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Abstract. Lung adenocarcinoma (LUAD) is the most common 
pathological type of lung cancer, and disulfidptosis is a newly 
discovered mechanism of programmed cell death. However, 
the effects of disulfidptosis‑related lncRNAs (DR‑lncRNAs) in 
LUAD have yet to be fully elucidated. The aim of the present 
study was to identify and validate a novel lncRNA‑based 
prognostic marker that was associated with disulfidptosis. 
RNA‑sequencing and associated clinical data were obtained 
from The Cancer Genome Atlas database. Univariate Cox 
regression and lasso algorithm analyses were used to identify 
DR‑lncRNAs and to establish a prognostic model. Kaplan‑Meier 
curves, receiver operating characteristic curves, principal 
component analysis, Cox regression, nomograms and calibra‑
tion curves were used to assess the reliability of the prognostic 
model. Functional enrichment analysis, immune infiltration 
analysis, somatic mutation analysis, tumor microenvironment 
and drug predictions were applied to the risk model. Reverse 
transcription‑quantitative PCR was subsequently performed to 
validate the mRNA expression levels of the lncRNAs in normal 
cells and tumor cells. These analyses enabled a DR‑lncRNA 
prognosis signature to be constructed, consisting of nine 
lncRNAs; U91328.1, LINC00426, MIR1915HG, TMPO‑AS1, 
TDRKH‑AS1, AL157895.1, AL512363.1, AC010615.2 and 
GCC2‑AS1. This risk model could serve as an independent 
prognostic tool for patients with LUAD. Numerous immune 
evaluation algorithms indicated that the low‑risk group may 

exhibit a more robust and active immune response against 
the tumor. Moreover, the tumor immune dysfunction exclu‑
sion algorithm suggested that immunotherapy would be more 
effective in patients in the low‑risk group. The drug‑sensitivity 
results showed that patients in the high‑risk group were more 
sensitive to treatment with crizotinib, erlotinib or savolitinib. 
Finally, the expression levels of AL157895.1 were found to be 
lower in A549. In summary, a novel DR‑lncRNA signature 
was constructed, which provided a new index to predict the 
efficacy of therapeutic interventions and the prognosis of 
patients with LUAD.

Introduction

According to the 2020 Global Cancer Statistics report (1) , 
lung cancer is the leading cause of cancer‑associated fatalities 
worldwide. Although lung cancer ranks second in terms of 
the incidence rate, its mortality rate remains the highest (2). 
Non‑small cell lung cancer (NSCLC) comprises ~85% of all 
lung cancer cases, with almost 60% of patients experiencing 
local or distant metastasis. Among subtypes of NSCLC, lung 
adenocarcinoma (LUAD) is the most prevalent (3). Despite 
the availability of various treatment modalities, including 
surgery, chemotherapy, targeted therapy and immunotherapy, 
for the management of LUAD, the overall 5‑year survival 
rate remains <20% (4). Therefore, gaining a comprehensive 
understanding of the underlying molecular mechanisms that 
drive the development of LUAD and the identification of novel 
therapeutic targets or biomarkers, are crucial for the effective 
improvement of patient prognosis.

In the field of cancer metabolic therapy, programmed cell 
death (PCD) fulfills a crucial role. A new form of PCD termed 
disulfidptosis has recently been reported, disulfidptosis is 
distinct from other forms of PCD such as necrosis, apoptosis, 
autophagy and ferroptosis (5). Disulfidptosis has been reported 
to be triggered by an increased uptake of cysteine, coupled 
with an insufficient availability of NADPH. The NADPH 
deficiency leads to the formation of disulfide bonds within 
actin cytoskeletal proteins, causing dysfunction and disruption 
of the actin network, ultimately resulting in cell death (5,6). 
Actin, a versatile cytoskeletal protein, is involved in numerous 
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cellular processes, including transcription, translation, cell 
morphogenesis, cellular mechanics, intracellular transport 
and disulfide formation (7,8). Aberrations in the cytoskeleton 
have been reported to be associated with promoting and regu‑
lating PCD in both animal and plant systems (9,10); therefore, 
understanding the mechanisms underlying tumor‑associated 
disulfidptosis is of importance in developing understanding 
of the induction of tumor cell death and the prevention of 
tumorigenesis.

Long non‑coding RNAs (lncRNAs) are a class of RNA 
molecules exceeding 200 nucleotides in length (10), which, 
unlike coding RNAs, do not participate in protein translation. 
However, lncRNAs do exert a critical role in gene regula‑
tion. Increasing evidence has highlighted the importance of 
lncRNAs as key regulators, involved in various physiological 
and pathological processes through influencing of gene expres‑
sion (11,12). In recent years, high‑throughput sequencing 
technologies have enabled the identification of numerous 
non‑coding genes that significantly impact both tumorigenesis 
and tumor progression. These lncRNAs have the ability to 
modulate not only the proliferation, differentiation, invasion 
and metastasis of cancer cells, but to also influence their 
metabolic reprogramming (13,14). The significant involvement 
of lncRNAs in tumorigenesis underscores their potential as 
promising targets for precision cancer treatment; however, the 
precise role of lncRNAs in relation to disulfidptosis in LUAD 
remains incompletely understood.

Therefore, the present study aimed to identify and validate 
a novel lncRNA‑based prognostic marker associated with 
disulfidptosis, with the intent to enhance prognostic predic‑
tion for patients with LUAD. Furthermore, the disparities in 
cellular processes, signaling pathways and immune status 
between high‑risk and low‑risk groups was also performed. 
Ultimately, the goal was to construct a prognostic nomogram 
to assist in clinical decision‑making and personalized manage‑
ment through the provision of an estimation of the survival 
probability for patients with LUAD.

Materials and methods

Clinical data collection for patients with LUAD. Clinical 
data for patients with LUAD, was obtained from The Cancer 
Genome Atlas (TCGA) database (https://gdc‑portal.nci.nih.
gov). RNA sequencing (RNA‑seq) data, clinical patient 
information and somatic mutation data were obtained from 
the database. The dataset consisted of a total of 600 samples, 
including 59 normal samples and 541 tumor samples. To 
ensure the reliability of the prognostic analysis, samples 
that had missing or non‑informative prognostic data and 
normal tissue were excluded from the present study. This 
resulted in a final cohort of 507 tumor samples that were 
used for further investigations. To assess the differences in 
characteristics among the selected sample group, a χ2 test 
was performed (Table I). The selection of genes associated 
with disulfidptosis was based on a recently published 
relevant study (5).

Construction of a risk model associated with disulfidptosis. To 
identify lncRNAs that exhibited co‑expression patterns with 
disulfidptosis‑associated genes, Pearson's correlation analysis 

was performed. Screening criteria of |R|≥0.4 and P<0.001 
were applied, resulting in the identification of 91 lncRNAs 
using the limma (version 3.54.2) R package (15). Subsequently, 
dimensionality reduction techniques were used to obtain 
disulfidptosis‑related (DR)‑lncRNAs with prognostic signifi‑
cance. This process involved two steps: First, univariate Cox 
regression analysis identified 17 DR‑lncRNAs that showed 
significant associations with overall survival (OS) in patients 
with LUAD. Subsequently, to further reduce dimensionality 
and refine the selection of relevant DR‑lncRNAs, the lasso algo‑
rithm was used to further screen these 17 DR‑lncRNAs using 
glmnet (version 4.1.7) in R (16). Finally, nine DR‑lncRNAs 
that exhibited significant associations with OS in patients with 
LUAD were identified. Using the glmnet (version 4.1.7) and 
survival (version 3.5.5) packages in R (16,17), a lasso logistic 
regression model was constructed, which was calculated as 
follows: Risk Score=�n

i=1 (LNCRNAExpi  Coefi). Based on the 
median risk score, patients were then categorized into low and 
high‑risk groups.

Risk model accuracy, independence evaluation and genera‑
tion of the nomogram. To evaluate the predictive ability of 
the risk model for patients with LUAD, several analyses and 
visualizations were performed. Kaplan‑Meier (K‑M) curve 
analysis was performed using survival (version 3.5.5) and 
survminer (version 0.4.9) R packages to assess the survival 
outcomes of different risk groups based on the risk scores 
obtained from the model (18). K‑M curves were used to 
determine whether the risk model could effectively stratify 
patients into distinct survival groups. The log rank test was 
used to calculate the P‑value of K‑M survival curves and the 
‘two stage’ function in the TSHRC package (version 0.1.6), 
was used when survival curves crossed over (19). Receiver 
operating characteristic (ROC) curve analysis was performed 
using the survival (version 3.5.5), survminer (version 0.4.9) 
and time ROC (version 0.4) R packages to assess the predic‑
tive ability of the risk model over specific time intervals, 
such as 1, 3 and 5 years (18). Principal component analysis 
(PCA), using the limma (version 3.54.2) and scatterplot3d 
(version 0.3.44) R packages (20), was used for dimensionality 
reduction to visualize different subgroups of patients based 
on their risk scores. Univariate and multivariate Cox regres‑
sion analysis performed using the survival (version 3.5.5) 
R package were used to assess the associations among the 
risk model, clinical factors and patient outcomes. Univariate 
Cox regression analysis was used to assess the individual 
impact of each variable, whereas multivariate Cox regres‑
sion analysis was used to determine whether the risk model 
remained a reliable prognostic predictor after adjusting for 
other clinical variables.

Through combining the risk model and various clinical 
variables including sex, age, T, N and stage, a nomogram was 
generated to predict the survival probability of patients with 
LUAD using the rms (version 6.7.0), survival (version 3.5.5), 
survcomp (version 1.48.0) and regplot (version 1.1) R 
packages (21). A calibration curve was generated using 
the rms (version 6.7.0), survival (version 3.5.5), survcomp 
(version 1.48.0) and regplot (version 1.1) R packages to evaluate 
the accuracy of the column chart by comparing the predicted 
probabilities with the observed probabilities.
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Functional enrichment analysis. To identify differentially 
expressed genes (DEGs) based on different risk groups by 
using the limma (version 3.54.2), criteria of |Log2FC|>1.0 and 
P<0.05 were applied (15). Once the DEGs had been identi‑
fied, gene ontology (GO) analysis was performed to explore 
the biological functions associated with these genes using 
the clusterProfiler (version 4.6.2) and ggpubr (version 0.6.0) 
packages in R (22). GO analysis comprised three categories: 
Biological processes (BP), cellular components (CC) and 
molecular functions (MF). Additionally Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analysis was performed 
using the clusterProfiler (version 4.6.2) R package to assess 
the signaling pathways associated with the DEGs. Finally, 
gene set enrichment analysis (GSEA) using the clusterProfiler 
(version 4.6.2) and limma (version 3.54.2) R packages was 
performed to investigate the differential signaling pathways 
involved in the low and high‑risk groups.

The ESTIMATE algorithm was used to assess differences 
in the tumor microenvironment (TME) between the different 
risk groups using the limma (version 3.54.2) and estimate 
(version 1.10.13) R packages. The CIBERSORT algorithm 
using the limma (version 3.54.2) R package was employed 
to calculate the relative expression levels of 22 immune cells 
within different risk groups. Additionally, the single sample 
(ss)GSEA algorithm in the GSVA (version 1.46.0) and limma 

(version 3.54.2) R package was used to identify variations in 
immune cells and immune function across different risk popu‑
lations (20). To evaluate the immune escape of tumor cells and 
their response to immune checkpoint inhibitors (ICIs) within 
different risk groups, the tumor immune dysfunction exclusion 
(TIDE) score was assessed using the limma (version 3.54.2) 
and ggpubr (version 0.6.0) R packages. Mutation frequencies 
and cancer maps for patients with LUAD were generated using 
the maftools (version 2.14.0) R package (23). Furthermore, 
tumor mutation burden (TMB) of patients in the different 
risk groups was analyzed using TCGA somatic mutation data. 
Based on the median TMB score, patients with LUAD were 
categorized into low and high‑risk TMB groups. Differences 
in TMB and survival between the two risk sets were analyzed 
using the survival (version3.5.5) and survminer (version0.4.9) 
R packages. To predict drug responses in the different risk 
groups of patients with LUAD, the oncoPredict (version 0.2) 
and limma (version 3.54.2) R packages were employed (23). 
This package was used to calculate the half‑maximal inhibi‑
tory concentration (IC50) values of commonly used anti‑tumor 
drugs and to predict drug reactions in the various risk groups.

Cell culture and reverse transcription‑quantitative (RT‑q)
PCR analysis. The human LUAD A549 cell line and the 
human normal lung epithelial BEAS‑2B cell line were 

Table I. Clinical characteristics of 3 sets of data randomly generated using data from The Cancer Genome Atlas database.

Clinical features Total set, n (%) Train set, n (%) Test set, n (%) P‑value

Age, years    0.8184
  ≤65 239 (47.14) 122 (48.03) 117 (46.25) 
  >65 258 (50.89) 128 (50.39) 130 (51.38) 
Sex    0.451
  Female 272 (53.65) 141 (55.51) 131 (51.78) 
  Male 235 (46.35) 113 (44.49) 122 (48.22) 
Stage    0.668
  I 272 (53.65) 131 (51.57) 141 (55.73) 
  II 120 (23.67) 66 (25.98) 54 (21.34) 
  III 81 (15.98) 41 (16.14) 40 (15.81) 
  IV 26 (5.13) 13 (5.12) 13 (5.14) 
T stage    0.6613
  1 169 (33.33) 87 (34.25) 82 (32.41) 
  2 271 (53.45) 130 (51.18) 141 (55.73) 
  3 45 (8.88) 23 (9.06) 22 (8.70) 
  4 19 (3.75) 12 (4.72) 7 (2.77) 
N stage    0.177
  0 327 (64.5) 162 (63.78) 165 (65.22) 
  1 95 (18.74) 54 (21.26) 41 (16.21) 
  2 71 (14) 31 (12.20) 40 (15.81) 
  3 2 (0.39) 2 (0.79) 0 (0.00) 
M    >0.999
  0 338 (66.67) 165 (64.96) 173 (68.38) 
  1 25 (4.93) 12 (4.72) 13 (5.14) 

T, tumor; N, node; M, metastasis.
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purchased from Procell Life Science &Technology Co., Ltd. 
Cells were cultured in RPMI‑1640 medium (Thermo Fisher 
Scientific, Inc.) supplemented with 10% fetal bovine serum 
(Gibco; Thermo Fisher Scientific, Inc). The cell cultures were 
maintained in a humidified environment at 37˚C with 5% CO2. 
The cell density for RNA extraction was 1x106. Total RNA 
was extracted using the TRIzol® reagent (Thermo, Fisher 
Scientific, Inc.), and cDNA was obtained by reverse transcrip‑
tion using a reverse transcriptase kit (Takara Biotechnology 
Co., Ltd.) . The cDNA was amplified using the SYBR™ Green 
(Hunan Accurate Bio‑Medical Technology Co., Ltd.). RNA 
extraction, cDNA synthesis and qPCR were all performed 
according to the manufacturer's protocols. The reaction 
volume was 20 µl, including 10.0 µl SYBR ™ Green, 0.5 µl 
each primer, 2 µl cDNA and 7.0 µl nucleic acid‑free water. The 
thermocycling conditions were as follows: Initial denaturation 
at 95˚C for 30 sec, followed by 40 cycles of 95˚C for 5 sec, 
55˚C for 30 sec and 72˚C for 30 sec. β‑actin was used as an 
internal control. The mRNA expression levels were quantified 
using the 2‑ΔΔCq method and normalized against expression 
levels of β‑actin (24). The primer sequences used are presented 
in Table II.

Statistical analysis. All statistical analyses were performed 
using R software (version 4.2.2) and GraphPad Prism 
(version 8.0.2; Dotmatics). Differences between the two groups 
were assessed using Student's t‑test. The log‑rank test and two 
stage hazard rate comparison were used to assess differences 
between the K‑M curves. Univariate and multivariate Cox 
regression analyses were performed to identify prognostic 
risk factors associated with LUAD. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Clinical data of patients with LUAD. The present study 
included a total of 507 patients with LUAD, who were divided 
into training and testing sets in a 1:1 ratio. The training 
set comprised 253 patients with LUAD and was used for 
constructing the prognostic model and identifying prognostic 
DR‑lncRNAs. The remaining 254 patients with LUAD formed 
the testing set, which was used to evaluate the accuracy of the 
risk model developed from the training set. A comprehensive 
comparison of key clinical characteristics, including age, sex, 
grading and staging, as well as tumor (T), metastasis (M) and 
node (N) status, among the training set, the testing set and 
the total set of patients was performed (Table I). Statistical 
analysis revealed no statistically significant differences in 
these clinical characteristics among the three sets. These 
findings suggested that the training, testing and all sets were 
adequately matched in terms of important clinical variables, 
minimizing potential confounding effects when evaluating the 
accuracy of the prognostic model.

Construction of the DR‑lncRNA risk model for LUAD. The 
experimental plan of the present study was summarized in 
a flow diagram (Fig. 1). Pearson's correlation analysis using 
the limma (version 3.54.2) R package (15) was performed on 
expression levels of ten disulfidptosis‑associated genes using 
RNA‑seq data from patients with LUAD, sourced from the 

TCGA database. This analysis identified 91 differentially 
expressed lncRNAs (Table SI). To visualize the connections 
between these ten disulfidptosis genes and the 91 lncRNAs, 
a co‑expression network was constructed using a Sankey 
diagram (Fig. 2A). Subsequently, univariate Cox regres‑
sion analysis was performed to identify DR‑lncRNAs that 
were associated with OS, leading to the identification of 17 
lncRNAs significantly correlated with survival (Fig. 2B). 
To further reduce dimensionality and refine the selection of 
relevant DR‑lncRNAs, the lasso algorithm was used to further 
screen these 17 DR‑lncRNAs. Finally, nine DR‑lncRNAs were 
identified that exhibited significant associations with OS in 
patients with LUAD. (Fig. 2C and D). These DR‑lncRNAs 
were identified as U91328.1, LINC00426, MIR1915HG, 
TMPO‑AS1, TDRKH‑AS1, AL157895.1, AL512363.1, 
AC010615.2 and GCC2‑AS1. Using the expression levels of 
these nine DR‑lncRNAs and the coefficients derived from the 
Cox regression model, a risk score was subsequently calcu‑
lated. The risk score formula yielded the following calculation: 
Risk score=(‑0.408862554222557 x U91328.1)+(‑0.412743922
052189 x LINC00426)+(0.23703345398073 x MIR1915HG)+ 
(0.225351354331566 x TMPO‑AS1)+(‑0.329373779699515 x 
TDRKH‑AS1)+(‑0.552378924475953 x AL157895.1)+(0.377
529261105432 x AL512363.1)+(‑0.225534318729328 x AC0
10615.2)+(0.565660789000357 x GCC2‑AS1). Additionally, 

Table II. lncRNA primer sequences

lncRNA Sequence (3'‑5')

Homo‑β‑actin  F: CCTTCCTGGGCATGGAGTC
 R: TGATCTTCATTGTGCTGGGTG
Homo‑LINC00426  F: CACTCCCTACACGTTCTAACCA
 R: ATCCCCCATTTGCTGTGTC
Homo‑TDRKH‑AS1  F: CACCTCTAGGCCAATTACCG
 R: GGTGCCACTCATGATTCAACG
Homo‑AC010615.2  F: CGGTGAACTGATGGTGCTGG
 R: GGCTCATGGTTGGGCTATCTTC
Homo‑MIR1915HG  F: CCGCGCTCACGATTGCTTT
 R: GCAAGCAGCATATAGCCTCGG
Homo‑TMPO‑AS1  F: CAAAAGACCCCAGAGCCGA
  ACT
 R: TTGGGGCGTGGGCGAAG
Homo‑GCC2‑AS1  F: TTTCAGCACCCCAGGCTAGT
 R: TCACCGCCATCCTTGTTGTAG
Homo‑AL157895.1  F: AGTTCTCTGAGGGATAAGGAA
  CAT
 R: TTCTAGGCATTCACAGGGTGC
Homo‑U91328.1  F: ATGGGTCTCCGCTGATGCTT
 R: CTCAGACCTGTAGTCTTCCAC
  CAG
Homo‑AL512363.1  F: CCTCTGTCTCACTTCAGCTGTT
 R: TGATTGGAAAACAAGACGC
  TGG

F, forward; R, reverse.
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Figure 1. Schematic plan of the present study. TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; lncRNA, long non‑coding RNA; DRG, 
disulfidptosis‑related gene; ROC, receiver operative characteristic; RT‑qPCR, reverse transcription‑quantitative PCR; GO, Gene ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis.
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Figure 2. Construction of DR‑lncRNA risk model. (A) Sankey diagram of the DR‑lncRNAs associated with the ten disulfidptosis‑associated genes (GYS1, 
LRPPRC, NCKAP1, NDUFA11, NDUFS1, NUBPL, OXSM, RPN1, SLC3A2 and SLC7A11). (B) Univariate Cox regression analysis indicated that the 17 
lncRNAs were significantly associated with DR genes. (C and D) Lasso regression analysis identified nine DR‑lncRNAs. (E) Correlation heatmap analysis of 
the ten DR genes, with nine independent prognosis lncRNAs. *P<0.05, **P<0.01 and ***P<0.001. DR‑, disulfidptosis‑related. DR, disulfidptosis‑related.
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correlation testing was performed to examine the association 
between the ten disulfidptosis genes and the nine DR‑lncRNAs 
(Fig. 2E). This analysis provided valuable insights into the 
potential associations and interactions among these genes and 
lncRNAs in the context of disulfidptosis and LUAD.

Validation of the model of the disulfidptosis‑related lncRNA 
signature (DRlncSig). The testing set and the total set of patient 
samples were used to assess the reliability of the established risk 
model. The risk curves and scatter plots of the test groups were 
generated to evaluate the performance of the risk model. The 
results demonstrated that, compared with the high‑risk group, 
the low‑risk group of patients with LUAD exhibited lower risk 
scores, longer survival times and an improved prognosis. A 
heatmap analysis was performed to investigate the potential 
role of the specific DRlncSig in LUAD. The heatmap indicated 
that MIR1915HG, TMPO‑AS1, AL512363.1 and GCC2‑AS1 
may act as risk factors for LUAD (Fig. 3A). Furthermore, 
K‑M curves were used to examine the differences in OS and 
progression‑free survival (PFS) between the different risk 
groups. The results revealed that patients classified as low risk 
had significantly better OS and PFS values compared with 
those classified as high risk (Fig. 3C and D). These signifi‑
cant differences in the testing set were consistent with those 
observed in the total set of patients (Fig. 3B, E and F). Taken 
together, these findings suggested that the established risk 
model based on the identified DRlncSig was reliable and was 
capable of stratifying patients with LUAD into distinct risk 
groups with significantly different clinical outcomes in terms 
of OS and PFS.

Effectiveness evaluation of the DRlncSig. To evaluate the 
independent prognostic value of the DR‑lncRNAs, both 
univariate and multivariate Cox regression analyses were 
performed. The results of the univariate Cox regression 
analysis showed that variables such as T, N, M, stage and risk 
score were significantly associated with OS in patients with 
LUAD (Fig. 4A). Subsequently, the multivariate Cox regres‑
sion analysis demonstrated that the risk score could serve as 
an independent prognostic factor for predicting OS in patients 
with LUAD (Fig. 4B). Collectively, these findings suggested 
that the risk model constructed using the nine DR‑lncRNAs 
had potential as an independent prognostic factor for patients 
with LUAD. Furthermore, ROC analysis (Fig. 4D) from the 
training set, testing set and total set, and C‑index assessment 
from the total set (Fig. 4C) were performed to validate the 
prognostic capabilities of the lncRNA signature. The results 
obtained indicated that the risk score exhibited the highest 
area under the curve (AUC) value (AUC=0.706), and higher 
C‑index, compared with other clinical risk indicators in 
the total set. In the training set, the AUC values at 1, 3 and 
5 years were 0.689, 0.727 and 0.669, respectively. Similarly, in 
the testing set, the ROC curve showed AUC values of 0.663, 
0.682 and 0.648 at 1, 3 and 5 years, respectively, providing 
strong evidence for the reliability of the model. In the total 
set, the AUC values at 1, 3 and 5 years were 0.673, 0.706 and 
0.661 respectively (Fig. 4E). Additionally, a nomogram was 
generated, incorporating multiple clinical factors, including 
T, N, sex, age, stage and risk scores, to enhance the predic‑
tive ability of the prognosis of LUAD patients for 1‑, 3‑ and 

5‑year survival (Fig. 4F). The calibration curve was used to 
assess accuracy of the nomogram, confirming its reliability 
(Fig. 4G).

K‑M survival curve analysis of OS in high‑ and low‑risk 
groups of TCGA database with different clinic‑pathological 
characteristics. Further analysis was performed to examine 
the predictive ability of the constructed signature in subgroups 
with different clinical characteristics. The results illustrated 
that the risk model successfully differentiated between 
high‑ and low‑risk groups, regardless of age, sex, TNM and 
the pathological stage (Fig. 5). These findings suggested that 
the established signature maintained its predictive ability 
across diverse subgroups with varying clinical characteristics. 
Therefore, the risk model based on the identified DR‑lncRNAs 
was demonstrated to be robust and applicable for risk strati‑
fication in patients with LUAD, irrespective of demographic 
factors and disease stage.

Investigation of the grouping ability of the proposed model via 
PCA. PCA is a commonly used technique for dimensionality 
reduction, which transforms a large number of variables into a 
smaller set of principal components. These components retain 
most of the original dataset's information while reducing its 
dimensionality. In the present study, PCA was used to inves‑
tigate whether the DRlncSig could effectively discriminate 
between the high‑ and low‑risk patient groups. The results of 
the PCA analysis, presented in Fig. 6, clearly demonstrate a 
distinct separation between patients in the high‑ and low‑risk 
groups on the basis of their DRlncSig profiles. Taken together, 
these findings suggested that the expression patterns of the 
identified DRlncSig had the potential to accurately differen‑
tiate between the high‑ and low‑risk groups, suggesting that 
the DRlncSig may serve as a promising biomarker for either 
risk stratification or prognosis prediction in the studied disease 
context.

Functional enrichment analysis. To understand the under‑
lying mechanisms contributing to the significant differences 
between the different risk groups, GO and KEGG enrich‑
ment analyses were performed, based on the nine identified 
DR‑lncRNAs. The GO analysis revealed that the DEGs 
were significantly enriched in immune‑related BP, including 
‘negative regulation of protein hydrolysis’, ‘humoral immune 
response’, ‘negative regulation of endopeptidase activity’ and 
‘negative regulation of peptidase activity’. In terms of CC, 
these DEGs were notably enriched in the ‘external side of 
plasma membrane’ and the ‘collagen‑containing extracellular 
matrix’. Furthermore, in terms of MF, the DEGs were involved 
in ‘receptor ligand activity’ and ‘signaling receptor activator 
activity’ (Fig. 7A). Moreover, the KEGG enrichment analysis 
demonstrated that these DEGs were primarily enriched in 
pathways such as the ‘PI3K‑AKT signaling’, ‘amoebiasis’ 
and ‘focal adhesion’ pathways (Fig. 7B). In addition, in the 
high‑risk group, GSEA revealed significant enrichment 
of pathways associated with ‘embryonic skeletal system 
morphogenesis’, ‘intermediate filament‑based process’ and 
the ‘intermediate filament cytoskeleton’ (Fig. 7C). However, 
the low‑risk group exhibited significant enrichment of path‑
ways associated with ‘spliceosomal snRNP assembly’ and the 
‘nucleosome’ (Fig. 7D).
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Figure 3. The model validation of the DRlncSig. (A) Distribution of risk scores, survival status and survival time patterns of patients in different risk groups in 
the testing set, along with the expression heatmap of the nine DR‑lncRNAs. (B) Distribution of risk scores, survival status and survival time patterns of patients 
in the all set and the expression heatmap of the nine DR‑lncRNAs. (C) OS and (D) PFS of patients in different risk groups in the testing set. (E) OS and (F) PFS 
of patients in different risk groups in the all set. DRlncSig, disulfidptosis‑related lncRNA signature; OS, overall survival; PFS, progression‑free survival.
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Landscape analysis of immune infiltration and immuno‑
therapy. The TME fulfills a crucial role in the progression 
and treatment of LUAD tumors (25,26). In the present study, 
the TME in the different risk groups was investigated using 
multiple immune evaluation algorithms. First, the ESTIMATE 
algorithm was used to assess TME scores. The immune score, 
ESTIMATE score and stromal score of patients with LUAD 

in the low‑risk group were significantly higher compared 
with those in the high‑risk group (Fig. 8A). These findings 
suggested that the TME characteristics differed between the 
two risk groups, potentially influencing both the prognosis and 
treatment response in patients with LUAD. Subsequently, the 
CIBERSORT algorithm was used to analyze the distribution 
of 22 immune cell types based on the risk model. The results 

Figure 4. Effectiveness evaluation of the DRlncSig. Forest plots of (A) univariate and (B) multivariate Cox regression analysis. (C) C‑index in the all set. 
(D) ROC curves of clinical risk indicators and risk scores in the training, testing and all sets. (E) ROC curves for 1‑, 3‑ and 5‑year OS in the risk model of 
the training, testing and all sets. (F) Nomogram and (G) calibration curves of the nomogram. DRlncSig, disulfidptosis‑related lncRNA signature; OS, overall 
survival; ROC, receiver operating characteristic; T, tumor; N, node; M, metastasis.
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obtained indicated differences in the distribution of immune 
cells between the risk groups (Fig. 8B). Specifically, in the 
low‑risk group, there was a lower proportion of M0 macro‑
phages, activated mast cells and natural killer (NK) cells in 

the resting state compared with the high‑risk group. However, 
resting memory CD4+ T cells, naive B cells, resting dendritic 
cells and resting mast cells accounted for a larger proportion 
in the low‑risk group (Fig. 8C). Furthermore, the ssGSEA 

Figure 5. Kaplan‑Meier survival curve analysis of the OS rate in the high‑ and low‑risk groups of TCGA database with different clinical pathological characteristics: 
(A) age ≤65 years, (B) age >65 years, (C) males, (D) females, (E) T1‑T2, (F) T3‑T4, (G) N0, (H) N1‑N3, (I) M0, (J) stage I‑II and (K) stage III‑IV. (L) Heatmap of the 
clinical pathological characteristics. *P<0.05, **P<0.01 and ***P<0.001. OS, overall survival; TCGA, The Cancer Genome Atlas; T, tumor; N, node; M, metastasis.
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algorithm was used to analyze immune cell infiltration and 
immune function in the different risk groups. The results 
demonstrated a significant increase in activated DCs), B cells, 
CD8+ T cells, DCs, mast cells, neutrophils, plasmacytoid DCs, 
T helper cells, T follicular helper, Th1 cells and tumor‑infil‑
trating lymphocytes in the low‑risk group. Regarding the 
immunological function, cytolytic activity, human leukocyte 
antigens, IDCS, T cell co‑inhibition, T cell co‑stimulation and 
type II IFN response were found to be significantly activated in 
the low‑risk group (Fig. 8D). These findings suggested that the 
low‑risk group may exhibit a more robust and active immune 
response against the tumor. Finally, the TIDE algorithm was 
used to estimate the relationship between the risk groups and 
immune therapy response. The results obtained suggested that 
tumors in the high‑risk group were significantly more likely 
to experience immune escape, and to exhibit worse treatment 
effects (Fig. 8E).

Somatic mutation landscape analysis. A comparison of 
somatic mutations between the different risk groups was 
performed in the patients with LUAD. Among the 171 samples 
in the high‑risk group, 158 samples (92.4%) had mutations, 
whereas in the low‑risk group, 137 out of 154 samples (88.96%) 
had mutations. The top 15 genes driving these mutations 
were presented (Fig. 9A and B). Furthermore, the TMB was 

analyzed in the different risk groups; however, the difference 
was statistically significant (Fig. 9C). Subsequently, based on 
the median TMB score, patients with LUAD were divided 
into a low TMB and high TMB group. K‑M analysis revealed 
that the high TMB group exhibited significantly improved OS 
rates compared with the low TMB group (Fig. 9D). To predict 
the prognosis of patients with LUAD and to determine which 
score had the greater predictive value, the TMB and risk 
scores were integrated. According to K‑M analysis, patients 
with high TMB and low risk scores had the highest OS rate, 
whereas patients with low TMB and high‑risk scores had the 
lowest OS (Fig. 9E).

Drug‑sensitivity prediction. To improve the effectiveness 
and targeting of treatment for LUAD, the IC50 values of 
different anti‑tumor drugs in the high‑ and low‑risk groups 
were evaluated. The drug‑sensitivity analysis revealed that 
samples in the high‑risk group exhibited a significantly higher 
level of drug‑sensitivity to crizotinib, erlotinib and savolitinib 
compared with samples in the low‑risk group (Fig. 10A‑C). 
However, high‑risk group samples exhibited a significantly 
lower level of drug‑sensitivity to axitinib, ribociclib and toza‑
sertib compared with the low‑risk group (Fig. 10D‑F). These 
results suggested that patients in the low‑risk group may have 
a more favorable response towards axitinib, ribociclib and 

Figure 6. PCA in different groups. PCA for (A) gene expression, (B) the ten disulfidptosis‑related genes, (C) DR‑lncRNAs and (D) DRlncSig are shown. PCA, 
principal component analysis; DR, disulfidptosis‑related; DRlncSig, disulfidptosis‑related lncRNA signature.
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tozasertib, whereas those in the high‑risk group may respond 
better to treatment with crizotinib, erlotinib and savolitinib.

Cell‑based in vitro experimental validation. To further vali‑
date the reliability of the risk model constructed using the 
DR‑lncRNAs, RT‑qPCR analysis was performed to assess 

the mRNA expression levels of DR‑lncRNAs in LUAD. 
Subsequently, RT‑qPCR analysis was performed on the 
A549 and BEAS‑2B cells. The results obtained revealed 
significant differences in the expression levels of the eight 
tested DR‑lncRNAs when compared between the normal 
and LUAD cell lines. Specifically, the mRNA expression 

Figure 7. Functional enrichment analyses. (A) GO analysis, (B) KEGG analysis (15 pathways enriched in KEGG); (C) GSEA top 5 pathways enriched in the 
high‑risk group; and (D) GSEA Top 5 pathways enriched in the low‑risk group are presented. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; GSEA, gene set enrichment analysis.
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levels of U91328.1, AC010615.2, MIR1915HG, TMPO‑AS1, 
LINC00426, TDRH‑AS1, AL512363.1 and GCC2‑AS1 were 
significantly higher in the A549 cells, compared with the 
BEAS‑2B cells. Conversely, the mRNA expression level of 
AL157895.1 was significantly lower in the A549 cells (Fig. 11).

lncRNA GCC2‑AS1 is overexpressed in LUAD. The validity 
of the model was demonstrated using lncRNA GCC2‑AS1, 
which had the highest risk score coefficient. First, to compare 
the expression of GCC2‑AS1 between the LUAD and normal 
tissues, its expression in tumor tissues and normal lung tissues 
was analyzed using data from TCGA database. GCC2‑AS1 

was demonstrated to be significantly upregulated in LUAD 
tissues (Fig. 12A). Additionally, in paired LUAD cancer 
samples and adjacent normal samples from TCGA, the expres‑
sion level of GCC2‑AS1 was significantly higher in LUAD 
samples compared with their matched adjacent normal samples 
(Fig. 12B). The aforementioned results were consistent with the 
aforementioned RT‑qPCR results for GCC2‑AS1 in the present 
study. An ROC analysis showed that GCC2‑AS1 had a notable 
ability to discriminate between LUAD patients and healthy indi‑
viduals, with an AUC of 0.761 (Fig. 12C), which suggested that 
GCC2‑AS1 could be used to help identify people with LUAD. 
Subsequently, to examine the clinical relevance of GCC2‑AS1 

Figure 8. Immune infiltration landscape analysis and immunotherapy. (A) The ESTIMATE algorithm to assess the differences in the immune score, stromal 
score and estimate score between the two groups. (B and C) The CIBERSORT algorithm was used to evaluate the difference of 22 immune cells between 
the high‑ and low‑risk groups. (D) The ssGSEA algorithm was used to analyze the differences in immune cells and immune function between the high‑ and 
low‑risk groups. (E) TIDE score was calculated and compared between the high and low‑risk groups. *P<0.05, **P<0.01 and ***P<0.001. ssGSEA, single‑sample 
gene set enrichment analysis; TIDE, tumor immune dysfunction exclusion.
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in LUAD, the patients with LUAD were divided into high and 
low‑expression groups, based on the median expression level 
of GCC2‑AS1. The correlations between GCC2‑AS1 expres‑
sion and clinical parameters, including stage, age and gender, 

were then evaluated. The results obtained showed significant 
statistical differences in the expression levels with respect to 
stage, gender and age (Fig. 12D). K‑M analysis showed that 
patients with LUAD with a high‑expression of GCC2‑AS1 had 

Figure 9. Analysis of the somatic mutation landscape. Mutation distribution of patients in the (A) low‑risk group and (B) high‑risk group. (C) Differences in 
TMB scores among different risk groups. (D) K‑M analysis of OS of patients in the different TMB groups. (E) K‑M analysis of OS among the four groups 
according to the TMB scores and risk scores. TMB, tumor mutation burden; K‑M, Kaplan‑Meier; OS, overall survival.
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significantly worse OS rates (Fig. 12E). Furthermore, ROC 
curve analysis revealed AUC values of 0.614, 0.601 and 0.590 
at 1, 3 and 5 years, respectively, which indicated the reliability 
of GCC2‑AS1 as a prognostic factor (Fig. 12F). To evaluate the 
independent prognostic value of GCC2‑AS1, both univariate 
and multivariate Cox regression analyses were performed. The 
results of the univariate Cox regression analysis showed that 

variables such as T, N, stage and the expression of GCC2‑AS1 
were significantly associated with OS in patients with LUAD 
(Fig. 12G). Subsequently, multivariate Cox regression analysis 
indicated that GCC2‑AS1 could serve as an independent 
prognostic factor for predicting OS in patients with LUAD 
(Fig. 12H). There have been few previous studies on the asso‑
ciation between GCC2‑AS1 and LUAD.

Figure 10. Analysis of therapeutic sensitivity. Sensitivities to (A) crizotinib, (B) erlotinib, (C) savolitinib, (D) axitinib, (E) ribociclib and (F) tozasertib.
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Discussion

PCD is a fundamental process in multicellular organisms that 
regulates cell proliferation, maintains tissue homeostasis and 
eliminates harmful or unnecessary cells from the organism (27). 
Recently, a novel form of PCD termed disulfidptosis has been 
proposed (5). Disulfidptosis involves the accumulation of irre‑
ducible disulfides, leading to disulfide stress, and ultimately 

resulting in disulfide‑driven apoptosis. Extensive research on 
lncRNAs has revealed their significant role in promoting or 
inhibiting various types of tumors, including LUAD, via the 
regulation of gene signals (28). LncRNAs are also potential 
biomarkers for diagnostic and prognostic purposes (29,30). 
However, the specific role of DR‑lncRNAs in LUAD is 
very limited. For example, Zhang et al (31) identified 127 
DRlncRNAs and established a prognostic model that consisted 

Figure 11. Expression levels of lncRNAs. Expression levels of (A) AC010615.2, (B) AL157895.1, (C) GCC2‑AS1, (D) LIN00426, (E) MIR1915HG, 
(F) TDRKH‑AS1, (G) TMPO‑AS1, (H) U91328.1 and (I) AL512363.1 in BEAS‑2B and A549 cells (*P<0.05, ***P<0.001 and ****P<0.0001).
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Figure 12. LncRNA GCC2‑AS1 was overexpressed in LUAD. (A) Expression of the lncRNA GCC2‑AS1 in LUAD based on TCGA‑LUAD dataset. 
(B) Expression levels of the lncRNA GCC2‑AS1 in paired adjacent normal tissues and paired samples. (C) ROC analysis of GCC2‑AS1 expression indicates 
its high ability to discriminate tumor from non‑tumor samples. (D) Heatmap of clinical pathological data. (E) The association between high and low expression 
of GCC2‑AS1 and OS in the TCGA database. (F) ROC curves for 1‑, 3‑ and 5‑year OS in the expression levels of GCC2‑AS1. Forest plots of (G) univariate 
and (H) multivariate Cox regression analysis. *P<0.05 and ***P<0.001. LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; OS, overall survival; 
PFS, progression‑free survival; ROC, receiver operating characteristic.
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eight of them (KTN1‑AS1, AL365181.3, MANCR, LINC01352, 
AC090559.1, AC093673.1, AP001094.3 and MHENCR) was 
verified. Song et al (32) developed a prognostic model based 
on a different set of five DRlncRNAs (AL365181.2, GSEC, 
AC093673.1, AC012615.1 and AL606834.1). The present study 
contributes to the growing body of research on the prognostic 
potential of DRlncRNAs in LUAD.

In the present study, univariate and lasso analyses were 
conducted, which lead to the identification of nine DR‑lncRNAs 
associated with the prognosis of LUAD. Based on these 
findings, a prognostic model was constructed. Through the 
incorporation of clinical features and risk scores associated 
with prognosis, a nomogram was developed that could lead 
to an improvement in the prediction of OS in LUAD for 1, 
3 and 5 years. To gain further insights into the differences 
between the high and low‑risk groups, functional enrichment 
analysis was performed, and immune‑associated data were 
analyzed. It was observed that patients with poor immuno‑
therapy outcomes had higher risk scores. This suggested that 
the identified DR‑lncRNAs may have a role in modulating 
the response to immunotherapy in LUAD. Integrating TMB 
with the risk score indicated potential for the provision of a 
more comprehensive prognostic assessment and in helping 
to identify patients with distinct OS outcomes. Furthermore, 
the present study also demonstrated that samples from the 
high‑risk group of patients exhibited greater drug‑sensitivity 
to crizotinib, erlotinib and savolitinib. This finding suggested 
that these targeted therapies may be of use in the treatment of 
LUAD, particularly in patients classified as high risk on the 
basis of the prognostic model. The research methodology of 
the present study is similar to those previously reported by 
Zhang et al (31) and Song et al (32), as lasso and Cox methods 
were used to construct a model of DRlncRNAs in LUAD. 
The risk model constructed using the DRlncRNA profiles 
identified in the present study, was similar to those previously 
reported by Zhang et al (31) and Song et al (32), and could also 
predict the prognosis of LUAD patients and their responses 
to immunotherapy and targeted therapy. Nevertheless, the 
lncRNA names identified in risk model of the present study 
differ from those reported in previous studies (31,32), which 
highlighted the importance of further identification of novel 
potential prognostic markers related to disulfidptosis in the 
present risk model. Variations in constructing risk models 
and identifying DRlncRNAs may arise from multiple factors, 
such as selecting different sets of disulfidptosis genes for the 
screening of DRlncRNAs. Specifically, as research related to 
disulfidptosis is in its early stages, the specific set of disul‑
fidptosis genes has not yet been clearly defined. Guided by the 
principles of reliability and credibility, the 10 disulfidptosis 
genes selected in the present study were based on the initial 
study be Liu et al (5) which proposed disulfidptosis, repre‑
senting the core genes initially identified for disulfidptosis, 
whereas the genes selected in the other two studies may have 
referenced additional literature (33,34), comprising 16 and 25 
disulfidptosis genes, respectively. The risk model produced 
by the present study had a higher AUC value (AUC=0.727, 
compared to 0.673 (31) and 0.681 (32), which indicated that the 
present model may demonstrate greater clinical applicability, 
in terms of prognosis prediction. In summary, the present 
study adds to understanding of the prognostic significance of 

DRlncRNAs in LUAD, offering improved predictive models 
and highlighting potential therapeutic targets.

The signature used in the present study included nine 
lncRNAs, namely U91328.1, LINC00426, MIR1915HG, 
TMPO‑AS1, TDRKH‑AS1, AL157895.1, AL512363.1 and 
AC010615.2. Several of these lncRNAs have been previously 
reported in different cancer types. For example, U91328.1 
has been reported to be associated with poor prognosis 
in colon cancer (35). TMPO‑AS1 has previously been 
reported to be linked to ferroptosis and iron metabolism in 
LUAD (36). TDRKH‑AS1 has been reported to promote the 
proliferation and invasion of colorectal cancer cells through 
the Wnt signaling pathway (37). LINC00426 has been 
reported to accelerate LUAD progression via the regula‑
tion of miR‑455‑5p (38). MIR1915HG has been reported to 
be associated with hypoxia in gastric adenocarcinoma (39). 
AL157895.1 has been reported to be associated with the 
occurrence and development of bladder cancer (40). However, 
to the best of our knowledge, no previously published studies 
have reported on roles for the other two lncRNAs, AL512363.1 
and AC010615.2. The present study has shown that these nine 
lncRNAs may exert a role in the occurrence and development 
of LUAD and are closely associated with the underlying 
mechanism of disulfidptosis.

Changes which occur in the TME fulfill a crucial role in 
the progression of LUAD (25). The quantity and quality of 
tumor‑infiltrating lymphocytes are key factors that forecast 
prognostic and therapeutic benefits in many types of cancer, 
such as lung adenocarcinoma, oral squamous cell carcinoma 
and epithelial ovarian cancer (41‑44). The results of the present 
study suggested that the risk groups identified based on the 
prognostic model displayed distinct characteristics in terms 
of TME composition, immune cell distribution and immune 
function. Specifically, it was observed that the low‑risk group 
exhibited a higher TME score. Furthermore, the present 
study revealed that the low‑risk group exhibited increased 
immune cell infiltration and activation of immune function. 
Previous studies have found that an increased number of M0 
macrophages is associated with poor prognosis in LUAD (45), 
while higher levels of CD8+ T lymphocyte and B lympho‑
cyte infiltration are associated with better overall survival in 
LUAD (46), which is consistent with our research findings. 
This suggested that the immune system in the low‑risk group 
is more responsive and active against tumor cells. By contrast, 
the high‑risk group may have a more immunosuppressive 
TME, which could contribute to a reduced immune response 
and potential resistance to immune therapy. Considered 
together, these findings suggested that the immune profiles and 
TME characteristics differed between the high and low‑risk 
groups. The low‑risk group, with a more favorable immune 
profile, may have a better potential for positive treatment 
outcomes, including immunotherapy. These insights into the 
associations between risk groups, TME and immune function 
have provided information for understanding the immuno‑
logical aspects of LUAD and may aid in the development of 
personalized treatment strategies.

ICIs have been reported to show promise as effective 
immunotherapies for numerous types of cancer. These inhibi‑
tors target specific molecules, such as programmed cell death 
protein 1 (PD‑1)/programmed death‑ligand 1 (PD‑L1) and 
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cytotoxic T‑lymphocyte associated protein 4, to enhance 
anti‑tumor responses and to prevent tumor cells from evading 
immune surveillance (47,48). TMB has emerged as an 
important predictive marker for the response to ICIs (49‑51). 
High TMB has been reported to be associated with a greater 
therapeutic efficacy of PD‑1 or PD‑L1 inhibitors (52). A study 
has reported the correlation between high TMB and improved 
treatment outcomes with ICIs (53). In the present study, the 
potential of the proposed markers to serve as reliable immune 
biomarkers for tumor treatment was assessed by analyzing the 
TMB and TIDE scores in the different risk groups. This anal‑
ysis indicated the importance of somatic mutations and TMB 
in LUAD. Through the integration of TMB with the risk score 
derived from the prognostic model, the aim was to provide 
a more comprehensive prognostic assessment, and to identify 
patients with distinct OS outcomes. Overall, the findings of the 
present study indicated the importance of considering TMB 
and its integration with the risk score in evaluating immune 
responses and predicting treatment outcomes in LUAD. This 
information could be valuable for guiding personalized treat‑
ment decisions, and in of the improvement of patient outcomes 
in the context of immunotherapy.

As targeted therapy are conventional therapeutic strategies 
for intermediate and advanced LUAD (54), the sensitivity 
of anti‑cancer drugs among different risk groups of patients 
with LUAD was also assessed. This analysis provided insights 
into individualized treatment strategies. Our results showed 
the IC50 values of targeted therapeutic agents such as crizo‑
tinib (55), erlotinib (56) and savolitinib (57) exhibited a notable 
decrease in patients with high risk scores, implying that these 
patients may display a more favorable treatment response to 
these drugs. With this approach, it will be possible to better 
match patients with the most appropriate anti‑tumor drugs, 
leading to more effective and targeted therapies.

The present study did, however, have certain limitations. 
The disulfidptosis gene set selected was based on the study 
by Liu et al (5), and included GYS1, LRPPRC, NCKAP1, 
NDUFA11, NDUFS1, NUBPL, OXSM, RPN1, SLC3A2 
and SLC7A11. It has subsequently been demonstrated that 
ACTB is also associated with disulfidptosis (58). In future 
studies, ACTB should be included in the gene set for disul‑
fidptosis and in‑depth research specifically targeting ACTB 
is required. Furthermore, the present data were derived from 
the TCGA database and lacked external dataset validation. 
Although the differential expression of these lncRNAs was 
validated in a LUAD cell line and a human normal cell 
line using RT‑qPCR analysis, and bioinformatics analysis 
was performed to examine the expression of the lncRNA 
GCC2‑AS1 and its relationship with lung adenocarcinoma, 
further in vivo and in vitro experiments are needed to 
confirm the impact of DR‑lncRNAs on the occurrence and 
progression of LUAD.

In conclusion, in the present study a novel DRlncSig was 
constructed, which provided a novel index to predict the efficacy 
of therapeutic interventions and the prognosis of patients with 
LUAD, which could be used to guide personalized treatments.
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