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Genome-wide profiles of 
methylation, microRNAs, and 
gene expression in chemoresistant 
breast cancer
Dong-Xu He1,*, Feng Gu2,*, Fei Gao3,*, Jun-jun Hao4,*, Desheng Gong3, Xiao-Ting Gu5,  
Ai-Qin Mao5, Jian Jin5, Li Fu2 & Xin Ma5

Cancer chemoresistance is regulated by complex genetic and epigenetic networks. In this study, the 
features of gene expression, methylation, and microRNA (miRNA) expression were investigated with 
high-throughput sequencing in human breast cancer MCF-7 cells resistant to adriamycin (MCF-7/ADM) 
and paclitaxel (MCF-7/PTX). We found that: ① both of the chemoresistant cell lines had similar, massive 
changes in gene expression, methylation, and miRNA expression versus chemosensitive controls.  
② Pairwise integration of the data highlighted sets of genes that were regulated by either methylation or 
miRNAs, and sets of miRNAs whose expression was controlled by DNA methylation in chemoresistant 
cells. ③ By combining the three sets of high-throughput data, we obtained a list of genes whose 
expression was regulated by both methylation and miRNAs in chemoresistant cells; ④ Expression 
of these genes was then validated in clinical breast cancer samples to generate a 17-gene signature 
that showed good predictive and prognostic power in triple-negative breast cancer patients receiving 
anthracycline-taxane-based neoadjuvant chemotherapy. In conclusion, our results have generated a 
new workflow for the integrated analysis of the effects of miRNAs and methylation on gene expression 
during the development of chemoresistance.

Over the past decades, the survival rates of patients with breast cancer have markedly increased, partly due to 
improvements in chemotherapy. Regimens based on anthracyclines (doxorubicin, daunomycin, and epirubicin) 
and taxanes (paclitaxel and docetaxel) are the most frequently used combination therapy for breast cancers1. 
However, chemoresistance is the main cause of chemotherapeutic failure and leads to suboptimal response rates. 
To date, several critical mechanisms have been found to contribute to chemoresistance in breast cancers. For 
example, over-expression of p-glycoprotein2,3 and glutathione-s transferase4 have been shown to contribute to 
chemoresistance. Moreover, chemoresistance is regulated by the epithelial mesenchymal transition (EMT) path-
way5,6. Cancerous epithelial cells lose their polarity and cell-cell adhesion, and gain high motility during the EMT 
via pathways including but not limited to TGF-beta, Wnt/beta-catenin, Notch, and Hedgehog. Mobile cancer cells 
then move away from unfavorable environments targeted by chemotherapeutic agents and subsequently cause 
therapy insensitivity and metastasis. In addition, pathways in EMT enable cancer cells to proliferate quickly and 
resist to apoptotic signals, so that the cancer cells become less sensitive to the cytotoxicity from chemotherapy.

Nevertheless, chemoresistance is mediated by a wide range of poorly-understood genomic and epigenetic 
networks, and these mechanisms have not been systematically analyzed in chemoresistant breast cancers. DNA 
methylation and microRNA (miRNA) silencing are known to be important in chemoresistance7,8; they either 
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suppress or activate a substantial proportion of genes at the pre- and post-transcriptional levels, respectively. 
Because chemoresistance involves multiple interacting factors, it is not sufficient to investigate the methylation 
and miRNA regulation of a single factor. Therefore, understanding the network of methylation and miRNA regu-
lation and their relationship in chemoresistant cancer cells would provide valuable information during the acqui-
sition of chemoresistance.

In this study, high-throughput reduced representation bisulfite sequencing (RRBS), and RNA sequencing 
(RNA-Seq) of the transcriptome profiles of coding messenger RNAs and non-coding small RNAs in chemore-
sistant and chemosensitive breast cancer cell lines were analyzed in-depth in order to identify the dysregulated 
targets in chemoresistant cells, and to develop a signature to predict chemoresistance and prognosis. The work-
flow of this study is presented in Fig. S1.

Results
Generation of comparative profiles of DNA methylation, and mRNA and miRNA expression in 
chemoresistant and chemosensitive MCF-7 cell lines. The genome-wide DNA methylation patterns 
of the adriamycin (ADM)- and paclitaxel (PTX)-resistant human breast cancer cells (MCF-7/ADM and MCF-7/
PTX), as well as their drug-sensitive parental control MCF-7/WT cells9, were analyzed by RRBS sequencing. 
RRBS is widely used to measure the DNA methylation of high-CG regions at single base-pair resolution. A total 
of 141 million pair-end 50-bp reads were obtained for each cell line. By allowing less than two mismatches, 
93.56% of the clean reads were mapped back to the hg19 human reference genome, reaching a unique mapping 
rate of 76.22% and a > 20×  read depth (Table S1a). Nearly 91% of promoters and 94% of the CpG islands were 
detected (Table S1b). In agreement with previous reports10, the methylation levels of coding sequences, introns, 
and 3′ -untranslated regions (UTRs) were generally high, while the 5′ -UTRs and promoters were hypomethylated 
(Fig. S2a). As the majority of the methylated cytosines (~98%) were in a CpG context (Fig. S2b), we performed the 
subsequent analyses of a total of 2.88 million CpG sites with > 4×  coverage depths that were commonly reached 
in the three cell lines.

Hierarchical clustering analysis of their methylation status showed that MCF-7/ADM and MCF-7/PTX cells 
fell into the same cluster, but were separate from the parental control MCF-7/WT cells (Fig. 1a). Pair-wise com-
parisons were performed among the three cell lines to identify the differentially-methylated regions (DMRs) with 
statistical significance (median β  differences > 0.20, p <  0.01), and DMRs were then annotated to genes based on 
their genomic positions. The majority of the DMRs were allocated to gene-body regions and intergenic regions, 

Figure 1. Generation of comparative profiles of DNA methylation, mRNA and miRNA expression.  
(a) Hierarchical clustering of the methylation status in MCF-7/ADM, /PTX, and /WT cells. (b) Venn diagrams 
of the DMRs of the three comparison groups. (c,d) Scatter-plots of the differentially-expressed mRNAs (c) and 
miRNAs (d). Fold-changes of mRNAs and miRNAs are shown on the X or Y axis as Log (fold-change value).
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while < 15% were in promoters and the 5′ -UTR (Fig. S2c). Furthermore, most of the DMRs in genes overlapped 
in the two chemoresistant groups compared with their chemosensitive comparison groups (Fig. 1b). Therefore, 
these data suggested that the methylation pattern is similar in the two chemoresistant cell lines.

Furthermore, we performed RNA-Seq on coding mRNAs (mRNA-Seq) and non-coding small RNAs 
(sRNA-seq) in the three MCF-7 cell lines (Table S1c and d). More than 7 and 16 million clean single-end 50-bp 
reads were obtained in mRNA-Seq and sRNA-Seq, reaching high coverage of ~75% and 70% of the annotated 
coding genes and sRNAs in the human genome, respectively. Since miRNAs are one of the most-studied sRNAs in 
oncology, we focused on miRNA expression in the subsequent analyses. We then performed pair-wise compari-
sons of mRNA and miRNA expression levels with the same criteria for a significant difference (FDR ≤ 0.001 and 
|log2Chemoresistant/WT| ≥ 1). Consistent with the genome-wide DNA methylation status, scatter-plot analyses 
showed that a large number of genes significantly differed between chemoresistant (MCF-7/ADM and /PTX) cells 
and their parental control cell line MCF-7/WT, both for mRNA and miRNA expression. However, the expression 
patterns were quite similar in the two chemoresistant cell lines (Fig. 1c,d).

Taken together, the three sets of high-throughput sequencing results indicated the common molecular 
changes, both in DNA methylation and gene expression, in breast cancer cells with resistance to different chem-
otherapeutic drugs.

Cell motility and EMT genes are enriched in combined analyses of differential DNA methyl-
ation and mRNA expression. We then cross-matched the DMR-containing genes from RRBS with 
differentially-expressed genes from mRNA-Seq. Since the two chemoresistant cell-lines again showed great over-
lap of matched genes, we focused on these overlapped genes in the subsequent analyses in order to find common 
pathways in chemoresistant cancer cells (Table S2).

Consistent with the widely-accepted mechanism of methylation11, the expression of 1083 and 213 genes in 
both MCF-7/ADM and /PTX cells was negatively correlated with the levels of promoter and 5′ UTR methylation, 
respectively, versus MCF-7/WT cells (Fig. 2a). This suggested that methylation plays a role in gene-silencing 
during the acquisition of chemoresistance. The mechanism by which methylation regulates expression in the 
gene-body is complicated, but more than half of these regions were positively correlated with gene expression as 
previously suggested (Table S2)12.

To better understand the potential effects of methylation-related changes in gene expression on cellular func-
tions, we performed Pathway Commons (PC) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses 
using a web-based gene set analysis toolkit (WebGestalt; http://bioinfo.vanderbilt.edu/webgestalt/). The results 
showed enrichment in cancer and metabolic pathways (Table S3), suggesting that the challenge of chemother-
apeutic drugs and the development of chemoresistance trigger pathways relevant to tumor metabolism. More 
interestingly, cell mobility and cellular surface interaction pathways (extracellular matrix-receptor interaction, 
cell adhesion molecules, MAPK signaling pathway, and focal adhesion in KEGG, along with integrin family 
cell-surface interactions in PC) were highly enriched. These pathways are directly associated with cell motility and 
include key proteins in the EMT signaling pathways5,6.

Therefore, the above observations led us to hypothesize that change in motility that is a key feature of EMT, as 
well as the EMT itself, are key targets of regulation by methylation during the acquisition of chemoresistance. To 
test our hypothesis, we analyzed the motility and mesenchymal features of chemoresistant cells. Migration was 
increased in both MCF-7/ADM and MCF-7/PTX cells, indicating increased cell motility (Fig. S3a). Meanwhile, 
the expression and plasma membrane distribution of E-cadherin (expressed by CDH1) decreased and those of 
N-cadherin (expressed by CDH2), vimentin, snai1, and twist increased in both of the chemoresistant cell lines 
(Fig. S3b–d), suggesting that these cells had undergone the EMT process. These data verified and supported the 
results and conclusions of high-throughput analysis.

We also used real-time PCR to analyze the expression of other EMT-related genes and miRNAs discussed 
below (Fig. S4); the results confirmed the onset of the EMT. Also, most of the real-time PCR results are consistent 
with high-throughput sequencing, suggesting the accuracy of the high-throughput sequencing in determining 
the expression change of genes.

Integration of miRNA expression with mRNA expression and DNA methylation respectively.  
We next integrated the mRNA-Seq with the sRNA-Seq results. The theoretical targets of all of the significantly 
changed miRNAs were predicted by MirTarget2, miRecords, and miRanda software together. These predicted 
targets were then integrated with the mRNA-Seq data. Consequently, a group of miRNAs was found to overlap 
in the two chemoresistant cell lines (Table S4). First, the miRNA expression significantly changed; second, the 
expression of their theoretical mRNA targets significantly changed; and third, the expression of these miRNAs 
was inversely correlated with their target mRNA expression. These results thus provide a refined pool of miRNAs 
with major implications for chemoresistance. Based on this, we found that miR-489 and its target Smad3 regu-
late chemoresistance via the EMT pathway13, suggesting such analysis could simplify the way to find important 
miRNAs and its targets regulating chemoresistance, and again indicating the important role of the EMT in the 
regulation of chemoresistance.

We investigated several of the motility- and EMT-related miRNAs listed in Table S4 based on our findings 
that motility and the EMT were primarily regulated in chemoresistant cells. We found that the expression of all 
of these miRNAs changed dramatically. When the dysregulation of these miRNAs in MCF-7/ADM or /PTX cells 
was inhibited with miRNA inhibitors or mimics, the chemoresistance to ADM and PTX was decreased as deter-
mined by the IC50s (half-maximal inhibitory concentrations) of the drugs (Table S4), suggesting that the motility 
and EMT processes that are regulated by miRNAs also play important roles in chemoresistance.

The sRNA-Seq results were then integrated with the RRBS results. Recent studies have suggested that miRNA 
expression can be regulated by methylation of the promoter region14. Thirty-four dysregulated miRNAs were 
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surrounded by differentially-methylated regions near the transcription start site (TSS) of the miRNA coding 
sequence (± 2000 bp from the TSS) in both MCF-7/ADM and /PTX cells versus MCF-7/WT cells (Table S5, 
Fig. 2b). Generally, the expression of these miRNAs was negatively correlated with the overall methylation around 
their TSSs. miRNAs up-regulated in MCF-7/ADM and /PTX cells showed an overall decrease in methylation level 
around their TSSs versus MCF-7/WT cells, and vice versa (Fig. 2c). Investigation of individual locations showed 
that some of the methylation was situated in the -2000 region of the TSS, which is a theoretical promoter region of 
miRNAs (Fig. 2d)15, suggesting that their expression might be regulated by promoter methylation. For example, 
among the EMT/motility-related miRNAs listed in Table S4, miRNA-200c and miRNA-34a have been reported 
to be regulated by methylation in malignant cancer cells16,17, and our results further indicated that regulation by 
methylation occurs in chemoresistant cancer cells. In addition, we found for the first time that miR-106a-5p and 
miRNA-375 may be regulated by methylation in chemoresistant cells. Based on these data, we confirmed that 
down-regulation of miR-149-5p is associated with methylation and chemoresistance18, which indicate the accu-
racy of this step of integration.

Combined analysis of DNA methylation, and mRNA and miRNA gene expression. In the final 
step of high-throughput data integration, we investigated both pre- and post-transcriptional control of single 
genes during the acquisition of chemoresistance by combining mRNA-Seq, RRBS, and sRNA-Seq data (Table S6).  
In the MCF-7/ADM versus WT and MCF-7/PTX versus WT comparison groups, 223 and 240 genes with 

Figure 2. Cross-matching of sequencing data. (a) Venn diagrams of the differentially-expressed genes cross-
matched with the DMRs in their promoter and 5′ UTR regions in the three comparison groups. Genes were 
chosen when their expression changes were negatively associated with changes in the DMRs in chemoresistant 
cells versus MCF-7/WT cells. (b) Venn diagrams of the differentially-expressed miRNAs cross-matched with 
DMRs around the miRNA coding sequence in the three comparison groups. (c) Up- or down-regulated 
miRNAs were integrated with the overall methylation level when comparing resistant with sensitive cells. Red 
bars, overall methylation levels (Y axis) of up-regulated miRNAs in MCF-7/ADM or /PTX versus /WT cells; 
green bars, overall methylation levels of down-regulated miRNAs in MCF-7/ADM or /PTX versus /WT cells. 
(d) Locations of the DMRs relative to the TSS of each miRNA. X axis, Log2 values of DMRs (resistant versus 
sensitive); Y axis, their locations relative to the TSS.
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considerable overlaps were generated, respectively (Fig. 3a,b). The expression of genes in these lists was nega-
tively correlated with promoter methylation (gene-body methylation was excluded from this part of the analysis 
because its regulatory mechanism is more complicated than promoter methylation). Meanwhile, all of the miR-
NAs predicted to target certain genes were listed, and the expression of each gene was negatively regulated by at 
least one miRNA.

The genes doubly-regulated by methylation and miRNA were then categorized by KEGG assay (Table S7). The 
largest categories fell again into cell motility- and EMT-related groups, such as cell adhesion molecules (KEGG 
04514), focal adhesion (KEGG 04510), and extracellular matrix-receptor interaction (KEGG 4512), suggesting 
that the EMT and the related motility are the main targets of methylation and miRNA regulation in chemore-
sistant cells.

In order to better understand the molecular interaction of these genes, the interaction network of the genes 
were analyzed by Cytoscape 3.2.019 plugin GeneMANIA20, where gene interactions were collected from inter-
action datasets BioGRID21. In such analysis, two genes are functionally linked if the effects of perturbing one 
gene were found to be modified by perturbations to a second gene. As data showed (Fig. 4), these genes showed 
extensive co-expression, genetic interactions and physical interactions, suggesting they are densely connected to 
modulate chemoresistance development. Among them, EMT regulators, such as CDH1, EPCAM, CDH25,6 were 
in the central place of the network, suggesting again the importance of EMT pathway. Furthermore, several genes 
such as CAPN2, TUSC3 and CYBRD1, played as central factors in the networks and validated in clinical samples 
as we demonstrated later. Therefore, their molecular mechanisms are worth exploring.

Generating and verifying the chemoresistance signature. Clinically, chemoresistance can only be 
detected during the middle-to-late stages of chemotherapy, and there are no diagnostic tests to recognize resist-
ance before treatment. To confront this difficulty, genes that were both targeted by methylation and miRNA from 
the last step of integration (termed double-regulated genes) were validated in breast cancer samples from 27 
patients receiving neoadjuvant taxane-anthracycline (TA)-based chemotherapy (Table S8). Thirteen patients were 
sensitive, as they responded to chemotherapy (complete response, CR), while 14 were resistant (progressive/stable 
disease after chemotherapy, PD/SD).

Immunohistochemical analysis of the chemoresistant and sensitive groups showed that the expression changes 
of most of the genes found in MCF-7 cells were more consistent with those from triple-negative breast cancer 
(TNBC) patients, than from all individuals regardless of their estrogen receptor (ER), progesterone receptor (PR) 
and human epidermal growth factor receptor 2 (Her2) status. This makes sense because the MCF-7/ADM and 
/PTX cells did not express ER, PR and Her2 (Fig. S5a), and loss of control of these receptor may making them 
resemble features of TNBC cell lines22–24. Seventeen genes were selected from the list of double-regulated genes, 
and these also greatly/significantly differed in the clinical pre-chemotherapeutic samples between chemoresistant 
and chemosensitive TNBC patients (Table 1 and Fig. S5b).

Figure 3. Integration of RRBS, mRNA-Seq, and sRNA-Seq. (a) Genes whose expression was negatively 
associated with promoter methylation were used in the integration. Left lanes of the heat map are gene-
expression values in MCF-7/ADM (left panel) and /PTX (right panel) versus /WT cells; middle lanes are the 
DMR values for each gene; right lanes are the expression of predicted miRNAs targeting each gene. (b) Venn 
diagrams of genes both regulated by methylation and miRNA in resistant versus sensitive comparison groups.
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The discriminatory power of the signature was analyzed first in the training cohort formed by the TNBC 
samples we had collected. Hierarchical clustering25 and Bayesian binary regression26 were used as classifiers. The 
signature classified the chemoresistant and chemosensitive patients with an overall accuracy of 100% for hierar-
chical clustering and 100% for Bayesian binary regression (Fig. 5a), suggesting that the signature can discriminate 
between resistant and sensitive TNBC patients.

The 17-gene signature was then validated in three independent cohorts of TNBC breast cancer patients receiv-
ing TA-based chemotherapy. Affymetrix gene expression profiling of pre-chemotherapeutic TNBC samples from 
previous studies (NCBI Nos GSE 25055, 25065, and 41998)27,28 were used. Patients showing a pathologically 
complete response were defined as chemosensitive, and those with an extensive residual cancer burden (RCB-II 
to III) or residual disease were considered to be chemoresistant. By Bayesian binary regression analysis, the signa-
ture showed good discrimination of both resistant and sensitive patients (i.e., the sensitivity and specificity of the 
signature). The overall accuracy was as good as 86.3% (Fig. 5b).

Because a good chemoresponse often leads to a better recovery rate, we tested the prognostic effectiveness 
of the 17-gene signature. For GSE25055 and GSE25065, where both the chemoresponse and distant metasta-
sis relapse-free survival (DRFS) information were provided, the TNBC patients were grouped according to the 
17-gene signature. The Kaplan-Meier results showed that patients classified as chemoresistant showed a worse 
rate of DRFS than chemosensitive patients in both groups (Fig. 5c).

In the other two databases (GSE45725 and 33926), only information on relapse-free survival (RFS) or DRFS 
was provided, without the chemotherapeutic responses. Therefore, Bayesian binary regression could not be cal-
culated because of the lack of predetermined data to train the regression process29. So, the k-nearest neighbor 

Figure 4. Molecular interactions of genes. The interactions were analyzed by Cytoscape_3.2.0 plugin 
GeneMANIAThe query genes were marked blue, and the genes in 17-gene signature were marked yellow.

Genes p value
Down/up 
in resist Genes p value

Down/up 
in resist Genes p value

Down/up 
in resist

ABCC3 0.036 Down CAV2 0.047 Up PHF10 0.070 Down

AKAP12 0.080 Up CLIP4 0.071 Up PSAT1 0.010 Up

ANPEP 0.090 Up CRLF1 0.004 Down PVR 0.038 Up

ANTXR1 0.039 Up CYBRD1 0.029 Up TRHDE 0.094 Up

BTG2 0.089 Down DKK3 0.076 Up TUSC3 0.027 Up

CAPN2 0.032 Up MFI2 0.046 Up

Table 1.  17-gene signature.
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method30 was used to classify the patients versus the average gene expression in sensitive and resistant patients 
in GSE25055 and 41998 (GSE25065 was excluded because its TNBC sample size is small). Kaplan-Meier analysis 
was then applied to the candidate resistant and sensitive patients, those who were probably chemoresistant as 
determined by the 17-gene signature showed a lower rate of RFS or DRFS than chemosensitive patients (Fig. 5c).

Finally, the risk of death/relapse in chemoresistant patients was summarized by the odds ratios (ORs) in for-
est plots (Fig. 5d). The mean OR for each dataset, as well as the total OR for all datasets, were > 1 for potentially 
chemoresistant individuals defined by the 17-gene signature, suggesting that the signature is able to discriminate 
the population of TNBC patients at high risk of death/relapse.

Discussion
DNA methylation and miRNA dysregulation are critical and effective mechanisms underlying the development 
of chemoresistance. A few studies have reported methylation and miRNA profiling in cancers31,32, but our study 
is the first to provide an overview of epigenetic regulation at the combined levels of DNA methylation, miRNA 
expression and gene expression in breast cancer chemoresistance, and then systematically identify novel dys-
regulated targets in chemoresistant breast cancer cells. We shared a refined and detailed pool of chemoresistant 
regulation with hundreds of possible targets, and one can easily find the possible interplays between methylation, 
miRNA and gene expression in their own interest from this pool. Experimental validation of certain interplay 
with siRNAs, over-expression vectors, CRISPR-Cas9 and other genome engineering methods allow indentifying 
the key players in chemoresistance, and deciphering their underlining molecular mechanism would be another 
step to conquering the chemoresistance. Based on the pool, we have shown the relationship and mechanism of 
several miRNAs and methylation sites during development of chemoresistance and validated them in clinical 

Figure 5. Clinical validation of the signature. (a) Validation of the signature in resistant (R) and sensitive (S) 
TNBC patients from the training cohort with hierarchical clustering (left panel) and Bayesian binary regression 
(right panel). (b) Validation of the signature in TNBC patients in the GSE25055 (left panel), 25065 (middle 
panel), and 41998 (right panel) databases by Bayesian binary regression. (c) Effectiveness of the signature in 
predicting the prognosis in TNBC patients from the GSE25055 (left panel), 25065 (2nd left panel), 45725 (right 
panel), and 33926 (2nd right panel) databases. Patients were grouped according to their potential chemoresponse 
predicted by the signature. (d) Forest plots of the performance of the chemoresistance signature in predicting 
clinical outcomes. Odds ratios (OR) are plotted as vertical colored bars for comparison. The length of the 
horizontal bars and the width of the diamonds correspond to 95% confidence intervals. The diamond represents 
the total OR of the signature in the total cases. The weight means the size of each dataset versus the total cases.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:24706 | DOI: 10.1038/srep24706

samples13,18,33, suggesting the pool is precise and valuable, and we are expecting more important mechanisms 
could be found in future.

One of the most important findings in this study is the high degree of similarity of both methylation and 
miRNA regulation in two chemoresistant breast cancer cell lines. They were developed from the same parental 
line but confronted entirely different chemotherapeutic challenges. To date, numerous critical mechanisms have 
been found to contribute to chemoresistance of different drugs2–5, some studies have also identified common 
gene or protein sets that are common to chemoresistance based on high throughput data methods such as pro-
teomics34 and affymetrix microarray35. Our study further extended their results by identifying and emphasizing 
common interplays between genes, miRNAs and methylations in response to different chemotherapeutic agents. 
Such similar responses indicate that gene methylation, miRNAs, and the pathways we identified may also be 
shared by chemoresistance to other types of agents. The EMT pathway and associated high motility were con-
sistently highlighted throughout our analyses. Although there are other important pathways that can mediate 
chemoresistance2–5, the data pointed out cancer cells preferentially and extensively evoked EMT pathway during 
the development of chemoresistance rather than other pathways, probably because under the stress of different 
and complex chemotherapeutic drugs, enhancing the ability to ‘escape’ and ‘survive’ may be the easiest and uni-
versal choice for all types of cancer cells. Therefore, EMT/motility-blocking drugs might be more robust against 
chemoresistance than traditional cytotoxic or cytostatic drugs. Furthermore, although a number of previous stud-
ies have shown mechanisms of EMT in chemoresistance, but fewer studies explained regulatory mechanism of 
methylation, miRNA or methylation and miRNA together on EMT signaling pathways in breast cancer chemore-
sistance. This study then provides information about how the key modulators in EMT pathway are regulated by 
epigenetic factors. Among those, we have validated EMT transcriptional factor SMAD3 is regulated by miR-489 
to develop chemoresistance in breast cancers13. Therefore, after more validations are performed in future, it is 
expected to understand how the epigenetic ‘bridge’ is constructed between genotype and phenotype of cancer cell 
in response to chemotherapeutic stimuli via EMT pathway.

Based on the combination of methylation, miRNA, and gene-expression profiling, a 17-gene signature was 
generated and validated in TNBC. We need to make it clear that although MCF-7/ADM and PTX did not express 
ER, PR and Her2, but they are not equivalent to TNBC cells, which is p53 mutated and PTEN deleted, while 
MCF-7 cells are p53 wildtype with PI3 kinase mutations36. However, in confront to stress from chemotherapeu-
tic toxicity, the MCF-7 cells dramatically changed their expression profiles to evolve into more malignant and 
aggressive ones as we also demonstrated in previous studies9,37, loss of ER, PR and Her2 may be a way for them 
to mimic the important pathways in TNBC cells to survive more easily22–24. Therefore, the significantly changed 
17 genes in our signature may also represent critical pathways in TNBC cells, and the claim was supported by the 
clinical validation.

We particularly point out that the signature was generated from pre-chemotherapeutic samples, so it can 
predict the responsiveness of breast cancer patients before treatment. If tumor cells of the patients showed 
gene-expression changes in the 17-gene signature, these patients are more likely resistant to subsequent chem-
otherapies. However, when the patients are pre-determined to be chemosensitive with the 17-gene signature, 
they also require careful design for chemotherapeutical regimes. Aside from functional gene expression changes, 
tumor microenvironment is another important determinant to chemoresponse. When the chemotherapeutical 
drugs are given intravenously, tumor regions distal to vasculature are less frequently exposed to lethal dose of 
chemotherapeutical agents. Consequently chemoresistance is observed even when these cells are sensitive to ther-
apies38. To overcome the microenvironment-induced chemoresistance, sequential treatment is one option because 
it can remove tumor cells near blood vessels and expose cells in deep regions during the first course of treatment, 
thus enables drugs to penetrate deeper through tumor tissue during the second course of treatment39. In agree-
ment, we found some patients predicted to be chemosensitive in GSE41998 (where chemoresponse during differ-
ent courses of chemotherapies was provided) showed poor response during first course of anthracyclines-based 
treatment, but they finally gained a good outcome after the sequential taxol-based treatment.

Furthermore, although we explored the roles of methylation and miRNAs in chemoresistance, we did not 
include these two factors in the signature for practical reasons: they are neither commonly used nor easy to test 
during clinical diagnosis.

The significant changes in expression of these 17 genes were associated with methylation and the dysregula-
tion of miRNAs, as well as showing high relevance to the EMT process. Seven genes were mediators of the EMT: 
ANPEP (CD13)40, ANTXR141, BTG242, CAV243, MFI244, PSAT1 (proliferation)45, and PVR46. For some of these, 
EMT-related functions have not yet been found in breast cancer; for example, MFI2 has only been shown to 
mediate the EMT in melanoma, so further exploration of their roles in the EMT and chemoresistance in breast 
cancer is worthwhile. The expression of three genes, AKAP1247, DKK348, and TUSC349, in chemoresistant MCF-7 
cells and TNBC samples was not consistent with previous reports. This may be due to differences in the types of 
cells used, so whether they play different roles in chemoresistant TNBC cells needs further study. Furthermore, 
there have been no reports on the activity of CLIP4, CAPN2, CRLF1, CYBRD1, PHF10, and TRHDE in breast 
cancer or chemoresistance, thus making them new candidates for understanding breast cancer, the EMT, and 
chemoresistance. Finally, ABCC3 is thought to mediate chemoresistance50 but is down-regulated in chemore-
sistant TNBC cells. This may be due to the fact that the role of ABCC3 in chemoresistance varies dramatically 
among different chemotherapeutic agents and different types of cells51, and our study suggests a new action of 
ABCC3 to potentially inhibit chemoresistance. We then showed the 17 genes were extensively co-expressed, 
genetic interacted and physical interacted with each other directly or indirectly. Because the expression of 17 
genes are significantly related with chemoresistance in clinical samples, so further study may be performed to 
validate these interactions and to identify the dominant player in this group of genes, which is likely important 
determinants and treatment target to chemoresistance. Our preliminary data analysis suggests CAPN2, TUSC3 
and CYBRD1, which sit in the central location in the network, might be good candidates.
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Because the chemoresistant MCF-7 cells were developed under continuous ADM and PTX challenge, we 
chose samples from patients undergoing TA-based chemotherapy for the clinical validation of this study. As a 
result, we only demonstrated the good predictive and prognostic power of the signature in a TA-based regime, so 
its utility for other chemotherapeutic regimes needs further validation. However, we did find indirect evidence 
that the 17-gene signature may be effective for different chemotherapeutic agents: in the two validating datasets 
with unknown chemotherapeutic regimes (probably unrelated to TA), the signature classified TNBC patients into 
potentially resistant and sensitive groups. Although we cannot provide direct evidence for the accuracy of this 
classification, a worse prognosis for the potentially chemoresistant patients indirectly indicates that the signature 
correctly classifies TA-unrelated responses because of the tight connection between chemoresponse and prog-
nosis. Such good discriminative capacity of the signature may be because the MCF-7/ADM and /PTX cells show 
features of multi-drug resistance9, so the signature derived from them may involve mechanisms of resistance 
common to other agents. These mechanisms are more reflective of the natural history of cancers, i.e, to proliferate 
and survive, rather than response to a simple chemotherapy. Indeed, a number of previous studies have shown the 
prognostic correlation of expression of EMT and proliferation genes52–54. Furthermore, taxane and anthracycline 
are commonly-used and effective agents, and their complementary mechanisms are specifically beneficial for 
TNBC55. Therefore, if TNBC cells show evident resistance to the TA-based regime, they are more likely to have 
already developed a mature mechanism of resistance to toxic drugs and be more malignant, so the signature could 
provide information about their response to commonly-used chemotherapeutic agents, and predict the prognosis 
of TNBC patients.

Taken together, our analysis not only provides a systematic means of integrating multiple levels of transcrip-
tional regulation in chemoresistant cancer cells, but also presents several markers of cancer prognosis, therapeutic 
targets, and predictors of chemotherapeutic efficiency.

Materials and Methods
Additional methods are described in supplemental information Materials and Methods.

Cell culture. MCF-7/WT human breast cancer cells were obtained from the ATCC (HTB-22) in 2011. The 
adriamycin (ADM)- and paclitaxel (PTX)-resistant cells (MCF-7/ADM and MCF-7/PTX) were derived as pre-
viously described4 by treating MCF-7 cells with stepwise increasing concentrations of ADM and PTX over 8 
months. These MCF-7 cells were cultured in RPMI supplemented with 10% FBS, 100 μg/mL penicillin, and 100 
U/mL streptomycin. No authentication was done for these cell lines.

Data deposition. The high-throughput data have been submitted to GEO (GSE68815).

Combined analysis and functional enrichment. To compare the DNA methylation data with the 
miRNA expression levels, for each differentially-expressed miRNA we studied the CpGs within a 2000-bp win-
dow around the transcription start site. Several miRNA target databases were used for retrieving the known 
miRNA-targeted genes: MirTarget2 (http://mirdb.org/miRDB/), miRecords (http://mirecords.biolead.org), and 
miRanda (http://www.microrna.org/microrna/getDownloads.do). Only targets predicted in at least 2 of these 
databases were included in the subsequent analysis. WebGestalt (http://bioinfo.vanderbilt.edu/webgestalt/) was 
used for Gene Ontology and Pathway Enrichment analysis42.

Ethics statement. This study was reviewed and approved by the Ethic Committee of Tianjin Medical 
University Cancer Institute & Hospital (Ethical approval number: bc201505). All procedures were carried out 
in accordance with approved guidelines. Each patient involved in this study provided written informed consent.
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