification tools to add additional layers of evi-
dence. GTI-seq is a technique that uses two translation inhibitors,
lactimidomycin (LTM) and cycloheximide (CHX), to differentiate
ribosome initiation from elongation. GTI-seq has the potential to
identify translation initiation sites because CHX binds to all trans-
lating ribosomes, while LTM preferentially binds to initiating
ribosomes with free E-sites. PROTEOFORMER uses both harringto-
nine- and LTM-treated Ribo-seqs to identify translated regions
and translation initiation sites and integrates MS data for peptide
identification [39]. Lee and his colleagues [73] developed a GTI-seq
technique by combining Ribo-seq data, generated from samples
treated with two different translation-inhibiting chemicals, to
generate two types of Ribo-seq signal landscapes and to enhance
the accuracy of annotating the translation initiation site.

Methods for detecting sORFs

The extent to which lncRNAs can produce small peptides is still
debatable; however, it is now widely accepted that some
lncRNAs can be translated [64, 66]. Although computational
approaches that do not use Ribo-seq and/or MS data have been
successful in detecting coding potential in RNAs, the majority of
them lack the capability to detect sORFs that could encode
small peptides. Most tools, including CONC, CPC, PORTRAIT,
CNCI, CPAT, iseeRNA, LncRNA-ID, lncRNA-MFDL and CPC2, con-
sider sORFs to be a feature of noncoding transcripts [10, 13–16,
19–22]. For instance, a group specified that the length distribu-
tions of ORFs originated from noncoding transcripts and those
originating from coding transcripts were distinct and most
clearly separated at approximately 300 nt [19]. Only sORF finder
is capable of detecting sORFs in transcripts [17] (Table 1).

In contrast, the combinatorial approaches that use Ribo-seq
and MS data successfully detected sORFs in the UTRs of mRNAs
and in noncoding RNAs. These approaches that rely on experi-
mental data are free from length restrictions on ORFs, thereby
enabling the detection of sORFs. Some groups aimed to design a
tolerant classifier by implementing length normalization or
additional translation signals independent of ORF length. For
instance, translated ORF classifier (TOC) used several
ribosome-protected read count per kilobase of ORF exons-based
features, which were applied to a random forest classifier [70].
ORF-RATER is based on a nonnegative logistic regression of RPF
coverage with harringtonine- and LTM-indicated translation
start site data [71]. Although PROTEOFORMER takes similar
steps as ORF-RATER, which analyzes translation start signals, it
requires an RPF coverage of >85% of exons, hindering sORF de-
tection [39]. In contrast, periodicity-based classification meth-
ods tend to be less susceptible to scarce ribosome coverage,
although they could still suffer from a lack of a statistical sig-
nificance arising from the scarce RPF coverage. For instance,
ORFscore used a chi-square test to imply the significance of
three-nucleotide periodicity and detected 190 sORFs coding for
peptides of 20–100 aa in length when analyzing Ribo-seqs from
zebrafish embryos [30]. RibORF calculates the maximum en-
tropy value, which considers the fraction of RPF reads at the
first and second nucleotides of codons to be a feature for build-
ing an SVM model [31]. Using RibORF, an 80-aa-ORF in the
CEBPZOS lncRNA gene, along with other sORFs in upstream and
downstream ORFs, were identified in a breast epithelial cell line
[31]. riboHMM uses a hidden Markov model that considers nu-
cleotide triplets associating with RPFs in all three possible
frames to be emission probabilities and translated or untrans-
lated states to be hidden states, resulting in a robust detection

of sORFs in transcripts, even with a low RPF coverage [32]. In
fact, more than half of the novel ORFs identified by riboHMM
were shorter than 30 aa in length [32]. In addition, RiboTaper
uses a Fourier transformation technique following a multitaper
spectral density estimation of RPF signals at P-sites to detect
the periodicity, allowing the discovery of multiple upstream
ORFs in HEK293 cells [34]. Rp-Bp calculates the marginal likeli-
hood ratios of the coding and noncoding profiles to determine
which profile better describes observed data, leading to the de-
tection of approximately 2500 sORFs in HEK293 cells [35]. In
summary, computational methods can identify all possible
ORFs, including those with low expression levels and without
experimental data, but their results may include ORFs that are
not translated. In contrast, combinatorial methods can identify
ORFs that are actively translated, are non-canonical or are spe-
cies specific. However, experimental data are needed to run
combinatorial methods and often additional data are needed,
such as matched RNA-seq; therefore, transcripts with low ex-
pression levels are likely to be neglected.

LncRNAs that encode small peptides

Numerous studies have identified translated ORFs from animal
and plant lncRNAs using the previously mentioned approaches
(Table 3), among which, RPFs, along with other sequence-
related features, were most commonly used to detect sORFs in
lncRNAs. For instance, a group profiled RPFs from breast epithe-
lial cell and BJ fibroblast cells and found 1204 translated ORFs in
510 lncRNAs using the RibORF classifier [31]. Of 510 lncRNAs
with translated ORFs, 412 encoded peptides <100 aa long, and
19 produced peptides <10-aa-long. Analyzing 93 human trans-
lated lncRNAs with orthologs in mice, they found that 41
encoded peptides are conserved in mice, presumably implicat-
ing their functional importance. Moreover, the translated
lncRNAs were preferentially localized in the cytoplasm com-
pared to other lncRNAs [31]. Crappé et al. [76] analyzed public
RPFs, to find sORFs embedded in noncoding RNA (ncRNA) genes,
and cryptic intergenic loci, using sORF finder, and found 528
and 226 sORFs, respectively, with supporting ribosome associ-
ation with both ncRNAs and intergenic regions. Of the 528
sORFs found in ncRNAs, 514 were from lncRNAs (Table 3).

Although ribosome profiling successfully identified sORFs,
ribosome occupancy does not guarantee an active translation
signal that produces peptides. Therefore, several studies have
adopted peptidomics that integrate RNA-seq, Ribo-seq and MS
data to explore the peptide product from lncRNA sORFs
(Table 3). For instance, Wang and colleagues identified actively
translated sORFs using RibORF and detected 1332 ribosome-
associated lncRNAs in eight human cell lines. Among those, 233
lncRNAs included 686 sORFs with RPF evidence, 18 of which
were confirmed to express small peptides by MS data [29].
Conversely, Bazzini and colleagues [30] first analyzed Ribo-seq
data using ORFscore in lncRNAs expressed in zebrafish, identi-
fying 535 sORFs with ribosome association from lncRNAs. To
verify the presence of peptides translated from sORFs, they
used MS data from zebrafish embryos and confirmed the pres-
ence of peptides translated from six sORFs.

Many translated sORFs were also detected in invertebrate
and metazoan lncRNAs, using Ribo-seq and/or MS data
(Table 3). Smith et al. [77] identified 47 sORFs from 331 unanno-
tated RNAs with ribosome occupancy, 20 of which were evolu-
tionarily conserved in other yeasts. Mackowiak et al. [75]
developed a computational pipeline that uses MS data to iden-
tify conserved sORFs in five vertebrate and invertebrate species.
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They predicted 2002 conserved sORFs in the UTRs of mRNAs or
ncRNAs and validated them using MS spectra data from human
cell lines, mouse cells and tissues, and whole animal zebrafish,
fly and worm samples. As a result, a number of novel peptides
were discovered in each species, including novel peptides from
36 lncRNAs (Table 3).

Functional small peptides
Muscle-related small peptides

Despite the discovery of many small peptides coded by sORFs,
the biological functions of only a handful of them have been
described (Table 4). These peptides are usually conserved and
are involved in a wide range of biological processes. Recent
studies reported lncRNA-encoded small peptides related to spe-
cific muscle developmental processes in human and mouse,
which participate in muscle regeneration and development
(Table 4). Matsumoto and colleagues [59] used a peptidomics ap-
proach in human and mouse cell lines and tissues and identi-
fied an lncRNA encoding a peptide that is conserved in human
and mouse. This small peptide, SPAR, is 90-aa-long in human
and 75-aa-long in mouse, regulates mTORC1 activation and
inhibits muscle regeneration. Zhang et al. [60] identified an 84-
aa-long conserved peptide, Minion, which is involved in the
regulation of muscle cell fusion in mouse. The human homo-
logue of Minion was also encoded by a transcript previously
annotated as an lncRNA and showed a similar function to its
mouse counterpart. Similar functional small peptides related to
muscle tissues were also discovered in other model organisms.
One study identified a 46-aa-long evolutionarily conserved pep-
tide from an lncRNA. This peptide, named myoregulin (MLN),
interacts with the sarcoendoplasmic reticulum calcium trans-
port ATPase (SERCA) calcium-ATPase and inhibits calcium re-
uptake into the sarcoplasmic reticulum [57]. The other peptide
related to this function, DWORF, a 34-aa-long peptide, was also
identified in mouse and was shown to regulate calcium re-
uptake [58]. DWORF enhanced the SERCA calcium-ATPase

activity and calcium reuptake into the sarcoplasmic reticulum
by displacing SERCA inhibitors, including phospholamban,
sarcolipin and MLN. Invertebrates also have similar functional
lncRNA-encoded peptides. In Drosophila, a member of the
SERCA regulating family was initially identified as an ncRNA
gene and encodes a transmembrane peptide, sarcolamban (Scl),
of 28- or 29-aa [55]. Sarcolamban also inhibits the SERCA
calcium-ATPase and regulates heart contractions.

Cancer-related small peptides

Recent studies found that small peptides are expressed or regu-
lated during cancer progression, suggesting their roles in cancer
development (Figure 1A and B). Matsumoto and his group [59]
confirmed that the downregulation of the SPAR peptide resulted
in the upregulation of mTORC1, even though the expression of
SPAR RNA was unperturbed. Later, Jiang et al. [78] reported that
the expression levels of the lncRNA encoding SPAR was inverse-
ly correlated with clinical outcomes in non-small cell lung can-
cer (NSCLC) (Figure 1A). The NOBODY peptide, a 71-aa-long
peptide encoded by the lncRNA LINC01420, was also discovered
before the reporting of a connection between its lncRNA and
nasopharyngeal carcinoma (NPC) [79]. The lncRNA LINC01420
was negatively correlated with overall survival, and its knock-
down by small interfering RNA reduced the migration and inva-
sion of NPC cells. The authors observed that the expression of
LINC01420 was elevated in both NPC cell lines and tissue sam-
ples and that NPC patients with high LINC01420 expression
tended to show poor overall survival rates (Figure 1B). The
authors, however, did not verify whether the molecule affecting
cancer progression was the peptide or the lncRNA, leaving the
function of the corresponding gene inconclusive. Huang et al.
[62] reported the function of a 53-aa-long conserved peptide
encoded in HOXB-AS3, which appeared to be downregulated in
cancers. The expression of HOXB-AS3, previously annotated as
an lncRNA, was downregulated in acute myeloid leukemia
(AML) [80]. Ribo-seq implied that HOXB-AS3 could produce the
encrypted peptide, which was also shown to be downregulated

Table 3. Studies that identified small ORFs and short peptides in lncRNA

Species Approacha Method Experimental
data

Translated ORFs
detected in lncRNAs

Translated sORFs
detected in lncRNAs

MS evidence Reference

Human E – MS – – 8 peptides [74]
CþE ORFscore Ribo-seq 261 from lncRNAs 261 – [30]
CþE RibORF Ribo-seq 1204 from 510 lncRNAs – – [31]
CþE PhyloCSF Ribo-seq, MS 354 from lncRNAs 354 22 peptides [75]
CþE Hexamer-based coding score Ribo-seq 143 from 390 lncRNAs 99 – [28]
CþE RibORF Ribo-seq, MS 925 from 233 lncRNAs 686 18 lncRNAs [29]

Mouse CþE sORF finder Ribo-seq 514 from lncRNAs 514 – [76]
CþE Hexamer-based coding score Ribo-seq 137 from 403 lncRNAs 107s – [28]
CþE PhyloCSF MS 98 from lncRNAs 98 11 peptides [75]

Zebrafish CþE ORFscore Ribo-seq, MS 535 from lncRNAs 535 6 peptides [30]
CþE PhyloCSF MS 99 from lncRNAs 99 – [75]
CþE Hexamer-based coding score Ribo-seq 379 from 726 lncRNAs 155 – [28]

Fruit fly CþE PhyloCSF MS 53 from lncRNAs 53 2 peptides [75]
CþE Hexamer-based coding score Ribo-seq 7 from 22 lncRNAs 7 – [28]

Yeast E – Ribo-seq,
Polysome-seq

47 from 331 lncRNAs 47 – [77]

CþE Hexamer-based coding score Ribo-seq 5 from 6 lncRNAs 5 – [28]
Worm CþE PhyloCSF MS 81 from lncRNAs 81 1 peptide [75]
Arabidopsis

thaliana
CþE Hexamer-based coding score Ribo-seq 43 from 93 lncRNAs 43 – [28]

Note: Approacha is denoted as E if the method is purely experimental, C if computational and CþE if combinatorial.
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Table 4. Known functions of small peptides coded by lncRNAs

Species Peptide name LncRNA Peptide
length (aa)

Function Detailed function Reference

Human SPAR ENSG00000235387 90 Muscle and
cancer-related
(oncogenic)

Negatively regulates mTORC1
activation and inhibits
muscle regeneration

[59]

Minion/myomixer ENSG00000262179 84 Muscle-related Regulates muscle development
and muscle cell fusion

[60]

HOXB-AS3 ENSG00000233101 53 Cancer-related
(tumor-suppressive)

Suppresses colon cancer aerob-
ic glycolysis by inhibiting
hnRNP A1-dependent PKM
splicing

[62]

NOBODY ENSG00000204272 71 Cancer-related
and others

Involved in mRNA processing
and negatively regulates
P-body association

[63]

Mouse MLN ENSMUSG00000019933 46 Muscle-related Interacts with SERCA (calcium-
ATPase) and inhibits calcium
reuptake into the sarcoplas-
mic reticulum

[57]

DWORF ENSMUSG00000103476 34 Muscle-related Enhances SERCA activity and
calcium reuptake into the
sarcoplasmic reticulum

[58]

SPAR ENSMUSG0000002847 75 Muscle and
cancer-related
(oncogenic)

Negatively regulates mTORC1
activation and inhibits
muscle regeneration

[59]

Minion/myomixer ENSMUSG00000079471 84 Muscle-related Regulates muscle development
and muscle cell fusion

[60, 61]

Zebrafish Toddler ENSDARG00000094729 58 Others Activates G protein-coupled ape-
lin receptor (APJ)/APJ signaling
and promotes cell movement
during gastrulation

[56]

Fruit Fly Tarsal-less/tal FBgn0087003 11 and 32 Others Activates the transcription fac-
tor responsible for cuticle
formation

[53]

Scl FBgn0266492 28 and 29 Muscle-related Regulates calcium transport
and muscle contraction

[55]

Pgc FBgn0016053 71 Others Represses CTD2 serine phos-
phorylation in germline
progenitor cells

[54]

Soy bean ENOD40 GmENOD40 12 and 24 Others Interacts with sucrose synthase
and is required for plant–
bacteria symbiotic
interactions

[52]

Figure 1. Cancer-related lncRNAs with functional peptides. Left side (gray box) of each figure shows the RNA function. (A) LINC00961 related to NSCLC. (B) LINC01420

related to NPC. (C) HOXB-AS3 transcript related to AML in OCI-AML3 cells. The right side (blue box) shows the functions for the peptides. (A) SPAR inhibiting mTORC1

activation. (B) NOBODY promoting NMD in K562 and HEK293T cells. (C) HOXB-AS3 peptide regulating PKM splicing and suppressing cancer growth.
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in cancer cells. In fact, HOXB-AS3 peptide, but not the
RNA itself, suppressed cancer cell growth, colony formation, mi-
gration, invasion and tumorigenesis by inhibiting hnRNP A1-
dependent PKM splicing [62] (Figure 1C).

Other functional small peptides

Other studies showed that small peptides from lncRNAs also
participate in other biological processes (Table 4). The peptide
NOBODY was identified through a proteomics approach in both
K562 and HEK293T cell lines [63]. This peptide is thought to
regulate mRNA processing by interacting with the mRNA
decapping complex and to act as a negative regulator of P-body
association. Pauli and colleagues [56] identified a zebrafish pep-
tide of 58 aa, Toddler, from a transcript annotated as an lncRNA
in zebrafish, mouse and human. Toddler binds to the apelin re-
ceptor (APJ) and induces G protein-coupled receptor signaling to
promote cell movement during gastrulation in zebrafish. In
soybean, using peptide mass fingerprinting, two small peptides
(12- and 24-aa-long) translated from the ENOD40 transcript
were identified to interact with sucrose synthase, which is
required for plant symbiosis [52].

Discussion

The discovery of functional small peptides translated from
lncRNAs has encouraged researchers to reexamine the roles of
lncRNAs. The repertoire of biological processes that lncRNAs
are involved in has grown rapidly, and lncRNAs serve as bio-
markers and potential drug targets in many types of diseases
[81]. However, the working mechanisms of disease-associated
lncRNAs are largely unknown, and their coding potential under
diseased conditions are rarely discussed, even for those that are
known to harbor ORFs. For example, MALAT1 and KCNQ1OT1
have been associated with cardiovascular disease and are even
used as biomarkers, but whether their functions are dependent
on the lncRNA or the peptide is not clear [82]. The steroid recep-
tor RNA activator (SRA) lncRNA produces SRA protein in breast
cancer cells, and recently, the lncRNA showed a strong onco-
genic property in cervical cancer; yet, the contribution of the
SRA protein was not explored [83, 84]. The study of the transla-
tion status of these lncRNAs might shed light on their signifi-
cance and clinical implications.

The existence of functional peptide products of lncRNAs
emphasizes the need to thoroughly separate the RNA functions
and peptide functions of lncRNAs. As in the case of HOXB-AS3
and SPAR, researchers that aim to investigate function of
lncRNAs that encode a small peptide should clearly discrimin-
ate whether the acting molecule is the peptide, the lncRNA or
both. In addition, when studying lncRNA function, the isoform
that is responsible for the phenotype in question should be
examined. This process is crucial, especially in cancer studies,
where most isoform candidates are selected by differential ex-
pression. Several reports have shown that the major form of an
effector lncRNA gene changes between alternative isoforms in
cancer, without prominent differences in the gene expression
level. It is also widely accepted that different isoforms may
have different coding potentials and that changes in the expres-
sion levels of isoforms can affect the proteome of cells.
Therefore, researchers should first define the exact effector and
further inspect the behavior of the molecule to clarify its role.

Although researchers have focused on elucidating the func-
tions of lncRNAs, studying the regulation of lncRNA expression

is undoubtedly an equally crucial research focus. Given that
most known functional small peptides are conserved in other
species, the short, highly conserved regions in lncRNAs may be
necessary for both producing peptides and the quality control of
produced RNAs. Nonsense-mediated mRNA decay (NMD) is a
surveillance mechanism that degrades erroneous mRNAs and
reacts to spurious translation followed by premature stop
codons. As lncRNAs that harbor sORFs are likely to be targeted
by NMD, the extent of NMD targeting against lncRNAs should
also be explored.

LncRNAs, or the peptides coded by them, are expected to
be the missing pieces of many molecular mechanisms.
Encouraged by the discovery of many novel sORFs residing in
genomic locations that were previously thought to be noncod-
ing, repositories of sORFs or small peptides identified by ribo-
some profiling and/or MS data, such as sORFs.org [85] and
SmProt [86], have been developed. In the case of sORF.org,
which stores all published sORFs from five species (human,
mouse, rat fly, zebrafish and Caenorhabditis elegans), this data-
base provides coding-potential evidence, such as PhyloCSF,
FLOSS and ORFscore. SmProt incorporates small peptides from
eight species (human, mouse, rat, zebrafish, fly, yeast, C. elegans

and Escherichia coli). However, the coding nature of lncRNAs is
still largely unknown, and the group remains heterogeneous,
thus far. More rigorous investigation of lncRNAs and the small
peptides hidden within them would lead to a profound under-
standing and give new insights into numerous unsolved conun-
drums in the fields of biological and medical sciences.

Key Points

• We presented computational and combinatorial
approaches that use various experimental data to clas-
sify coding and noncoding RNAs and identify sORFs
that encode small peptides.

• Based on supporting experimental data, we demon-
strated the challenges in identifying small peptides and
the methods to improve their detection.

• We summarized a list of functional peptides translated
from lncRNAs, many of which are evolutionarily con-
served in other species and some of which are known
to be involved in muscle-related functions and cancer
development.

Acknowledgements

The authors thank all BIG lab members for critical reading
and comments.

Funding

This work was supported by the Bio and Medical
Technology Development Program and the Basic Science
Research Program through the National Research
Foundation (NRF), funded by the Ministry of Science and ICT
(grant numbers NRF-2017M3A9G8084539, 2018R1A2B200
3782 and NRF-2014M3C9A3063541), and the Korea Health
Technology R&D Project through the Korea Health Industry
Development Institute (KHIDI), which was funded by the
Ministry of Health and Welfare (grant number HI15C1578).

The small peptide world in lncRNAs | 1859

Deleted Text: ,
Deleted Text: ,
Deleted Text:  [56]
Deleted Text: -protein 
Deleted Text:  
Deleted Text: 24 
Deleted Text: 80
Deleted Text: 81
Deleted Text: , 
Deleted Text: 82
Deleted Text: ,
Deleted Text: -
Deleted Text: 84
Deleted Text: 85
Deleted Text: ,
Deleted Text: <italic>C.</italic>
Deleted Text: ,
Deleted Text: ,
Deleted Text: <italic>E.</italic>
Deleted Text: are 
Deleted Text: utilize 
Deleted Text: -
Deleted Text: to 


Box A. Computational coding RNA classifier

(related to Table 1)

Coding or noncoding
Coding or noncoding (CONC) [14] is one of the first SVM
classifiers developed to detect protein-coding sequences.
It uses various sequence-related features, secondary
structure information and homologs from database
searches to identify potential peptides. It is designed to
compare input DNA/RNA sequences to confirmed coding
cDNAs for eukaryotic proteins. CONC results predict the
class (coding or noncoding) of an input sequence.

Coding potential calculator
Coding potential calculator (CPC) [15] is another SVM-based
classifier that implements a protein database search for
homology to known proteins. It also searches for possible
ORFs and combines alignment-related features and ORF
quality-related features to train the model. The protein
database search makes CPC slow and reliant on the data-
base, but it also improves the specificity greatly. CPC works
with RNA sequences and provides predicted classes along
with SVM scores. Recently, CPC was upgraded to CPC2 [22].

PORTRAIT
PORTRAIT [16] was developed to enable the coding classi-
fication of transcriptomes generated from poorly charac-
terized species or from low sequence quality. It considers
the scenario where most of the input sequences include
truncated proteins with low conservation. PORTRAIT
results provide coding and noncoding probabilities.
PORTRAIT is also available online.

sORF finder
sORF finder [17] is specifically designed to detect sORFs with
high coding potentials. It uses a hexamer frequency table to
identify coding sequences, which means it requires prior
knowledge. However, sORF finder currently provides hex-
amer table information for 11 organisms. sORF finder accepts
sequence data and calculates the number and sequences of
detected sORFs, the synonymous substitution ratio and the P
value. A sORF finder Web server is also available.

PhyloCSF
PhyloCSF [18] attempted to overcome the limitations of pre-
vious classifiers that relied heavily on homology to known
proteins. PhyloCSF examines evolutionary signatures in the
form of synonymous or nonsynonymous codon substitution
rates. PhyloCSF requires users to provide cross-species mul-
tiple sequence alignment results as inputs. It calculates a
score that indicates the likelihood ratio of the protein-
coding sequence evolution model. PhyloCSF also provides
the start and end positions of the coding regions that it
detects and the aa sequences corresponding to the regions.

RNAcode
RNAcode [67] implements evolutionary signatures regard-
ing the reading frame, such as synonymous/conservative
mutations, and conservation by gap scoring. However, it
does not use species-specific characteristics or machine
learning techniques to ensure general usage of the pro-
gram. Like PhyloCSF, RNAcode also requires multiple
sequence alignment results as inputs. RNAcode results
include start and stop positions of the predicted coding
region, coding potential scores and P values.

Coding–noncoding index
Coding–noncoding index (CNCI) [10] aims to classify input
RNA sequences without known annotations. Its primary
goal is to avoid false-positive and false-negative results
issuing from the usage of evolutionary features. It is also
tolerant of incomplete transcripts and sense–antisense
pairs. Given input sequences, CNCI reports predicted
ORFs and coding potential scores, based on adjoining nu-
cleotide triplet usage frequency.
Coding potential assessment tool
CPAT [19] is another popular method of coding RNA
classification. Its alignment-free approach based on logis-
tic regression takes little time while maintaining a robust
performance that is comparable with those of alignment-
based methods. The prediction model of CPAT is built
with nucleotide sequence composition and codon usage
bias. Therefore, CPAT requires prior knowledge of nucleo-
tide composition information. The authors of CPAT pro-
vide this information for four species (human, mouse,
zebrafish and fruit fly). However, CPAT includes a step
that enables users to build their own logistic model. CPAT
works with RNA sequence and provides mRNA size, ORF
size, coding probability and two scores of its features
(Fickett score and hexamer score). A Web application of
CPAT is also available.

iSeeRNA
iSeeRNA [20] focuses on detecting lncRNA rather than
protein-coding RNAs. Previous works of coding potential
assessments were evaluated based on its performance for
protein-coding RNAs and well-known noncoding RNAs.
iSeeRNA exclusively chose lncRNAs as its target gene set
to provide classifiers better suited for lncRNA identifica-
tion. The feature set of iSeeRNA includes transcript
conservation, ORF quality and nucleotide sequence compos-
ition. iSeeRNA accepts RNA sequences and gene annotation
information as input and reports predicted classes and cod-
ing scores. iSeeRNA can also be accessed on the Web.

Predictor of lncRNAs and messenger RNAs based on an
improved k-mer scheme
Predictor of lncRNAs and messenger RNAs based on an
improved k-mer scheme (PLEK) [11] is another tool that is
useful when dealing with an incomplete or erroneous
transcriptome without reference genomes. PLEK imple-
ments an alignment-free approach by using k-mers and
is not restricted by prior gene annotation. It is especially
suitable for RNA-seq data with relatively higher error
rates, such as those from PacBio. PLEK has been shown to
be exceptionally tolerant of indel errors. PLEK works with
input sequence data and reports predict classes. PLEK
also enables users to build their own model of nonverte-
brate species.

LncRNA-classifier based on selected features
LncRNA-classifier based on selected features (Linc-SF) [12]
aims to distinguish lncRNAs from the others by using
sequence and structure-related features with protein-
coding potential features. It operates with a novel nucleo-
tide composition feature selected by the GA-SVM
algorithm and secondary structure-derived metrics. Linc-
SF uses CPC to assess protein-coding features and,
therefore, is expected to be much slower than other
alignment-free methods. Linc-SF can be used when gen-
ome sequence data are available. The source code is not
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available online, so users will have to contact the authors.

Long noncoding RNA identification using balanced
random forests
Long noncoding RNA identification using balanced ran-
dom forests (LncRNA-ID) [21] is built with a model that
can handle an imbalanced training data set, which is
often the problem when constructing data sets consisting
of lncRNA and protein-coding genes. It also works well
with small training data sets. Another advantage of
LncRNA-ID is that it uses a hidden Markov model, which
enables fast and sensitive sequence comparison. Another
interesting point regarding LncRNA-ID is that it attempts
to infer potential ribosome interactions without experi-
mental data. The authors provide source codes to extract
features from RNA sequences, which are used as the
inputs for LncRNA-ID.

lncRNA-MFDL
lncRNA-MFDL [13] is differentiated from other tools, as it
implements deep learning to classify lncRNAs. It has
been shown to have slightly better accuracy than tools
that are based on the SVM model, such as CPC and CNCI.
lncRNA-MFDL uses adjoining nucleotide triplet frequency,
ORF quality, k-mer frequency and transcript secondary
structure information. Its performance was tested on 11
species, including gorilla, lamprey and orangutan. The
source code appears to be unavailable.

Coding potential calculator 2
CPC2 [22] is an upgraded version of CPC. The primary
goal of CPC2 is to eliminate the time-consuming align-
ment step without compromising performance. It is a
fast, species-neutral classifier and has added more infor-
mation to the output files. Given RNA sequence data,
CPC2 reports the putative peptide length, Fickett score,
isoelectric point, ORF start position, the integrity of the
ORF, coding probability and predicted class. CPC2 can be
accessed on the Web.

Coding potential calculation tool based on multiple
features
Coding potential calculation tool based on multiple fea-
tures (COME) [23] is extraordinary in that it uses both ex-
perimental data and sequence-based features. Although it
did not include ribosome profiling data, the authors of
COME explored the impact of Ribo-seq on COME by
comparing the results before and after adding the scores
of combinatorial classifiers as features. COME uses
small, polyAþ/� RNA-seq and ChIP-seq (H3K36me3 and
H3K4me3 signals) to predict coding potential. COME does
not require the subjects to be conserved or fully
assembled. The authors of COME stated in their paper that
their model is focused only on canonical ncRNAs and
therefore can only predict up to 70% of human lncRNAs.
COME accepts gene annotation information and reports
length, coding potential and predicted class for each tran-
script. A Web server version of COME is also available.

Box B. Combinatorial coding RNA classifier

(related to Table 2)

Ribosome release score
Ribosome release score (RRS) [26] is based on the discrep-
ancy of ribosome occupancy between the ORF and non-

ORF region. It is a metric defined as the ratio between the
total reads in the coding region and the total reads in
the 30 UTR, normalized by the length of the regions and
the ratio of RNA coverage. RRS requires ORF annotation,
Ribo-seq, RNA-seq and chromosome size information as
inputs. RRS reports the expression levels of coding se-
quence (CDS) and 30 UTR, TE, as defined by Ingolia [69],
and RRS score. RRS allows the detection of small coding
regions smaller than Ribo-seq fragments (�30 nt) and is
robust to non-ribosomal proteins. However, RRS has the
limitation that the 30 UTR should have at least the length
of the Ribo-seq fragment.

Translated ORF classifier
Translated ORF classifier (TOC) [70] is a random forest classi-
fier trained on four metrics derived from a ribosome profile.
It is based on translational efficiency, ribosome coverage in
ORF and downstream of ORF and ORF fraction in the tran-
script. The training set of the classifier used a RefSeq gene
set from zebrafish and a mouse genome assembly with a
fragments per kilobase million (FPKM) >1. The source code
appears to be unavailable.

Fragment length organization similarity score
Fragment length organization similarity score (FLOSS) [27]
is a metric based on the calculation of RPF length distri-
bution in a given transcript and a comparison with the
reference coding region of the transcript. FLOSS discrimi-
nates true 80S ribosome-generated RPFs from a non-
ribosomal background and measures the distribution dis-
crepancy between protein-coding and true noncoding
regions, with lower scores indicating that the given data
are likely to contain true RPFs. It accepts Ribo-seq BAM
files and gene annotation BED files as inputs to generate
output files containing the distribution of RPF length and
calculates a FLOSS score for each transcript.

ORFscore
ORFscore [30] is based on the three-nucleotide periodicity
of ribosome occupancy. The score is calculated as a log-
adjusted value of the difference between the number of
RPF reads in each reading frame and the mean RPF reads
across all three reading frames. This value is then nor-
malized by the mean RPF reads. Given ORF annotation in
each reading frame and Ribo-seq data, it quantifies the
biased distribution of RPFs in the first reading frame. The
threshold for ORFscore to classify a coding ORFs is recom-
mended to be established empirically using known CDSs.

PROTEOFORMER
PROTEOFORMER [39] is a tool to visualize protein synthesis
using Ribo-seq data. It maps RPFs and identifies translated
transcripts and translation initiation sites and creates a
protein sequence database that can be used for MS-based
proteomics analysis. PROTEOFORMER takes two Ribo-seq
data sets, an untreated or translation elongation inhibitor
(CHX/emetine)-treated sample and a translation initiation
inhibitor (LTM/puromycin/harringtonine)-treated sample. In
addition, a species- and annotation version-specific SQlite
Ensembl database should be provided as input [85]. The
output of PROTEOFORMER is a FASTA file of nonredundant
translation products. It also generates specific metrics
regarding metagene classification, RPF abundance, tran-
scripts with translation, single nucleotide polymorphism
calling result and FLOSS score.
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ORF-RATER
ORF-RATER [71] quantifies translation from an ORF, based
on the concept that translated ORFs show similar ribo-
some occupancy patterns with annotated CDSs. ORF-
RATER detects all NUG-starting ORFs and classifies all
possible ORFs using linear regression and a random forest
classifier trained with AUG-starting ORFs. It takes previ-
ously annotated CDSs as a positive set to determine true
translation evidence. ORF-RATER works with FASTA files,
gene annotation BED files and Ribo-seq BAM files and
outputs ORFs with a high confidence of coding potential.
RibORF
RibORF [31] is an SVM classifier to identify translated
ORFs based on ribosomal A-site alignment, three-
nucleotide periodicity and the distribution of RPFs across
codons. Annotated CDSs were used as the positive set,
while off-frame ORFs of protein-coding transcripts and
ORFs of small noncoding RNA were used as the negative
set. RibORF takes Ribo-seq, gene annotation files and can-
didate ORF files as inputs, and read lengths with offset
distances should be manually checked and given in par-
ameter files. RibORF reports the translation probability
and number of RPFs, percentage of maximum entropy
score and P value for each transcript.

riboHMM
riboHMM [32] is a model to identify translated ORFs using
abundance and three-nucleotide periodicity of RPFs.
riboHMM takes Ribo-seq data, annotation files, genome
FASTA files and RNA-seq data as inputs and outputs
translated sequences for each transcript. riboHMM also
provides ORF annotation and an opportunity to identify
novel coding ORFs. However, riboHMM cannot discrimin-
ate RPFs arising from different isoforms.

SPECtre
SPECtre [33] classifies actively translated regions based on
three-nucleotide periodicity. SPECtre does not require
matched RNA-seq data and takes Ribo-seq data, iso-
form.fpkm_tracking files from Cufflinks (transcript
abundance calculated from Ribo-seq or RNA-seq) and an-
notation files as inputs. SPECtre outputs a metric contain-
ing the translational status for each transcript. Users can
customize parameters regarding false discovery rate, win-
dow size, RPF abundance cutoff and step size of the win-
dow to optimize the performance. Application of FLOSS
and ORFscore are available in the pipeline.

RiboTaper
RiboTaper [34] identifies actively translated regions based
on the three-nucleotide periodicity of Ribo-seq data.
RiboTaper creates every annotated exonic regions and
applies a multitaper approach and Fourier transformation
to determine the significance of the exonic periodic pro-
files. RiboTaper takes genome FASTA files, gene annota-
tion files, Ribo-seq and RNA-seq data as inputs. Read
lengths and offset distances should be manually checked
and provided as parameters. It outputs translated ORFs,
translated aa sequences, quality control plots and sum-
maries of translated ORFs. RiboTaper can detect transla-
tion regardless of expression level, but it only considers
AUG-initiated ORFs and does not account for frame
shifting.

Ribosome profiling with Bayesian predictions
Ribosome profiling with Bayesian predictions (Rp-Bp) [35]

predicts the likelihood of ORF translation based on the
three-nucleotide periodicity of RPFs. Rp-Bp detects all
ORFs with a three-nucleotide periodicity pattern, regard-
less of how many ORFs are present in the same tran-
script. It contains two phases, ORF profile construction
and translation prediction. In ORF profile construction, it
constructs a profile for each ORF and infers the P-site off-
set automatically by Bayesian inference. In the next
phase, translation is predicted by calculating the likeli-
hood ratio for the determination of which profile fits
the given data. Apart from the actual prediction, creating
reference genome indices is mandatory. Rp-Bp takes ref-
erence gene annotation files, genome FASTA files, riboso-
mal RNA FASTA files and Ribo-seq data as inputs and
runs STAR to align RPF reads [87]. Rp-Bp provides ORF
profiles and final prediction sets, including sequences of
ORFs, DNA and proteins.
Translation-dependent ensemble classifier with ribosome
and UPF1 association score
Translation-dependent ensemble classifier with ribosome
and UPF1 association score (TERIUS) [36] consists of a
two-step identification of lncRNAs. The first step counts
for Ribo-seq reads mapped to each frame of transcripts
and calculates their coding probabilities based on
Bayesian inference. It does not search for ORFs in tran-
scripts, to avoid false-negatives arising from erroneous
ORFs. Transcripts without coding potential are further fil-
tered with UPF1 association to eliminate possible mRNA
fragments. TERIUS requires gene annotation, Ribo-seq,
RNA-seq and CLIP-seq data and reports predicted class,
predicted coding frame and noncoding probability for
each transcript.
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