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The availability of multi-omics data sets and genome-scale metabolic models for various organisms pro-
vide a platform for modeling and analyzing genotype-to-phenotype relationships. Flux balance analysis is
the main tool for predicting flux distributions in genome-scale metabolic models and various data-
integrative approaches enable modeling context-specific network behavior. Due to its linear nature, this
optimization framework is readily scalable to multi-tissue or -organ and even multi-organism models.
However, both data and model size can hamper a straightforward biological interpretation of the esti-
mated fluxes. Moreover, flux balance analysis simulates metabolism at steady-state and thus, in its most
basic form, does not consider kinetics or regulatory events. The integration of flux balance analysis with
complementary data analysis and modeling techniques offers the potential to overcome these challenges.
In particular machine learning approaches have emerged as the tool of choice for data reduction and
selection of most important variables in big data sets. Kinetic models and formal languages can be used
to simulate dynamic behavior. This review article provides an overview of integrative studies that com-
bine flux balance analysis with machine learning approaches, kinetic models, such as physiology-based
pharmacokinetic models, and formal graphical modeling languages, such as Petri nets. We discuss the
mathematical aspects and biological applications of these integrated approaches and outline challenges
and future perspectives.
� 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

In the past two decades, genome-scale metabolic modeling has
rapidly advanced in terms of number and quality of available net-
work reconstructions as well as modeling approaches based on flux
balance analysis (FBA). FBA approaches have been applied to study
microbial [1–3], human [4,5], and plant metabolic networks [6–10]
and aided, for instance, designing microbial strains for optimized
compound production [11,12], understanding human diseases
[13–15], and elucidating constraints in plant metabolism [16–
18]. Recent developments enable the study of interacting systems
such as the human gut microbiome [19–22] or tissues and cell
types in humans [4,13,23,24] and plants [25–31].

FBA is a constraint-based optimization framework that relies on
a stoichiometric representation of a large- to genome-scale meta-
bolic network (i.e., core models vs. full models), a set of known
input and output constraints, such as measured uptake or excre-
tion rates, and an optimality assumption [32]. If available, kinetic
information can be considered in the optimization problem formu-
lation. For instance, vmax values can serve as lower and upper flux
boundaries. A schematic overview of the approach is shown in
(Fig. 1). For microbial systems, the assumed optimality criterion
is usually the maximization of growth, i.e., biomass production
[33]. The solution to a FBA problem is a set of metabolic flux distri-
Schematic representation of FBA. The top part illustrates a toy metabolic network a
(Left) The system comprises metabolites A to G, exchange fluxes bA, bB, bC, and
metric matrix S represents the reaction stoichiometries of the network metabo
part illustrates the FBA problem formulation. (Left) Find a flux distribution that
s, indicating how much each reaction contributes to the objective function (first li
nd upper bound (third line). (Right) The solution to the optimization problem is a
ective function (black line), e.g. growth rate (biomass production). Note, that depen
o the model or a model prediction.
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butions that are optimal with respect to the assumed objective. It is
worth noticing that the objective value to an optimization problem
is unique, however the flux distributions seldomly are. This prob-
lem of non-unique flux distributions can be tackled by applying a
second optimization criterion such as the minimization of the
sum of fluxes (also termed parsimonious FBA or pFBA), performing
flux sampling or flux variability analysis (FVA). Due to its linear
nature, and thus low computational cost, FBA can be readily scaled
to metabolic networks with several thousands of reactions. It is
therefore particularly amenable to modeling genome-scale meta-
bolic networks, interacting metabolic networks, such as microbial
communities or tissues and organs within one organism, and per-
forming parameter scans across a range of external conditions [18].
Thus, FBA complements laborious and computationally expensive
Metabolic Flux Analysis which determines metabolic flux distribu-
tions based on measured metabolite labeling patterns [34–36].
Aspects like temporal resolution, regulatory constraints, or exper-
imentally determined transcript, protein or metabolite abundances
as well as kinetic parameters are per se not included in FBA formu-
lations. However, some of these aspects have been tackled by
dynamic extensions of FBA [37,38], approaches for integrating reg-
ulatory networks [39,40], transcript and protein data [41–43], and
metabolite data [44,45] or by developing enzyme-constraint FBA
techniques [46–52].
nd its mathematical representation in the form of a stoichiometric matrix and a flux
bG and reactions r1 to r5 with the respective reaction fluxes v1 to v5. (Right) The

lites (rows) in the respective reactions (columns) and v is the vector of fluxes. The
maximizes (minimizes) the objective function, where cT is the transposed vector of
ne) subject to the system is at steady-state (second line) and fluxes are within their
flux distribution that satisfies the applied constraints (colored lines) and optimizes
ding on the available experimental data, exchange and growth rates can be both, an



Table 1
Overview of studies integrating flux balance analysis with machine learning, kinetic models, and petri nets.

Article Integrative Component Organism Purpose of integration

Machine Learning and Flux Balance Analysis
Sánchez et al., 2019 [66] Principal component analysis Saccharomyces cerevisiae Random sampling of lipid specific flux distributions
Bhadra et al., 2018 [59] Principal Component Analysis Pichia pastoris and

Saccharomyces cerevisiae
Determining variability in flux data

Dai et al., 2018 [67] Singular Value Decomposition Escherichia coli Selecting important metabolite constraint for flux
estimation in cell-free protein synthesis system

Patané et al., 2019 [68] Density-Based Spatial Clustering of
Applications with Noise

Escherichia coli Finding clusters of flux solutions for improved ethanol
production

Kim et al., 2016 [60] Recurrent Neural Networks, Lasso
Regression, Ensemble Learning

Escherichia coli Extracting features from multi-omics data for setting FBA
constraint

Occhipinti et al. 2018 [80] Elastic Net Regression Pseudomonas putida Grouping flux distributions for maximal rhamnolipids
production

Shaked et al., 2016 [81] Support Vector Machines, Random Forest Human Classifying metabolic fluxes based on drug side effects
DiMucci et al., 2018 [82] Random Forest Escherichia coli and gut

associated bacteria
Classifying metabolic fluxes for finding interspecies
interaction

Bordbar et al., 2017 [61] Principal Component Analysis and Linear
Regression

Human, Saccharomyces
cerevisiae

Determining the rate of change of metabolites

Jalili et al., 2021 [83] Principal Component Analysis, Random
Forest

Human Extracting FBA-based metabolic signatures for cancer cell

Yaneske et al., 2018 [84] Hierarchical Clustering, K-means Clustering,
Elastic Net Regression

Human Finding highly correlated fluxes for multi-omics age
prediction

Vijayakumar et al. 2020
[85]

Principal Component Analysis, K-means
Clustering, and Lasso Regression

Synechococcus sp. Extracting growth promoting and limiting features from flux
distributions

Culley et al., 2020 [86] Multimodal Artificial Neural Networks Saccharomyces cerevisiae Employing flux distributions as features for model training
Magazzù et al., 2021 [87] Lasso Regression, Multimodal Artificial

Neural Networks
Saccharomyces cerevisiae Employing flux distributions as features for model training

Available modeling tools
and web interfaces

PMFA [59], GEESE [95], SWIFTCORE [163]

Kinetic Models and Flux Balance Analysis
Krauss et al., 2012 [106] PBPK model Human liver Investigating hyperuricemia therapy, ammonia

detoxification and paracetamol-induced toxication
Guebila & Thiele, 2015,

2016 [112,113]
PBPK model Human small intestine

enterocyte
Investigating dietary strategies for treating Parkinson’s
disease symptoms

Shepelyuk et al., 2016
[114]

PBPK model Human platelet Determining mutual influence of platelet metabolism and
blood glucose levels

Grafahrend-Belau et al.,
2013 [28]

Whole-plant functional model Barley (Hordeum vulgare) Studying source-sink relationships

Mallmann et al. 2014 [133] Kinetic model of photosynthesis C3-C4 intermediates in
the genus Flaveria

Studying the evolution of C4 photosynthesis

Shaw & Cheung, 2018 [31] Equations for balanced growth theory Arabidopsis thaliana Studying optimal resource partitioning
Available modeling tools

and web interfaces
MUFINS [105], COMETS [125], PKSim� [164], MoBi� [165]

Petri Nets and Flux Balance Analysis
Fisher et al. 2013 [143] Quasi-Steady Petri Net Human liver Studying feedback mechanism in bile acid homeostasis
Ptak et al., 2016 [146] Agent-based Quasi-Steady Petri Net Human liver Studying the cooperative effect of cell communication

during bile acid homeostasis
Simone et al., 2020 [147] Extended Stochastic Petri Net Human pancreas Studying effect of oxidative phosphorylation in pancreatic

cancer
Self et al., 2018 [152] Stochastic Petri net Escherichia coli Deriving a biomass proxy for the dynamic analysis of

different growth conditions
Available modeling tools

and web interfaces
MUFINS [105], Snoopy [166], SurreyFBA [145], GreatSPN [148], Charlie [167], Marcie [168]
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Here we focus on the integration and application of FBA with
other, complementary modeling techniques. This review covers
the main areas of development - on the one hand, the integration
with ‘‘black-box” machine learning (ML) approaches and on the
other hand, the integration with mechanistic approaches, such as
kinetic models and graph-theoretical Petri nets (see Table 1). Each
section briefly introduces the modeling technique, presents exam-
ples for their integration with FBA, highlights benefits of the inte-
grated analysis, and if available lists dedicated modeling tools. In
this review, we cover seminal earlier studies and emphasize recent
developments in the respective field. We conclude by highlighting
current challenges and anticipated developments.
2. Machine learning and flux balance analysis

In recent years ML has become a key element in biological
research. In contrast to statistical models which are applied to infer
4628
relationships between specific classes of variables, ML algorithms
put emphasis on model performance and can be trained on highly
heterogeneous data. The latter aspect becomes more important
with the growing complexity of genome-scale metabolic models
and the increasing availability of various biological datasets (e.g.
gene expression, metabolite levels, categorical phenotypes, etc.)
which can be integrated with these models [53,54]. Thus, ML algo-
rithms provide a bridge between the knowledge-driven predictive
models of FBA and heterogeneous biological data sets. While FBA is
a predictive approach, it can be combined with both predictive and
descriptive ML models [55]. Predictive ML models are trained by
supervised learning to create a mapping between input data and
defined output variables. The term supervised learning relates to
the fact that data are labeled and the algorithms are trained to per-
form predictions according to these labels. In contrast, descriptive
ML models use unsupervised learning to identify emergent pat-
terns in the input data without the need for providing any labels.



Fig. 2. Overview of different approaches for integrating ML and FBA. The column on the left illustrates ML approaches used for extracting inputs for FBA simulations. The
column on the right illustrates applications where FBA simulations serve as input for ML methods. We classified the depicted integration procedures based on the types of ML
approaches and follow the structure of the main text, i.e., supervised, unsupervised, supervised and unsupervised, and Deep Learning. Note that the direct integration of ML
and FBA has not been illustrated here.
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In unsupervised approaches, patterns are identified according to
defined mathematical criterion (e.g. number of clusters or variance
independence). Both learning methods have been widely used to
analyze large-scale biological datasets [56,57] and have also been
integrated with FBA. The ML-FBA integration includes three major
cases: (1) ML can be used to select molecular features (e.g. genes,
transcripts, metabolites) that are passed as inputs to the metabolic
models [53,58]; (2) some ML methods, such as Principal Compo-
nent Analysis (PCA), can be integrated directly with the FBA algo-
rithm [59]; (3) and finally, results of FBA simulations can be
analyzed by ML approaches (Fig. 2). Hence, ML complements FBA
by extracting relevant information from interacting datasets (ge-
nomic, proteomic, and metabolomic) [60] and improving the inter-
pretation of the results [61]. All but one of the presented studies fall
either into category (1) or (3). In the following sections we highlight
selected studies that provide a balanced overview of the field.
4629
2.1. Integrating unsupervised learning and flux balance analysis

Some of the widely used unsupervised learning techniques are
PCA [62], Hierarchical Clustering, K-means Clustering [63], Singu-
lar Value Decomposition [64] and Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [65]. In combination with
FBA these methods have been mainly applied to explore patterns
in flux distributions and in the following we highlight some of
these integrative studies.

PCA is a data dimensionality reduction approach for identifying
the most dominating sources of variance in complex data. The
approach identifies orthogonal linear combinations of variables,
called the principal components, which maximally explain the
variation in the data. PCA has been used to investigate variations
in flux distributions as well as directly integrated with the FBA
formulation.
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Sánchez et al. [66] developed a method termed ‘Split Lipids Into
Measurable Entities reactions’ (SLIMEr) for improved representa-
tion of lipid requirements in genome-scale metabolic models. SLI-
MEr uses a mathematical construct to split lipid components into
lipid classes and acyl chain distributions and applies constraints
on both. The method was tested on a model of Saccharomyces cere-
visiae (budding yeast) and PCA was used on randomly sampled flux
distributions for both the extended and basic model and compared
to experimental values. The authors demonstrated that the
extended model could accurately represent amounts of lipid spe-
cies, analyze network flexibility, and compute the energetic
requirements for transitions between metabolic states.

Identification of principal components can be constrained using
known relationships between variables, such as molecular interac-
tions between genes and metabolites or similar functional annota-
tions. Bhadra et al. [59] presented an approach in which they
modified the PCA algorithm to capture sample variance under con-
sideration of the network structure in terms of metabolic pathways
and flux modes. The approach, named Principal Metabolic Flux
Mode Analysis (PMFA), was implemented as a PCA optimization
problem with structural constraints derived from FBA. As a result,
PMFA highlights sets of reactions, the so-called principal metabolic
flux modes, which are approximately in steady-state and explain
most of the data variance. The authors benchmarked their
approach by comparing results from PCA, FBA, elementary flux
mode analysis, and PMFA using data sets and metabolic models
for the two yeast strains Pichia pastoris and S. cerevisiae. They found
PMFA to be more efficient in capturing variance in sets of experi-
ments than the other approaches tested. Furthermore, they used
PMFA to analyze transcriptomics data for S. cerevisiae under differ-
ent oxygen conditions. The analysis identified six mitochondrial
pathways responsive to changes in oxygen availability, thus under-
lining the power of pathway-centric variation analysis.

Singular Value Decomposition is another dimensionality reduc-
tion method. It performs matrix factorization to identify indepen-
dent sources of variance in the data and the respective contribution
of each variable to this variance. Integrated with FBA, Singular
Value Decomposition can be used to select variables (e.g. reactions
or metabolites) whose variation contributes the most to the emer-
gence of specific flux distributions across various conditions or
genotypes.

Dai et al. [67] integrated dynamic FBA with Singular Value
Decomposition in a cell-free protein synthesis system based on
an Escherichia coli metabolic network (removing reactions that
are not present in the cell-free system).The main objective of the
study was to increase the system’s protein synthesis capacity by
understanding which metabolites were performance limiting.
Thus, Singular Value Decomposition was used to select metabolite
measurements to be set as constraints for flux estimations. To this
end, the stoichiometric matrix was decomposed into 105 modes
and the top 36 metabolites with the highest singular value-
weighted sum were selected as constraints. The authors showed
that direct integration of metabolite measurements into the flux
estimation problem improved the prediction accuracy of the pro-
tein synthesis rates and thus enabled optimization of the cell-
free protein synthesis system.

Besides dimensionality reduction, unsupervised learning
approaches can be used for cluster analysis and clustering methods
in combination with FBA have been used to group flux
distributions.

Patané et al. [68] used DBSCAN with FBA and Pareto optimality
to predict engineering strategies for maximized ethanol produc-
tion in eight different microorganisms. In microbial engineering
approaches the production rate of specific compounds and biomass
production often represent competing objectives. Thus, the authors
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developed a multi-objective metabolic engineering approach to
investigate how genetic manipulations could affect the production
rates of one or more metabolites of interest. In their framework,
DBSCAN was used to cluster multiple alternative flux solutions
(where ethanol and biomass production act as competing objective
functions). For each metabolically engineered organism, the
approach identified clusters of solutions, of which one provided
the optimal combination of ethanol and biomass production. In
other clusters, a slight increase in ethanol production led to a
decrease in biomass production. Thus, the integrative approach
was able to predict the best engineering strategies for improved
ethanol production without penalizing biomass production.

2.2. Integrating supervised learning and flux balance analysis

Supervised learning [69] approaches can be used to generate
data-derived flux boundaries for FBA simulations and thus reduce
the flux solution space [53]. Most common applications of super-
vised learning integrated with FBA include Linear Regression
[70], Regularized Regressions such as Lasso Regression [71] and
Elastic Net Regression [71], Decision Trees [72], Artificial Neural
Networks [73], and Support Vector Machines [74]. In the following,
we will highlight some of these integrative studies.

Kim et al. [60] presented a Multi-omics Model and Analytics
(MOMA) framework for omics-driven predictive modeling of mul-
tilayer interacting data (transcriptional regulatory, protein–protein
interaction, and metabolic reaction network). MOMA uses an
ensemble of ML techniques, including Recurrent Neural Networks
[75], Lasso Regression, and Ensemble Learning [76], in combination
with FBA to predict and analyze the growth of E. coli. The authors
implemented ML approaches on the aggregated multi-omics data
to select features for constraining FBA simulations. Recurrent Neu-
ral Networks were used to extract features from transcriptomics
data, while Lasso Regression and Ensemble Learning were used
to extract features from protein and metabolomics data. When
compared with two other approaches, namely Metabolism and
Gene Expression Model [77] and Expression Balance Analysis
[78,79], MOMA predicted genome-wide expression and growth
with the highest performance.

Elastic Net is, besides Lasso, another regularized Regression
method. Occhipinti et al. [80] integrated Elastic Net Regression
with FBA to identify genes correlating with the overproduction of
rhamnolipids in the soil bacterium Pseudomonas putida. The
authors reconstructed a generic metabolic model by incorporating
reactions related to rhamnosyltransferase enzymes and integrated
it with 40 samples of gene expression data of P. putida. For each
condition-specific sample, FBA was used to estimate optimal flux
distributions for maximal rhamnolipids production. The predicted
flux rates were grouped into wild and mutant and Elastic Net
Regression was used to identify reactions and pathways which dif-
ferentiated these two groups. The integrative approach revealed
two pathways involved in purine metabolism and fatty acid
biosynthesis to be significant for rhamnolipids production.

Support-Vector Machines are supervised learning models able
to address both linear and non-linear classification problems.
These models separate data into classes finding possible hyper-
planes (decision boundaries) based on the maximum distance
between classes of data points.

Shaked et al. [81] integrated Support Vector Machines and FBA
to develop ‘model-based phenotype predictors’ as indicators for
drug side effects. In their analysis, the authors used a comprehen-
sive data set of human disease and drugs responsive phenotypic
data. In their workflow, Flux Variability Analysis was applied in
drug-targeted gene knockout genome-scale metabolic models of
human cells (generic). The resulting flux boundaries were used to
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create a feature matrix in which each drug was represented as col-
umns of upper and lower flux boundaries. Support Vector Machi-
nes were then trained on a known drug side effect matrix for the
classification of potential drug side-effects. By examining the per-
turbation effects on the overall flux distributions, this analysis
enabled the classification of drugs as either side effect-causing or
not side-effect causing.

DiMucci et al. [82] used Random Forests, an ensemble ML clas-
sification method based on Decision Trees and combined it with
FBA to study latent interspecies interactions in microbial commu-
nities. For this purpose, the author used dynamic FBA which con-
sidered total biomass as a time-dependent variable. The
difference between final biomass accumulation values for each
microbe in co– and mono-culture was used to calculate the relative
yield. On the basis of those relative yield values Random Forest
learning was used to classify metabolites showing competitive or
facilitative interactions. The study identified fructose exchange to
be crucial for the competitive interaction between different
microbes and thus contributed to understanding hidden interac-
tions in microbial communities.

2.3. Integrating supervised and unsupervised learning with flux
balance analysis

Different ML techniques can be used in combination and in this
section we review studies integrating FBA with both supervised
and unsupervised learning.

Bordbar et al. [61] developed a method termed ‘unsteady-state
FBA’ and combined it with PCA and Linear Regression. The
approach enables integrating time-course metabolomics data with
genome-scale metabolic models to predict metabolic fluxes under
dynamic conditions. The method was tested on three time-course
metabolomics datasets for red blood cells, platelets, and S. cere-
visiae, and for steady-state data from E. coli. First PCA was applied
to each metabolomics dataset to divide the intracellular and extra-
cellular metabolite profiles into discrete time profiles. For each of
these discrete time profiles, Linear Regression was applied to
determine the rate of change of each metabolite. Metabolites with
a significant rate of change were used as constraints for unsteady-
state FBA while unmeasured metabolites were considered to be at
steady-state. The approach successfully explained the utilization of
extracellular citrate by red blood cells. The inclusion of intracellu-
lar metabolite profiles with unsteady-state FBA provided more
accurate flux predictions than classical FBA.

Jalili et al. [83] used Random Forest classification together with
PCA and FBA to identify cancer-specific metabolic signatures in an
omics-data integrative genome-scale model of human metabolism
(Recon3D). FBA was employed to calculate flux distributions for
each cancer model. FBA-based features were then extracted using
PCA and Random Forest approaches. PCA indicated the highest
variation (response variables) in the flux distributions of cancer
models. Random Forest then used these response variables to clas-
sify key fluxes (indicating which sub-cellular systems were
affected by the corresponding processes). Using this approach,
the authors discovered different metabolic patterns (extracellular
transport, mitochondrial transporters, fatty acid synthesis, and
the pentose phosphate pathway) which differentiate normal and
cancer cell metabolism.

Yaneske et al. [84] employed a combination of K-means Cluster-
ing, PCA, Elastic Net Regression, and FBA as a metabolic age predic-
tor from age-associated gene expression data. The authors used
gene expression data from individual humans to determine the
correlation between age and metabolic flux distributions. To this
end, gene expression data was used to construct individual-based
genome-scale metabolic models of CD4 T-helper cells. K-means
Clustering analysis of the predicted flux distributions was used to
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group individuals and PCA was used to determine variation in
the flux distributions of each individual group. Those grouped flux
distributions were then analyzed by Elastic Net Regression to
select strongly correlated variables. The authors found that the
combination of FBA and ML could act as a multi-omics-based age
predictor providing more accurate predictions of chronological
age than transcriptome-based approaches alone.

Vijayakumar et al. [85] presented a pipeline which integrates
genome-scale metabolic modeling with multi-omics data and
applies FBA, PCA, K-means Clustering, and Lasso Regression for
improved phenotypic prediction (i.e. phototrophic growth) in the
renewable-biofuels-producing cyanobacterium Synechococcus sp..
In this pipeline, gene expression data were integrated with a
genome-scale metabolic model of Synechococcus sp. to generate
condition-specific models (light intensity, temperature, salinity,
and oxygen or carbon dioxide). Multi-objective FBA with quadratic
optimization was implemented to obtain unique flux distributions
(where biomass was considered as the primary and ATP mainte-
nance, photosystem I or II as the secondary objective). ML
approaches were then applied to identify key genes and reactions
for different conditions. PCA was used to determine variance in
the flux distribution for each objective pair. Further, K-means Clus-
tering was used to identify clusters of different growth conditions
and Lasso Regression was applied to select reactions related to
growth rates. The combination of FBA and ML methods revealed
genes and reactions related to growth-promoting or growth-
limiting conditions and thus aided understanding the mechanisms
related to the alternation of light intensity and salinity.

Culley et al. [86] proposed a framework in which they inte-
grated FBA with Multimodal Artificial Neural Networks to analyze
growth-related mechanisms of several S. cerevisiae strains. Aim of
the study was to overcome the black-box limitation of
data-driven ML approaches by integrating it with mechanistic
knowledge (flux distributions). The framework was tested in a
S. cerevisiae genome-scale metabolic model and gene expression
data of 1,484 single gene knock-out strains of S. cerevisiae com-
bined with their relative growth rates. Growth rates were used
as constraints for pFBA. The resulting flux distributions and gene
expression data were used as input for Multimodal Artificial Neural
Networks. To this end, Neural Networks were stacked with differ-
ent layers, where gene expression data and metabolic fluxes were
used as an individual layer, the concatenated gene expression and
metabolic fluxes were used as an additional hidden layer. Also, a
feed-forward hidden layer was used for better understanding
cross-modal relationships. The results of the study suggest that
the integrated analysis of flux distributions with the gene
expression data improves Multimodal Artificial Neural Networks
prediction in comparison to training with individual data sets.

In a follow-up study, Magazzù et al. [87] compared the perfor-
mance of Multimodal Artificial Neural Networks and Lasso Regres-
sion using the same test case of S. cerevisiae. The study was
conducted in two ways - single-view fashion, where gene expres-
sion data and metabolic fluxes distributions were separately used
and in multi-view fashion, where both data sets were concatenated
and then used as input for Lasso Regression and Multimodal Arti-
ficial Neural Networks. The authors demonstrated that Lasso
Regression can outperform Multimodal Artificial Neural Networks
and the multi-view approach improved output predictions, the
interpretability of the input features as well as biological
understanding.

2.4. Integrating Deep learning with flux balance analysis

Deep Learning is a branch of ML which is based on Artificial
Neural Networks. In recent years, Deep Learning has emerged as
a powerful method for image classification, speech recognition,



A. Sahu, Mary-Ann Blätke, Jędrzej Jakub Szymański et al. Computational and Structural Biotechnology Journal 19 (2021) 4626–4640
and biomedical signal processing, as well as integrating multi-
omics biological data [88,89]. Given a large training set, Deep
Learning methods can be used for classification, regression, and
dimensionality reduction and can deal with highly non-linear
problems, as well as unstructured data [89,90].

Artificial Neural Networks are composed of connected layers of
artificial neurons called units. Reminiscent to real neurons, each
unit represents an activation function that translates the strength
of the unit inputs into an integrated output signal. The number
of units in each layer, the number of layers, the pattern of connec-
tivity, and the type of individual activation functions describe the
Artificial Neural Networks ‘architecture’ and determine their appli-
cability and performance. Artificial Neural Network architectures
with more than one ‘‘hidden” layer between the input and the out-
put layers are called ‘deep neural networks’. Applications of Deep
Neural Networks in FBA studies utilize their ability to address
highly non-linear classification problems as well as the capability
to be trained on very heterogeneous data sets [91].

Two notable, preprint studies combine FBA with a special type
of Deep Neural Networks called Autoencoders. Autoencoders are
Deep Neural Networks, whose architecture contains a ‘bottleneck’
termed ‘code’ layer of a relatively low number of units. During
training, the network encodes complex data in a low-
dimensional ‘code’ layer (encoding step) and then reconstructs
the input data from that code (decoding step). The consequence
of such operation is noise reduction and extraction of significant
data features in the code layer. Thus, Autoencoders are widely used
to e.g. process noisy image data [92] or sound recordings [93]. In
systems biology, Autoencoders are successfully used to link layers
of omics data and extract features from e.g. transcriptomic profiles
related to specific metabolic functions and macro-phenotypes.

In a representative study, Guo et al. [94] combined FBA with
Deep Neural Networks. The authors used a five-layer Autoencoder
model, with two encoder layers representing gene expression and
protein abundance of E. coli, respectively and the code layer repre-
senting quantitative phenotypes. In this study, the connectivity
between the layers was based on known biological interactions,
e.g. between transcripts and their protein products. To define con-
nectivity between the protein and phenotype layer FBA of a
genome-scale model of E. coli was used to select proteins essential
for a given phenotype. In the pre-training step, the Autoencoder
reduced the dimensionality of the data to the variance components
that could be used to link gene expression with phenotypes. In the
consecutive training step, the decoder layer was removed from the
network and the pre-trained network was ‘fine-tuned’ using exper-
imentally measured phenotype data. The approach, termed ‘Deep-
Metabolism’ significantly improved genotype-phenotype
predictions in comparison to fully connected Artificial Neural
Networks.

Variational Autoencoders are probabilistic generative models,
which once trained, sample from trained distributions to generate
input-like data in the decoding step. Barsacchi et al. [95] developed
a framework termed Gene Expression latEnt Space Encoder
(GEESE), which uses Variational Autoencoders for learning the
inherent structure of gene expression data related to the regulation
of metabolic fluxes in E. coli. In the study, the reference flux distri-
butions were estimated by FBA using gene expression across a
wide range of treatments as constraints. In parallel, the fluxes were
estimated in an FBA-independent method by training a Variational
Autoencoder coupled to a ‘flux approximator’ (a fully connected
Artificial Neural Networks). The study showed that Autoencoders
can be used to identify gene expression patterns related to the reg-
ulation of metabolic fluxes and generate synthetic gene expression
data which can translate to FBA-based flux distributions.
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3. Kinetic models and flux balance analysis

Due to the underlying steady-state assumption, FBA is usually
restricted to model non-dynamic processes. To overcome this
drawback several dynamic or pseudo-dynamic extensions to FBA
have been developed [18,37,96,97]. Of these, the static dynamic
FBA (dFBA) formalism is computationally feasible even for large-
scale metabolic networks and has thus been widely used to suggest
metabolic engineering strategies for the overproduction of desired
compounds in microbial strains and the design and evolution of
microbial communities [98–101]. In brief, the static dFBA imple-
mentation divides the modeled time frame into several intervals
and iteratively solves an instantaneous FBA optimization problem
at the beginning of each time interval followed by dynamic inte-
gration over the interval. This way, exchange fluxes predicted by
FBA can be translated into updated metabolite concentrations
which in turn serve as an input for the next iteration step. This sta-
tic dFBA approach has further been used to couple FBA and ordi-
nary differential equations (ODEs) models and in particular
physiology-based pharmacokinetic (PBPK) models. Thus, here we
treat PBPK models as an extension to dFBA. A general scheme for
the model integration is shown in (Fig. 3). In this section, we focus
on selected studies that combine PBPK or other kinetic models
with FBA to and we demonstrate how these models can be applied
to tackle a wide range of biological questions such as treatments
for diseases of human metabolism, microbial community dynam-
ics, or evolutionary or developmental questions in plant biology.
3.1. Integrating models of Physiology-based pharmacokinetics and flux
balance for human tissues

PBPK models are routinely used by the pharmaceutical industry
to determine the distribution and effects of drugs on a whole-body
scale [102–104]. These models are ODE systems with hundreds of
equations which describe the absorption, distribution, metaboliza-
tion, and excretion of compounds and commonly include kinetics
for blood flow, exchange rates for organs or tissues, and knowledge
of anatomy, physiology, and compound properties. Thus, these
models are heavily parameterized and require extensive sets of
kinetic information. Several toolboxes for modeling PBPK models
which already contain collections of the necessary physiological
parameters exist such as MUFINS [105] and the commercial tools
PKSim� and MoBi� (part of the Computational Systems Biology
Software Suite of Bayer Technology Services GmbH (Leverkusen,
Germany)). On the contrary, FBA models rely only on the reaction
stoichiometries of the underlying metabolic network and allow
simulating metabolism at a large scale. Thus, the integration of
PBPK and FBA models allows linking cellular processes to whole-
body models. The integration procedure can be rationalized by
assuming a separation of time constants. Metabolic reactions are
typically much faster than processes such as absorption, distribu-
tions between compartments, and clearance in the cell. Thus, one
can assume that the metabolic network reaches steady-state
within the PBPK model’s integration time-step.

A formalism for integrating PBPK and FBA models was first
introduced by Krauss et al. [106]. The authors defined feedforward
or indirect coupling as when concentrations of a compound in the
PBPK model constrain enzyme activities and thus flux boundaries
in the FBA model. Feedback or indirect coupling is defined as when
FBA flux solutions are used to set reaction rates in the PBPK model.
It is important to notice that unlike in dFBA where FBA simulations
and dynamic integration form an iterative cycle the coupling of
PBPK and FBA models can involve feedforward, feedback integra-
tion or both. As a case study, the authors integrated a genome-
scale model of human liver cells with a PBPK model of an adult



Fig. 3. Schematic workflow of forward and backward integration of kinetic and flux balance models. Initial concentrations can be either fed into the kinetic model to calculate
an initial response and thus new concentrations and reaction rates or they can be used to determine maximum uptake rates in the flux balance model by dividing the
available concentration of metabolite X by the simulated time interval. Based on the imposed rate constraints the flux balance model can be used to simulate metabolism at a
large-scale. Model outputs, such as growth rates or flux values can be used either directly or to calculate updated metabolites concentrations which then feedback into the
kinetic model. Note that we distinguish between reaction rates from the kinetic model and steady-state reaction rates, i.e., fluxes in the stoichiometric model.
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human and studied three distinct scenarios. Firstly, they modeled
the distribution and action of allopurinol for treating hyper-
uricemia and found that the predicted uric acid concentration after
multiple dosing was in line with in vivo observations. Secondly,
they demonstrated the approach’s capability for identifying
biomarkers specific for the effect of impaired ammonia metabo-
lism on blood plasma levels. Thirdly, the model was applied to
study paracetamol-induced toxication on liver function. The pre-
sented case studies highlighted the applicability of the modeling
framework in scientific research, clinical applications, and drug
development.

In the following years, several other studies integrated models
of liver metabolism with PBPK models to study various metabolic
response processes. This included modeling alcohol metabolism
in the human body [107], simulating the regulation of blood glu-
cose in type I diabetes [108], predicting amino acid biomarkers
for a set of inborn errors of metabolism [109], understanding the
metabolic effects of the female sex hormone estradiol [110], and
studying the effect of isoniazid (an antibacterial drug against
Mycobacterium tuberculosis) on human liver metabolism [111].

Guebila and Thiele [112,113] combined a whole-body PBPK
model with a FBA model of the small intestine enterocyte to
study the interplay between dietary amino acids and the adsorp-
tion of the Parkinson’s disease prodrug levodopa. In the brain
levodopa is biotransformed into dopamine, allowing the reversal
of Parkinson’s disease symptoms. While there were indications
that dietary amino acids could improve the absorption of levo-
dopa, a systemic analysis of dietary amino acids uptake and levo-
dopa absorption was still lacking. The model integration was
achieved by setting the levodopa absorption rate as an upper
bound for the FBA model and subsequently, the obtained flux val-
ues were set as rates for the PBPK model. By applying their model
to study different nutritional strategies the authors found that
several dietary scenarios could have an effect on levodopa’s
bioavailability. Altogether, their studies contributed to gaining
further understanding of diet-levodopa interactions in Parkinson’s
disease patients.
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Shepelyuk et al. [114] analyzed the energetics of blood cells by
combining a PBPK and a FBA model. More precisely, the authors
investigated the metabolism of quiescent platelets in the context
of a human glucose/insulin/glucagon PBPK model and systemati-
cally investigated the mutual influence of platelet metabolism
and blood glucose levels. The authors found that platelet metabo-
lism had a minor effect on overall blood glucose levels, the influ-
ence of blood glucose on platelet metabolism strongly depended
on the fraction of the platelet’s glucose transporter, and that plate-
lets stored sufficient glycogen for a case of prolonged fasting.

Some of the presented studies were also previously reviewed
here [115–117]. Noteworthy, Thiele et al. [118] outlined a compu-
tational pipeline for personalizing these multi-scale models by
including gut-microbial metabolism and dietary information into
the model formulation and thus highlighted the potential applica-
tions in personalized medicine.

It is worth noting here that some studies applied other dynamic
variants of FBA to study human metabolism. For instance, Nilsson
et al. developed a simplified version of dFBA which they referred to
as piecewise flux-balance analysis or pwFBA [119]. This approach
uses a set of ODEs to describe how cell dry weight and external
metabolite concentrations change over time and uses forward inte-
gration to fit uptake fluxes and feedback integration to identify
time intervals suitable for steady-state analysis by finding meta-
bolic depletion events. The approach was applied in conjunction
with experimental measurements to study liver cancer cell meta-
bolism and put forward hypotheses about the involvement of glu-
tamate in the cytosol and the mitochondria and pointed at
potential drug targets that could reduce growth of liver cancer
cells.

3.2. Combined kinetic and flux balance models to study microbes and
microbial communities

Dynamic FBA has been extensively used to study growth of
microbes and microbial communities in natural and industrial sys-
tems (reviewed here [98,100,120,121]) and several toolboxes and
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strain optimization procedures are available [122,123]. Several
modeling approaches extended the temporal nature of dFBA by
accounting for resource allocation and diffusion processes or regu-
latory processes [124].

Harcombe et al. presented ‘Computation of Microbial Ecosys-
tems in Time and Space (COMETS)’ - a modeling framework which
integrates dFBA with diffusion on a lattice and applied it to design
microbial communities [125]. To achieve the model integration,
the authors coupled a hybrid kinetic-dFBA model and a diffusion
model which employs a standard 2D diffusion equation on a lat-
tice. In the integrated model the simulation of diffusion steps alter-
nates with growth steps. The authors modeled synthetic two- and
three-species consortia. Due to the spatial nature of the modeling
framework, they were able to answer questions related to colony
arrangements and cross-feeding interdependencies. They found
that the assumption that individual species locally optimize intra-
cellular resource allocation determined interspecies interactions
and microbial community dynamics. Together with experimental
testing of their findings, they demonstrated the predictability of
complex microbial communities.

Phalak et al. modeled a community of Pseudomonas aeruginosa
and Staphylococcus aureus, two bacteria found in chronic wound
film [126]. To achieve temporal and spatial resolution they solved
a series of FBA problems using genome-scale models of the two
bacteria with different experimentally motivated objectives. To
describe convective and diffusional processes in the biofilm layer,
the authors used partial differential equations which were spatially
discretized to yield large-sets of ODEs which were then coupled
with the FBA problem. The study enabled quantifying the impact
of nutrient competition, cross-feeding, and inhibition of S. aureus
by a small molecule secreted by P. aeruginosa. Overall, the study
demonstrated the relevance of such integrative modeling studied
for biomedical applications.

Additionally, several multi-layer integrative approaches exist,
which couple signaling, regulatory and metabolic networks by
extending the dFBA formalism. For instance, Lee et al. presented
integrated dynamic FBA [127] which integrates ‘slow’ reactions
in a time-delayed manner with the ‘fast’ steady-state reactions of
the stoichiometric metabolic model. The authors exemplified their
modeling framework by simulating signaling, metabolic, and regu-
latory processes using a genome-scale model of the yeast strain S.
cerevisiae. In another study, Covert et al. presented a method called
‘integrated FBA’, which integrates regulatory FBA (an FBA exten-
sion which uses Boolean logic to consider reactions active or inac-
tive) and ODEs [128]. Their modeling employs forward and
feedback integration and was applied to study E. coli wild-type
and single gene perturbation phenotypes for diauxic growth on
glucose/lactose and glucose/glucose-6-phosphate. The authors
found their approach to have higher predictive power than regula-
tory FBA and ODE modeling individually.

3.3. Combined kinetic and flux balance models to study developmental
and evolutionary dynamics in plants

In planta, Grafahrend-Belau et al. presented a multi-model dFBA
approach by coupling a previously published dynamic whole-plant
functional model [129,130] and a large-scale stoichiometric model
of barley metabolism with 890 metabolites and 971 reactions to
study carbon and nitrogen balance under different environments
[28]. The functional plant model comprises a photosynthesis
model and a multiorgan model describing the dynamics of carbon
and nitrogen allocation between intracellular compartments and
organs across the entire life cycle of the barley plant. This model
was coupled to the metabolic model via leaf-specific exchange
rates of Suc, Asn, and Gln with the phloem, starch synthesis, and
Suc transport into the vacuole. Additionally, a time-dependent
4634
seed biomass composition was included in the optimization proce-
dure. This framework enabled the authors to systematically ana-
lyze metabolic interactions during barley development. The
analysis revealed a sink-to-source shift of the barley stem to meet
the nutrient requirements of the growing seed caused by
senescence-induced declining leaf source capacity.

Mallmann et al. studied the evolution of C4 photosynthesis, a
heat-adapted form of photosynthesis in which initial C-fixation
and re-fixation by the main photosynthetic enzyme RuBisCO are
spatially separated into two distinct cell types. This separation
and subsequent C enrichment around RuBisCO suppress the RuBis-
CO’s oxygenase activity and thus prevents the need for cost inten-
sive recycling reactions. To study the transition from the ancestral
C3 to the specialized C4 state in the genus Flaveria, the authors
combined a kinetic model of photosynthesis and a stoichiometric
model of leaf metabolism [131–133]. The kinetic model yielded
key parameters of photosynthesis of C3-C4 intermediates and
was used to constrain a genome-scale stoichiometric model of C4
photosynthesis. Amongst other things, the authors identified that
nitrogen mis-balance in intermediate states was a driving force
for the evolution from C3 to C4 photosynthesis.

Both studies used a mechanistic model to constrain a flux bal-
ance model, i.e., performed a feedforward integration only.
Recently, Shaw and Cheung presented a multi-tissue dFBA model
of plant metabolism which employed both a feedforward and feed-
back integration and was used to analyze carbon and nitrogen
metabolism and resource partitioning during Arabidopsis thaliana
growth [31]. To this end, they employed their previously presented
diel FBA framework [37] and extended it to represent a leaf-root
system in which leaf and root biomass and thus uptake and meta-
bolic capacities of the subsystems were dynamically updated. N
uptake dynamics were simulated by calculating the maximum
nitrate uptake rate by a Michaelis-Menten equation (feedforward)
and in dependence of the present root biomass (feedback). Analo-
gously, the maximum photon uptake was updated in each simula-
tion step by determining the current projected leaf area (feedback).
The authors used their model to study the effect of different nutri-
ent availability as well as herbivory, the addition of nutrients in the
soil, and shades on plant metabolism. Their approach demon-
strated the predictive power of combining dynamically updated
external conditions and adjusted metabolic capacities of different
plant organs to study their overall contribution to plant growth.
4. Petri nets and flux balance analysis

Metabolic networks do not operate in isolation but are tightly
intertwined with regulatory mechanisms such as signaling or
gene-regulatory networks. Petri nets (PNs) offer a modeling para-
digm for integrating these different biological networks into con-
cise models. Carl Adam introduced PNs in the early 60 s as a
graphical modeling formalism allowing for a general representa-
tion of interacting components in a network [134]. PNs are a
multi-purpose modeling solution and have been applied to a vari-
ety of molecular networks, including gene regulation [135], signal-
ing [136], and metabolic pathways [137]. They have also been
widely used to model concurrency (events occurring in parallel)
and conflicts (events using the same resources) in various systems
[138].

In mathematical terms, PNs are bi-partite directed graphs com-
prising two non-overlapping sets of nodes - transitions and places -
allowing for a general representation of interacting components in
a network. A graphical representation of the PN formalism is given
in Fig. 4. While places represent the components in a network,
transitions represent their interactions. In a molecular biological
context, places may represent single ions or atoms, simple chemi-



Fig. 4. Petri Nets Basics. Metabolic and other molecular networks can easily be translated and displayed by a PN graph. Metabolites, proteins, transcripts or genes are defined
by places (circles), while reactions and interactions are encoded by transitions (squares). Directed arcs relate inputs (reactants) and outputs (products) of each transition. Arc-
weights indicate stoichiometric coefficients. Tokens specify the value of a place e.g. the number of molecules or a discretized concentration level. A transition is enabled if its
pre-places (reactants) hold at least as many tokens as defined by the arc-weight. An enabled transition may fire and thus remove or add tokens from its pre- and post-places.
PNs allow for the application of various qualitative and quantitative analysis approaches [169,170]. Qualitative analysis approaches employ i.a. graph and set theory,
combinatorics and linear algebra to determine graph and structurally-defined behavioral properties, as well as functional network structures. Quantitative analysis
approaches focus on exploring the dynamic behavior using different simulation paradigms (stochastic, continuous, hybrid) or analytical state-space construction.
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cal compounds or macromolecules such as lipids, proteins, or
nucleic acids. Transitions describe, i.a. all kinds of reactions, struc-
tural modifications, transport, and binding processes. Directed arcs
connect places with transitions and vice versa. Thus, arcs define
places as substrates or products of a reaction encoded by the
respective transitions. Tokens specify the value of a place. In the
context of molecular networks, tokens refer to the number of
molecules or a discrete concentration or activity levels. The distri-
bution of tokens over all places in a PN represents the current state
of the system. A transition is called enabled if its pre-places hold at
least as many tokens as required by the corresponding arc-weight
(stoichiometry). At each time step, only one of the enabled transi-
tions is allowed to fire. While firing, the transition removes tokens
from its substrate places and adds new tokens to its product places
according to the stoichiometry indicated by the arc-weights. The
introduction of timed Petri nets, particularly stochastic, continu-
ous, and hybrid Petri nets, extends standard PNs by associating fir-
ing rates to each transition which in turn allow incorporating
reaction kinetics, stochastic rate equations or both. The PN formal-
ism offers several advantages over other modeling approaches
such as ordinary or stochastic differential equations. Firstly, PN
classes are interconvertible. Thus, network behavior can be
explored using different simulation paradigms while maintaining
the qualitative PN structure among the different classes. Secondly,
the flexibility of the PN language allows modeling various biologi-
cal systems, such as metabolic, signaling, and gene-regulatory net-
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works, and thus creating multi-scale models of biological systems
within one framework. Finally, compared to ODE models, the
graphical notation using PNs is more accessible to biologists with-
out in-depth mathematical training.

4.1. Metabolic network analysis using Petri nets

The application of PNs to metabolic networks allows for analy-
ses of the underlying network structure, the identification of meta-
bolic routes, and exploration of the state-space [139,140]. The state
space is itself a directed graph, which encompasses all possible
behaviors in the form of single connected states. Analytical
approaches can be used to compute all possible states, based on
the defined PN model. However, an increase in model size results
in a broader range of possible behaviors reflected by a growing
state space. In the worst-case scenario, the state space grows infi-
nitely. This phenomenon is also called state-space explosion and
cannot be handled with analytical approaches which makes the
analysis of genome-scale metabolic networks using such
approaches infeasible. Koch et al. [141] tackled the problem of
state-space explosion by applying decomposition and network
reduction techniques based on structural PN graph properties to
extract steady-state pathways in a PN representation of the A.
thaliana metabolic network. In the case of state-space explosion
or infinite state spaces, simulative approaches are beneficial but
often hampered by the lack of kinetic data. This data is needed to
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define firing rates of the transitions based on e.g. mass action,
Michaelis-Menten, or Hill kinetics. Thus, the modeler often has to
rely on parameter estimates. Furthermore, the simulation effi-
ciency of large-scale systems is low, either due to numerical prob-
lems of the ODE-solvers or long runtimes for stochastic simulation
algorithms [142]. Thus, PNs have been integrated with FBA to
tackle some of these shortcomings. In the following, we summarize
studies combining both modeling frameworks.

4.2. Quasi steady state Petri nets

Quasi Steady State Petri Nets (QSSPNs) are the first approach for
combining PNs and FBA [143]. QSSPNs facilitate simulating the
effects of signaling or gene-regulatory mechanisms on metabolic
models and allows incorporating rate constants which is an advan-
tage over standard FBA techniques. Both types of networks, regula-
tory and metabolic networks, are connected by two special sets of
nodes which are part of look-up tables. In analogy to the ‘feed-
forward’ and ‘feed-back’ formalism introduced for coupling PBPK
and FBA models, PNs employ constraint and objective places. Con-
straint places connect the regulatory mechanisms with the meta-
bolic network. The look-up table of a constraint place defines
how the flux boundaries of the connected reactions are updated
based on the number of tokens on this constraint place. Vice versa,
objective places connect metabolism with regulatory mechanisms.
The look-up table of an objective place defines how the number of
tokens of the objective has to be updated based on the value of the
objective function of the metabolic network. Instead of obtaining a
steady-state flux distribution using FBA, the QSSPN algorithm
employs Monte Carlo sampling of flux trajectories which can then
be further examined to detect dynamic behavior of interest.

Fisher et al. [143] employed QSSPNs to bile acid homeostasis in
the human liver by combining a model of human hepatocyte meta-
bolism [144] with gene regulation and signaling processes which
are known to be involved in bile acid homeostasis. In this process,
the liver reacts to cholesterol by clearing and converting it to bile
acid. However, increased bile acid levels are toxic and thus choles-
terol clearance must be slowed down, resulting in a negative feed-
back loop. The QSSPN analysis could reproduce most of the
experimentally observed behavior. In silico gene knock-out studies
identified genes and signaling molecules responsible for the phys-
iological imbalance in cholesterol clearance and disturbance of the
bile acid pool. Furthermore, examining the simulated trajectories
identified the coupling of the chenodiol and cholate branch of
the bile acid synthesis pathway through the regulatory network.
The QSSPN algorithm is part of the SurreyFBA software [145],
which has been integrated with MUFINS, a multi-formalism inter-
action network simulator [105].

While QSSPNs allows simulating only single-cell models, its
agent-based extension AB-QSSPN [146] enables simulations of cell
populations with millions of cells even on small clusters of PCs.
Applying AB-QSSPNs to the bile acid homeostasis model demon-
strated that the cooperative effect of cellular communication
resulted in faster mean response times to the increased burst of
bile acid. As a result, the negative feedback loop, which slows down
cholesterol clearance and prevents toxic bile acid levels, responded
more swiftly than in the previous study. This insight on the coop-
erative effect of cellular communication is even more relevant for
modeling and simulating tumor growth or immune responses
where cell–cell communication might be more prominent.

4.3. Extended stochastic Petri nets

Extended Stochastic Petri Nets (ESPNs) are another approach for
integrating PNs with FBA in a general-purpose modeling frame-
work that combines different solution techniques within a single
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graphical formalism [147]. Regulatory and metabolic processes
are integrated into one coherent PN using the tool GreatSPN
[148]. ESPNs distinguish between two types of transitions: (1)
standard transitions which apply mass action law as firing rate,
and (2) general transitions which use more specialized functions,
such as Michaelis-Menten kinetic or Hill kinetic as firing rates.
General transitions encode reactions that are considered to be at
steady-state, including reactions of the metabolic network. An
ODE system is derived from the ESPN model and a file storing
the kinetics of the general transitions. For a biochemical reaction
system, a PN is a structured description of the corresponding
ODE system [149]. The chemical reaction scheme and its PN repre-
sentation refer to the same stoichiometric matrix. Transitions in
the PN also describe reaction rate kinetics. Therefore, the struc-
turally defined stoichiometric matrix of a PN and the provided
reaction rate kinetics allow modelers to derive the ODE system
and in turn describe the change of concentrations over time.
Simone et al. applied ESPNs to a metabolic model of pancreatic can-
cer [147] which they extended with a sub-network for oxidative
phosphorylation [150]. The transition speeds of the oxidative phos-
phorylation sub-network were computed using FBA (assuming the
maximization of ATP and mitochondrial fumarate production). The
authors showed that in the presence of oxygen, the oxidative phos-
phorylation provided the main source for ATP production. Further-
more, including the oxidative phosphorylation had a global impact
on the system’s behavior. In their example, FBA acted as a global
source and sink system for specific metabolites such as ATP and
mitochondrial fumarate.

4.4. Simulating Genome-Scale metabolic models using Petri nets

FBA’s biomass function is a complex agglomeration of sub-
strates with non-integer stoichiometries reflecting the ratios of
various biomass components [151]. As such the biomass function
cannot directly be translated into the PN formalism as the arc-
weights which represent these stoichiometries in a PN must be
integers. Thus, in order to include this information, it is necessary
to derive an approximation. Self et al. [152] suggested a routine for
deriving such an approximation which can then be used to simu-
late the dynamics of a metabolic network given as a PN. In the first
step, the authors converted a model of E. coli’s core metabolism
[153] into a PN. They stochastically simulated the behavior of the
PN for a range of growth conditions using a discrete-time leap
method for stochastic simulations [154]. In parallel, they obtained
the corresponding values of the objective function by using FBA. To
derive a proxy for the biomass function suitable for a PN formal-
ism, the authors employed stepwise regression and a Random
Forest-based variable selection algorithm [155]. The final regres-
sion model contained twelve predictors: seven variables for
metabolites (e.g. fructose, D-glucose, oxygen, hydrogen), three
variables for reactions (e.g. glutaminase, ribose-5-phosphate iso-
merase, succinyl-CoA synthetase), one variable for a combination
of two growth conditions (ethanol, fructose, glucose, glutamine,
acetaldehyde, glutamate, fumarate, malate, lactate, and succinate),
and one variable for the aerobic/anaerobic condition. The authors
argued that the observed regression function could mimic FBA’s
biomass function with high accuracy. However, while the derived
proxy biomass function is a predictive measure for the biomass
at steady-state, its composition of terms related to metabolites
and reactions does not provide a biological interpretation of the
model’s behavior and currently does not capture time-dependent
biomass compositions [156]. Furthermore, the dynamic analysis
of different growth conditions showed that the biomass value of
two paired growth conditions under aerobic conditions was always
between 1 and 7% larger than the sum of biomass values for the
single growth conditions. Thus, aerobic growth on two substrates
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had a slightly super-additive effect, and thus biomass production
was more effective. For a follow-up study, the authors suggested
investigating the proxy biomass function with respect to transient
states and the effect of dynamic changes. Furthermore, the authors
suggested applying their analysis framework to an unreduced
genome-scale metabolic network to further evaluate the capabili-
ties of metabolic models based on PN for analyzing dynamic
behavior.
4.5. Flexible nets

Júlvez et al. [157] introduced Flexible Nets (FNs) as a framework
for modeling, analyzing and controlling dynamic biological sys-
tems with uncertainties. While FNs are inspired by PN formalism,
their syntax and execution semantics differ significantly. FNs are
tripartite graphs which, in addition to places and transitions, use
a third vertex named handlers. FN consists of two connected sub-
nets, an event net and an intensity net, separating the stoichiome-
try of the system (event net) from the reaction kinetics (intensity
net). Handlers represent an intermediate layer between places
(which model metabolites) and transitions (which model reac-
tions) and allow incorporating parameter uncertainties, modeling
partially observable systems, constrained control actions, and
resource allocation and transient-states [158]. Therefore, FNs com-
bine the modeling capabilities of both constraint-based models
and differential equations. As in FBA approaches, the modeling of
metabolic networks using FNs allows considering flux boundaries
of input, output, and metabolic reactions and optimization prob-
lems defined by the objective functions in FBA. As a proof of prin-
ciple, Júlvez et al. [157], demonstrate how well FNs perform in
modeling, analyzing, and controlling by applying the formalisms
to the simple system of glucose consumption and utilization in
yeast. Furthermore, the authors used FN to build a quantitative
and predictive model of Wilson disease (a heritable defect in cop-
per utilization) and to evaluate the relative efficacy of different
therapeutic options. In a follow-up study, the authors used the
FN approach to model a continuous cell culture of HeLa cells in a
bioreactor [159]. Here, a method that resembles dynamic FBA
was used to analyze potential steady-states of the system with
the objective to maximize the cell density in dependence on the
system’s dilution rate. The authors state that FNs can efficiently
handle genome-scale metabolic networks for which kinetic infor-
mation is mainly given by flux boundaries and linear dependencies
on the concentration of metabolites [159].
5. Perspectives

Over the past two decades, FBA approaches have developed into
a standard tool for modeling and analyzing large-scale metabolic
networks in microorganisms, humans, and plant systems. Standard
FBA’s limitations to modeling steady-state metabolism and the
lack of consideration of regulatory and kinetic information have
been addressed by a plethora of various integrative approaches
[39–41,43–45] some of which we reviewed here. Recently, omics
data and the advent of machine learning techniques to analyze
these data have opened up opportunities for combining selections
of the most important variables in omics data sets with the
explanatory power of mechanistic models. Deep Learning in com-
bination with FBA enables integrating various data types as inputs
for genome-scale metabolic models as well as developing meta-
bolic engineering strategies. The major limitation of Deep Learning
in systems biology is a still relatively small size of training sets
with respect to the number of variables that can be quantified in
a single sample using omics approaches. Thanks to technological
progress in data acquisition and infrastructure this picture is
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quickly changing in biotechnology and medicine. However, appli-
cations in less data-rich fields are still in their infancy.

Both kinetic and PN models of regulation and metabolism
enable the representation of complex processes and mapping their
effect on metabolism. In this context, PNs are an appealing formal-
ism due to its intuitive and executable modeling style and its capa-
bility to model different bio-molecular network types in a
mathematically concise manner. However, kinetic models and
especially PBPK models and some PN approaches require extensive
knowledge of kinetic parameters such as maximum reaction rates
vmax and affinity constants Km of the modeled kinetic reactions.
While these parameters might be available for humans, they are
typically sparse for microbial and plant systems. Additionally, solv-
ing these models at a large-scale is computationally expensive and
thus one of the critical issues which are hampering the application
of kinetics- and PN-based approaches to selected model systems.
Adapting existing tools to the recent advances in GPU technology
will reduce computation time and permit the analysis of large mul-
tiscale networks. Together, these approaches pave the way for an
integrated interpretation of omics data in their physiological
context.

Data reproducibility and the development of community and
cross-community standards remain big challenges in systems biol-
ogy. FAIR (Findable, Accessible, Useable, and Interoperable) guiding
principles [160] and the Systems Biology Markup Language (SBML)
[161,162] set a standard for data and model management. How-
ever, the usage of non-standardized metabolite and reaction
nomenclatures in metabolic models, the need for individualized
model curation and modification steps as well as case-specific
model integration procedures challenge easy reproducibility.
These issues can only be solved by community-driven standards.
With these challenges addressed, we envision data- and model-
integrative approaches to become part of the standard portfolio
in microbial strain design, plant breeding programs, and systems
medicine applications.
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