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Plasmodium Strain Determines Dendritic Cell
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The severity of malaria can range from asymptomatic to lethal infections involving severe anaemia and cerebral
disease. However, the molecular and cellular factors responsible for these differences in disease severity are poorly
understood. Identifying the factors that mediate virulence will contribute to developing antiparasitic immune
responses. Since immunity is initiated by dendritic cells (DCs), we compared their phenotype and function following
infection with either a nonlethal or lethal strain of the rodent parasite, Plasmodium yoelii, to identify their contribution
to disease severity. DCs from nonlethal infections were fully functional and capable of secreting cytokines and
stimulating T cells. In contrast, DCs from lethal infections were not functional. We then transferred DCs from mice with
nonlethal infections to mice given lethal infections and showed that these DCs mediated control of parasitemia and
survival. IL-12 was necessary for survival. To our knowledge, our studies have shown for the first time that during a
malaria infection, DC function is essential for survival. More importantly, the functions of these DCs are determined by
the strain of parasite. Our studies may explain, in part, why natural malaria infections may have different outcomes.
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Introduction

The factors that determine the virulence of Plasmodium are
poorly understood. While adhesion of parasitized red blood
cells (pRBCs) to the vascular endothelium in the brain [1-4],
placenta [5-7], and other tissues is believed to be critical,
inflammatory cytokines have been implicated in both human
and rodent diseases [8-18]. Inappropriate cellular responses
[19-23] or loss of immune cells during malaria [24-29] are
also implicated in poor outcome. In particular, a recent study
found that CD8' dendritic cells (DCs) (only found in mice) die
by apoptosis during rodent malaria [30].

DCs initiate immune responses and were first implicated in
the pathogenesis of human malaria when in vitro studies
found that Plasmodium falciparum-infected red cells could
block lipopolysaccharide (LPS)-induced maturation of DCs in
culture [31]. This was mediated by binding of the pRBCs to
CD36 on DCs [32]. However, murine studies show that DCs
can phagocytose P. chabaudi blood-stage pRBCs [33] and
present pRBC-derived antigens to CD4" T cells to initiate the
development of protective Thl-dependent immune re-
sponses [33,34]. These responses are generated by CD8™ DCs
during the acute phase of infection [30]. However, DCs from
infected mice are unable to prime CD8" T cells to proliferate
and secrete cytokines [34,35], which impairs cross-presenta-
tion of viral antigens [36]. It has been proposed that
hemozoin, rather than infected erythrocyte membranes,
impairs murine DC function [37], but another study suggests
that hemozoin activates innate immune responses in mice by
a toll-like receptor (TLRY)-mediated, MyD88-dependent, but
chloroquine-sensitive mechanism [38]. In contrast, other
studies have found that DCs from mice infected with P.
chabaudi or P. yoelit were fully functional [39-41].
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Although DCs have been shown to be important for
initiating immunity to malaria [30,34-36,42,43], studies
describing the function of DCs following infection have not
explored the direct role of DCs in affecting disease outcome
(i.e., survival, anaemia, or parasitemia). Furthermore, there is
little data on why Plasmodium infections have different
outcomes that can range from asymptomatic to lethal
infections. On the basis of previous studies, we hypothesized
that lethal parasites may compromise DC function [34-36],
while DCs from nonlethal infections were fully functional and
able to mediate immune responses and survival from malaria
[39-41]. As such, we compared DC phenotype and function in
response to lethal and nonlethal strains of the rodent parasite
P. yoelit to correlate DC function with disease outcome.
Splenic DCs were investigated, as the spleen has been shown
to be a major site of parasite killing and regulation of
parasite-specific immune responses [29,44,45]. Our studies
show that DCs from mice with nonlethal infections are fully
functional, while DC function is perturbed during lethal
infections. The functional DCs from nonlethal infections can
protect mice from lethal infections, demonstrating that DCs
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Author Summary

Malaria is a complex disease and there is little data on why
Plasmodium infections have different outcomes that can range from
asymptomatic to lethal infections. Since immunity is initiated by
dendritic cells (DCs), several studies have investigated DC function
during malaria. Current data on the effects of infection on DC
functions are inconclusive, with one school of thought being that
DC function is normal and the other that DC function is
compromised. However, these studies have used different species
and strains of Plasmodium. We have compared DC function during a
lethal and nonlethal infection and found significant differences. Our
study shows that the strain of parasite determines if DCs remain
functional following infection. Moreover, by transferring DCs
between mice, we show that DC function is essential for survival
from a lethal infection. This study offers some insight into the
current controversy and offers a plausible explanation for differ-
ences in the severity of disease.

contribute substantially to the control of parasitemia and
mediate survival from malaria.

Results

Comparison of Parasitemias during Lethal and Nonlethal
Infections

To establish the course of lethal and nonlethal Plasmodium
infections, cohorts of C57B1/6 mice were infected with either
nonlethal P. yoelii 17XNL or lethal P. yoelii YM, and para-
sitemia was monitored over 32 d. Since preliminary studies
(unpublished data) established that the two parasite strains
had different growth rates, mice were given either 10°
nonlethal or 10* lethal pRBCs so that all mice would develop
patent (detectable) parasitemia at approximately the same
time (Figure 1, day 4). We then studied DC function after the
first week of infection, when adaptive immune responses are
initiated and changes to the spleen are consistent. Since the
parasites had very different growth curves, we could not
achieve similar parasitemias at the time of testing.

Comparison of DC Surface Phenotype during Lethal and
Nonlethal Infections

Previous studies of mice infected with nonlethal P. yoeli
found that DCs had an immature phenotype with lower levels
of MHC class II, CD80, and CD86 expression [35]. However,
studies have not determined if DC phenotype or maturation
differ between lethal and nonlethal P. yoelii infections. As
such, mice were infected with either nonlethal P. yoelii 17XNL
or lethal P. yoelii YM, and the maturation of CD11c¢™ DCs was
analysed in infected and naive mice after 6.5 d. No significant
differences in MHC class II, CD80, or CD86 expression by
CD11c" cells were detected between the two strains (Figure
2A and 2B), although the DCs from infected mice were
relatively immature compared to DCs from naive mice.

We then enumerated the number of CD1lct DCs per
spleen following both infections and found that P. yoelii YM
and P. yoelii 17XNL infections induced 3.5- and 10-fold
increases, respectively, in the total numbers of CD11c¢" DGCs in
the spleen compared to naive mice (Figure 2C). We next
examined DC subpopulations in infected and naive mice and
observed that the following subsets were more prevalent in
mice following infection with the nonlethal strain compared

@ PLoS Pathogens | www.plospathogens.org

Plasmodium Strain Controls DC Function

100
Died —B-P. yoelii 17XNL
P 80 A\ —&— P. yoelii YM
£
8 60+
‘D
«©
5 401
o
2 20
0- T T T T T T

; ; —
0 4 8 12 16 20 24 28 32
Days

Figure 1. Comparison of Parasitemias

Groups of three mice were infected with nonlethal P. yoelii 17XNL or
lethal P yoelii YM. Blood smears were made every 2-3 d and stained with
Giemsa. The numbers of infected red cells were counted in at least 20
fields of approximately 150 red cells to establish the absence of patent
parasitemia. Parasitemias were monitored in every experiment, and this
figure is an example of the typical course of infection. Error bars
represent mean parasitemia *= standard error of the mean. The
parasitemia curves represent one of multiple experiments.
doi:10.1371/journal.ppat.0030096.9001

to the lethal strains: CD45R(B220)" DCs (3-fold); CD8" DCs
(2.8-fold); CD4" DCs (2.3-fold); and CD4 /CD8 DCs (2.5-fold).
F4/80M macrophages were also more prevalent in mice
infected with the nonlethal strain (4.7-fold). These differences
were all statistically significant, and the p-values are noted in
the figure. These studies highlighted that nonlethal infections
stimulated a greater influx of DCs into the spleen, which
correlated with survival compared to lethal infections where
the DC influx was less pronounced.

Comparison of Inflammatory Cytokines during Lethal and
Nonlethal Infections

Interleukin-12 (IL-12) is produced by CD8" and B220* DCs
to mediate adaptive immune responses, and tumour necrosis
factor (TNF)-o produced by several sources mediates DC
maturation. To investigate differences in these cytokines
between lethal and nonlethal infections, mice were bled at
days 0, 4, and 7 after infection, and the levels of inflammatory
cytokines TNF-o and IL-12 were measured in the serum
(Figure 3A). TNF-a levels were increased following both
infections, and the differences in levels between lethal and
nonlethal P. yoelii infections, 4 and 7 d after infection were
not significant (p > 0.5). In contrast, mice infected with a
nonlethal P. yoelii 17XNL infection had significantly 10- to 57-
fold more pg/ml IL-12 in their serum compared to naive mice
or mice given a lethal infection (Figure 3A).

IL-12 has been implicated as an important cytokine in
resistance to malaria [9,13,14,46-48]. To assess whether DCs
secrete biologically active IL-12 following infection, total
CD11c" DC populations were isolated from infected and
naive mice and p70 IL-12 production was assessed using an
ELISPOT assay (Figure 3B). The numbers of DCs secreting IL-
12 without in vitro stimulation were negligible in all mice
except those infected with P. yoelii 17XNL. Following in vitro
stimulation with CpG and LPS (chosen to maximally
stimulate IL-12 production by all DC subpopulations via
TLRY and TLR4 respectively) [49-52], the number of IL-12-
producing DCs from mice infected with nonlethal P. yoelii
17XNL was more than 200-fold higher than DCs from naive
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Figure 2. Maturation Profiles and Phenotype of DCs following Infection with Lethal and Nonlethal P. yoelii

«—P. yoeli———»

Groups of three mice were infected with either nonlethal P. yoelii 17XNL or lethal P. yoelii YM. DCs were isolated from individual spleens and labelled to
detect MHC class I, CD80, and CD86 by flow cytometry 7 d after infection.
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(A) The flow cytometry profiles are examples of DCs from naive mice or infected mice expressing the relevant cell surface molecules. The profiles were

similar between three experiments.

(B) The bar charts represent the average mean fluorescence intensity (MFI) of DCs expressing the relevant cell surface molecules from at least three mice
per group. The error bars represent the MFI = standard error of the mean. The bar charts represent one of three experiments that gave similar profiles.
(C) Bar chart shows the absolute numbers of CD11c"CD8" DCs, CD11c¢"CD4" DCs, CD11c¢"CD4CD8~ DCs, CD11c"CD45R(B220)" DCs, or F480M
macrophages per spleen in infected and naive mice for groups of mice * standard error of the mean. The absolute number of cells for each
subpopulation was calculated by multiplying the percentage of cells by the total number of cells isolated from the spleen. Labelling by the control
antibody was used to set the gates. The p-values in the bars for a nonlethal infection represent the statistical difference compared to a lethal infection.

doi:10.1371/journal.ppat.0030096.9g002
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Figure 3. Comparison of Cytokine Profiles from Groups of Mice following
Nonlethal and Lethal P. yoelii Infections and Cytokine Secretion by DCs

(A) Groups of three mice were infected with nonlethal P. yoelii 17XNL or
lethal P. yoelii YM. After 4 and 7 d, the levels of IL-12 and TNF-a. were
assessed in the serum using the Becton Dickinson bead array assay. Error
bars represent the pg of cytokine per ml = standard error of the mean.
The data represent one of duplicate experiments.

(B) Groups of three or five mice were infected with nonlethal or lethal P.
yoelii. After 7 d, total CD11c* DCs were isolated from individual, naive, or
infected mice, cultured with or without CpG oligonucleotide plus LPS
overnight, and then tested for IL-12 secretion by a p70 IL-12-specific
ELISPOT assay. Error bars represent the mean number of DCs secreting
IL-12 per spleen = standard error of the mean. The data represent one of
multiple experiments.

(C) Total CD11c" DCs were isolated from groups of three individual,
naive, or infected mice and cultured with CpG oligonucleotide and poly-
I:C for 36 h. The supernatants were tested for secretion of a-interferon by
ELISA. Error bars represent the mean pg secretion of a-interferon per
spleen = standard error of the mean. The data represent one of triplicate
experiments for the nonlethal parasite and duplicate for the lethal
parasite.

doi:10.1371/journal.ppat.0030096.9003
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mice (p < 0.0004) and 94-fold higher than DCs from mice
infected with lethal P. yoelii YM (p < 0.0004).

Finally, we measured the secretion of a-(typel)-interferon
by DCs since (a) B220* DCs secrete this cytokine, (b) mice with
nonlethal infections had 3-fold more B220" DCs than mice
with lethal infections, and (c) since it is suggested to improve
priming of myeloid DCs [53-55]. DCs from lethal and
nonlethal infections were cultured with CpG DNA and poly
1C [49,56], and the secretion of a-(type 1)-interferon was
assessed by ELISA (Figure 3C). We found that 5- to 10-fold
more o-(type 1)-interferon was produced per spleen by DCs
from nonlethal infected mice compared to naive mice (p <
0.0015), consistent with the abundance of B220" DCs. Mice
with nonlethal infections only produced 1.5- to 4-fold more
a-(type 1)-interferon than DCs from lethal infections (p <
0.0135). The DCs from lethal infections produced, however,
significantly more a-(type 1)-interferon per spleen than naive
mice (p < 0.0012), indicating that B220" DCs could secrete
this cytokine during both infections.

Comparison of DC Functions following Infection

DCs were then compared functionally from mice infected
with lethal and nonlethal P. yoelii. CD11c™ DCs were isolated
by immuno-magnetic positive selection from groups of
infected (day 6.5) and naive C57BL/6 mice, and varying
numbers were cultured with a fixed number of allogeneic T
cells (BALB/c), or syngeneic T cells from ovalbumin-specific T
cell receptor transgenic (OTII) mice in the presence of
ovalbumin (Figure 4). CD11¢" DCs from mice infected with
nonlethal P. yoelii 17XNL were better able to stimulate
proliferation of allogeneic T cells or present ovalbumin to
OTII T cells compared to DCs from mice infected with lethal
P. yoelii YM (Figure 4). DCs from naive mice were more
efficient antigen-presenting cells than DCs from mice
infected with either parasite.

Comparison of DCs in Mediating Survival from Lethal
Infections

Since we observed significant differences in DC function
between lethal and nonlethal infections, we adoptively
transferred DCs from infected mice to naive mice to
determine whether DCs could modulate the outcome of
infection in recipient mice. CD11ct DCs were isolated from
naive mice or mice infected with either lethal P. yoelii YM or
nonlethal P. yoelii 17XNL. The infected mice were drug cured
before the isolation of DCs to prevent the transfer of
parasites from donor mice. Approximately 1.5 X 107 DCs
from each group were then transfused into naive mice, which
were then infected with lethal P. yoeliz YM, 24 h later. Mice
given DCs from naive mice or from mice infected with P. yoelii
YM died by the eighth day (Figure 5A). In contrast,
approximately 80% of mice given DCs isolated from mice
infected with nonlethal P. yoelii 17XNL survived for at least 18
d, and 20% cleared the infection. In repeat experiments, with
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Figure 4. Comparison of the Antigen Presentation Function of CD11c" DCs Isolated from Groups of Mice following Nonlethal and Lethal P. yoelii

Infections

Groups of three mice were infected with nonlethal or lethal P. yoelii. After 7 d, CD11c" DCs were isolated from individual mice, serially diluted, and
incubated with a fixed number of allogeneic T cells (BALB/c) or syngeneic T cells from OTII mice with ovalbumin. After 3 d, the cultures were pulsed with
3H-thymidine for 18 h and the uptake of radiolabel measured. The error bars represent mean count *+ standard error of the mean. These assays were

undertaken three times.
doi:10.1371/journal.ppat.0030096.9004

similar survival results, we also observed that the hemoglobin
levels dropped after 8-10 d, and parasitemia levels increased
but peaked at approximately 40%-50% if mice received DCs
from mice previously infected with P. yoelii 17XNL (Figure
5A). The difference in survival between mice given DCs from
nonlethal infections compared to DCs from naive mice (p <
0.0082) or DCs from lethal infections (p < 0.0031) was
statistically significant. These experiments comparing DCs
from P. yoelii 17XNL-infected and naive mice were repeated
twice with 1.5 X 107 DCs and once with 8 X 10° DCs, with
similar results

We next investigated whether DCs mediated survival from
lethal infections via IL-12 (Figure 5B). DCs were isolated from
mice infected with P. yoelii 17XNL and administered to naive
mice (1.5 X 107 DCs per mouse) as described above. After 15
h, these mice were given anti-IL-12 or control-rat immuno-
globulin (see Materials and Methods) and infected with P.
yoelit YM 6-9 h later. Mice were given additional doses of anti-
IL-12 or control immunoglobulin 3 and 6 d after infection.
All mice given anti-IL-12 died within 8 d. In contrast, 100% of
mice given the control immunoglobulin survived for 18 d,
and 80% of mice cleared infection. The difference in survival
between these groups was statistically significant (p < 0.0009).

We finally confirmed that survival from lethal infections
was mediated by IL-12 produced by the donor DCs, and not
by the recipient mice, by transferring DCs from IL-12
knockout (KO) mice. As such, DCs were isolated from wild-
type C57Bl/6 or IL-12KO mice (on a C57Bl/6 background)
infected with P. yoelii 17XNL and administered to naive mice
(1.5 X 107 DCs per mouse) as described above. The next day,
these mice were infected with P. yoelii YM and monitored
daily. A total of two-thirds of mice given DCs from IL-12KO
mice died within 8 d, and the remaining mice died by the 15th
day (Figure 6). In contrast, more than 83% of mice given DCs
from wild-type mice survived for 22 d, and 50% of these mice
cleared infection. The difference in survival between these
groups was statistically significant (p < 0.0023).

These studies showed that DCs from lethal infections,
previously shown to be unable to produce IL-12 (Figure 3) or
present antigen to T cells (Figure 4), were unable to mediate
survival from lethal disease. However, the DCs from nonlethal
infections, previously shown to be functional (Figures 3 and
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4), were able to mediate survival from a lethal disease via
secretion of IL-12.

Discussion

DCs are essential for initiating adaptive and innate
immune responses in malaria. Recent studies have shown
that CD8 DCs isolated at the acute phase of a nonlethal P.
chabaudi infection can stimulate Ag-specific T cell responses
[30]. In contrast, DCs from lethal P. berghei-infected mice are
unable to prime CD8 T cells [34,35] or cross-present viral
antigens during malaria [36]. Numerous studies have shown
that IL-12 is an important cytokine in resistance to malaria
[9,13,14,46-48], but the role of DCs in IL-12 production is not
clear. Most studies to date have focussed on the direct effects
of the infection on immunity to malaria (e.g., loss of cpst T
cell priming) or have identified cellular responses that
mediate protection (e.g., T cells are required to clear the
parasite). However, to our knowledge, no study to date has
explained why different infections have different outcomes
or directly implicated DCs in mediating survival from
malaria. To address this issue, we compared two strains of
P. yoelii with different outcomes (lethal and nonlethal) and
found that the strain of parasite determines the phenotype
and function of DCs that mediate survival from a lethal
infection using IL-12.

Previous studies have shown that IL-12 production can be
initiated within 2 d of an infection [47], and Thl responses
that predominate initially during infection can be protective
[13,14,46-48,57-59]. We now show that DCs are a significant
source of IL-12 needed to clear infection, since mice infected
with the nonlethal P. yoelii 17XNL had nearly 100-fold more
IL-12-producing DCs than mice given the lethal P. yoelii YM.
Furthermore, when DCs from nonlethal infections were
transferred to naive mice that were then infected with a
lethal strain, the mice survived significantly longer. Protec-
tion was shown to be mediated by IL-12 since depleting IL-12
blocked survival. The donor DCs were a major source of IL-12
as DCs from naive mice or mice with lethal infections did not
secrete IL-12 in vitro (Figure 2), and transfer of DCs from IL-
12KO mice confirmed that donor DCs were the source of 1L-
12. Together the data suggest that nonlethal parasites can
induce the development of IL-12-secreting DCs, which
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Figure 5. Protection Is Mediated by DCs and by IL-12

(A) To measure the protection offered by CD11c" DCs, large groups of mice were infected with nonlethal P. yoelii 17XNL or lethal P. yoelii YM. DCs were
isolated from naive or infected (drug-cured) mice, and 1.5 X 107 DCs were transferred to each naive mouse in groups of four or five. After 24 h, each
mouse was infected with a lethal dose of P. yoelii YM, and survival, parasitemia, and hemoglobin levels monitored every 1-3 d. This experiment was
repeated twice with mice given 1.5 X 10” DCs.

(B) To determine the role of IL-12 in DC-mediated protection, groups of mice were infected with nonlethal P. yoelii 17XNL, total CD11ct DCs were
isolated from these infected mice after drug curing, and 1.5 X 10” DCs were transferred to naive mice in groups of four or five. The cohorts of mice were
given control Ig or anti-IL-12 15 h after the transfer of DCs, and after 24 h, each mouse was infected with a lethal dose of P. yoelii YM. Additional doses of
control immunoglobulin or anti-IL-12 were given after 3 and 6 d. This experiment was repeated twice. In all experiments, mice were monitored daily
following infection and culled if required, but the hemoglobin and parasitemia levels were measured every 2-3 d. Error bars represent = standard error

of the mean. The mean hemoglobin level in 20 naive mice is represented by a cross-symbol on the y-axis.

doi:10.1371/journal.ppat.0030096.g005

mediates protection and survival. In contrast, the failure of
lethal parasites to induce significant IL-12 production by DCs
is associated with a poor outcome for the host.

Our studies also found that the level of T cell proliferation
induced by DCs from mice infected with P. yoelii 17XNL
nonlethal infections was significant but was not as high as that
induced by DCs from naive mice. This observation possibly
reflects the high numbers of CD45R" DCs found during
nonlethal infections, which are generally not efficient at
inducing proliferation of T cells [49,60]. The substantially
diminished ability of DCs from mice infected with P. yoelii YM
to induce T cell responses suggests that the cell-mediated
immune response of mice following P. yoelii YM infection
could be diminished in vivo and may contribute to the poor
outcome.

In conclusion, our studies have shown that following a
Plasmodium infection the strain of parasite affects the nature
and function of the DC response and that this response is a
key determinant of survival. Our data suggest that while
nonlethal parasites can induce the accumulation of func-
tional DCs in the spleen that can mediate survival from
infection, the lethal parasite induces a block in DC function.
We thus speculate that lethal malaria results from a failure of
DC function as well as a block in the up-regulation of Thl
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immune responses. Thus this study may explain why
infections can have different outcomes.

Materials and Methods

Animals. Specific pathogen-free, 6-8 wk old, female C57BL/6] mice
were obtained from the Animal Resources Centre (http://lwww.sabc.
murdoch.edu.au/), and OTII mice were kindly provided by William
Heath (The Walter and Eliza Hall Institute of Medical Research, http://
www.wehi.edu.au/). These studies have been reviewed and approved
by the Queensland Institute of Medical Research Animal Ethics
Committee.

Infection of mice for flowcytometry. Cohorts of three to six mice
were infected intravenously with 10” P. yoelii 17XNL or 10* P, yoelit YM
PRBCs, and spleens taken after 6.5 d for flow cytometry analysis as
preliminary studies found that changes to the DCs were not clear
before this time with both strains of parasite.

Isolation of splenic DCs. Spleens from naive or infected C57BLI6]
mice were digested as previously described [61,62] and DCs isolated
using either anti-CD11c MACS beads according to the manufacturer’s
instructions (Miltenyi Biotec, http:/fwww.miltenyibiotec.com/). The
labelled cell preparations were passed through three to five columns
until the purity was >95%. The isolated DCs were always labelled
with anti-CD11c-PE for FACS analysis to confirm purity. Viability was
assessed by trypan blue or labelling with 7-actinomycin D.

Flowcytometry of DCs. To accurately quantify cell numbers shown
in Figure 3, the spleens of mice were digested to release DCs and
labelled directly. For these studies, approximately 2 X 107 cells from
each sample were analysed with three to five mice per group. Purified
cells were not used to quantify cell numbers, as significant numbers of
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Figure 6. Protection Is Mediated by IL-12 Secreted by Donor DCs

To confirm that IL-12 secreted by the donor DC-mediated protection,
groups of six C57BL/6 and IL-12KO mice were infected with nonlethal P.
yoelii 17XNL, total CD11c™ DCs were isolated from these infected mice
after drug curing, and 1.5 X 107 DCs were transferred to groups naive
mice. After 24 h each mouse was infected with a lethal dose of P. yoelii
YM. In all experiments, mice were monitored daily following infection
and culled if required, but parasitemia levels were measured every 2-3 d.
Error bars represent = standard error of the mean. This experiment was
repeated twice.

doi:10.1371/journal.ppat.0030096.g006

DCs are lost during the process of isolation. For studies to determine
activation of DCs by expression of MHC class 1I, CD80, CD86, or for
closed examination of subpopulations, cells were purified as
described above and then labelled for flow cytometry [61]. To
minimize nonspecific labelling, DCs were always preincubated with
purified rat Ig in 5% BSA/PBS for 20 min prior to cell labelling, and
monoclonal antibodies used were directly conjugated with fluores-
cein (FITC), phycoerythrine (PE), or allophycocyanin (APC). DCs were
routinely analysed for MHC class II (M5/115.15.2), CD80 (16-10A1),
CD86 (GLI1), CDllc (HL3), CD4 (GK1.5), and CD8 (H35-17.2)
expression using reagents purchased from Pharmingen/Becton Dick-
inson (http://www.bd.com/) and PDCA-1-APC purchased from Milte-
nyi Biotec. Samples were analysed on FACS Calibur (BD Biosciences,
http:/lwww.bdbiosciences.com/), gating on viable cells, using CELL-
Quest software (version 3.3, BD Biosciences). Approximately 10*-2 X
10° cells from each sample were analysed for accurate measurement.

DC-allogeneic T cell mixed lymphocyte cultures. DCs were isolated
from spleens of naive or infected mice as described above, titrated,
and cultured in triplicates with 2.5 X 10° naive T cells, isolated from
BALB/c or OTII mice. The OTII cultures were supplemented with 100
ug/ml ovalbumin (Sigma-Aldrich, http://www.sigmaaldrich.com/). The
T cells were isolated using either MACS anti-Thy 1 beads (Miltenyi
Biotec) or R&D Systems (http:/lwww.rndsystems.com/) mouse T cell
enrichment kit. Both methods gave >98% purity. After 3 d the
culture wells were pulsed with jH—thymidine for 18 h, and radioactive
uptake measured.

Serum cytokines. The levels of cytokines in the serum were
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measured using the Becton Dickinson inflammation bead array
according to manufacturer’s instructions.

IL-12 secretion. DCs were isolated as described above and cultured
on MultiScreen-HA sterile plates previously coated with 10 ug/ml
anti-mouse IL-12 (p70) antibody (Pharmingen) overnight, washed,
and unbound sites blocked with 5% FCS. We added 200,000 cells to
each well in FCS-supplemented medium alone or with 1.0 puM
phosphorothioate-modified CpG oligonucleotide, 1,668 (5'-TCC ATG
ACG TTC CTG ATG CT-3") [63] alone or with 10 pug LPS (Escherichia
coli, Sigma) [63]. After overnight culture at 37 °C, plates were washed
with 0.05% Tween-PBS and incubated with 0.5 pg/ml biotin-anti-IL-
12 (Pharmingen) followed by AKP-labelled streptavidin (Pharmin-
gen). NBT/BCIP tablets (Sigma) were used to visualize spots.

Interferon-o. secretion. DCs were isolated as described above,
cultured with CpG DNA and poly-I:C as described previously [49,56],
and the secretion of a-(typel)-interferon was assessed by ELISA (PBL
Biomedical Laboratories, http:/lwww.interferonsource.com/) accord-
ing to the manufacturer’s instructions.

Protection studies. CD11ct DCs were obtained from spleens of
naive mice or mice infected with either 10* P. yoelii YM (lethal) or 10°
P. yoelii 17XNL (nonlethal) pRBCs. Mice were treated with 250 ng
pyrimethamine (i.p.) daily for 4 d to clear the infection 4 d after a
lethal infection or 7 d after a nonlethal infection. The P. yoelii YM
infections were started 3 d after the P. yoelii 17XNL infections so that
both groups of mice could be cured and tested at the same time. At
day 10, the spleens were digested and DCs isolated using anti-CD11c
MACS beads and passed through three to five MACS columns to
obtain a very pure preparation of DCs. Approximately 1.5 X 10’ DCs
were then transfused intravenously to naive mice as stated in the text.
After resting the mice for >15 h, they were infected with a lethal dose
of P. yoelii YM ao* PRBCs). Mice were followed for 48 d when
monitoring was stopped. To determine whether protection was
mediated by IL-12, 0.5 mg of rat anti-mouse IL-12p40 (clone C17.8.20)
was administered to mice intravenously the morning after the
transfer of DCs, approximately 6-8 h before infection. Additional
doses of the anti-IL-12 immunoglobulin were given on the morning
of the third and sixth day of infection. To control for the effects of
immunoglobulin, equivalent amounts of rat IgG were given to control
mice at the same time. To confirm that protection was mediated by
IL-12 secreted from donor DCs, CD11c"™ DCs were obtained from
spleens of C57BL/6 or IL-12KO mice (on a C57BL/6 background, >10
backcrosses to C57BLI6) infected with 107 P. yoelit 17XNL (nonlethal)
PRBCs and then drug cured. Approximately 1.5 X 107 DCs were then
transfused intravenously to naive mice. After resting the mice for
>15 h, they were infected with a lethal dose of P. yoelii YM (10*
PRBCs). Mice were followed for 48 d when monitoring was stopped.

Statistics. Error bars shown are means + standard error of means.
p-Values were calculated using the Mann-Whitney nonparametric -
test with a two-sided tail on the basis of pooled data from two to four
replicate experiments. The survival curves of mice were statistically
analysed using a logrank test based on the Mantel-Haenszel test.
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