
pharmaceuticals

Article

EEG and Sleep Effects of Tramadol Suggest Potential
Antidepressant Effects with Different Mechanisms of Action

Szabolcs Koncz 1, Noémi Papp 1 , Noémi Menczelesz 1, Dóra Pothorszki 1 and György Bagdy 1,2,3,*

����������
�������

Citation: Koncz, S.; Papp, N.;

Menczelesz, N.; Pothorszki, D.; Bagdy,

G. EEG and Sleep Effects of Tramadol

Suggest Potential Antidepressant

Effects with Different Mechanisms of

Action. Pharmaceuticals 2021, 14, 431.

https://doi.org/10.3390/ph14050431

Academic Editor: Roberto Frau

Received: 17 April 2021

Accepted: 29 April 2021

Published: 4 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Pharmacodynamics, Semmelweis University, 1085 Budapest, Hungary;
koncz.szabolcs@pharma.semmelweis-univ.hu (S.K.); papp.noemi@pharma.semmelweis-univ.hu (N.P.);
menczelesz.noemi@pharma.semmelweis-univ.hu (N.M.); dorapothorszki@gmail.com (D.P.)

2 MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences,
Semmelweis University, 1085 Budapest, Hungary

3 NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program,
Semmelweis University, 1085 Budapest, Hungary

* Correspondence: bag13638@iif.hu

Abstract: Tramadol is a widely used, centrally acting, opioid analgesic compound, with additional
inhibitory effects on the synaptic reuptake of serotonin and noradrenaline, as well as on the 5-HT2

and NMDA receptors. Preclinical and clinical evidence also suggests its therapeutic potential in the
treatment of depression and anxiety. The effects of most widely used antidepressants on sleep and
quantitative electroencephalogram (qEEG) are well characterized; however, such studies of tramadol
are scarce. Our aim was to characterize the effects of tramadol on sleep architecture and qEEG in
different sleep–wake stages. EEG-equipped Wistar rats were treated with tramadol (0, 5, 15 and
45 mg/kg) at the beginning of the passive phase, and EEG, electromyogram and motor activity were
recorded. Tramadol dose-dependently reduced the time spent in rapid eye movement (REM) sleep
and increased the REM onset latency. Lower doses of tramadol had wake-promoting effects in the
first hours, while 45 mg/kg of tramadol promoted sleep first, but induced wakefulness thereafter.
During non-REM sleep, tramadol (15 and 45 mg/kg) increased delta and decreased alpha power,
while all doses increased gamma power. In conclusion, the sleep-related and qEEG effects of tramadol
suggest antidepressant-like properties, including specific beneficial effects in selected patient groups,
and raise the possibility of a faster acting antidepressant action.

Keywords: tramadol; sleep; depression; antidepressant; pharmaco-EEG; brain oscillation; EEG
power spectra; rat; sleep-wake cycle; chronic pain

1. Introduction

Tramadol (1RS,2RS)-2-[(dimethylamino)-methyl]-1-(3-methoxyphenyl)-cyclohexanol]
hydrochloride is a widely used, centrally acting opioid analgesic in the treatment of acute
and chronic pain [1]. Tramadol acts as a weak agonist on µ-opioid receptors and inhibits
serotonin (5-HT) and noradrenaline (NA) reuptake. Furthermore, it shows antagonist
properties on 5-HT2, muscarinic acetylcholine, as well as NMDA receptors [2]. Tramadol is
considered a weak opioid receptor agonist, but the analgesic effects of tramadol are also
mediated through its main metabolite, O-desmethyltramadol, which has a greater affinity
to µ-opioid receptors and has a more potent analgesic effect [3,4].

Given the monoaminergic effects of tramadol, which is characteristic of most antide-
pressants, and its structural similarities to venlafaxine (a reuptake inhibitor antidepres-
sant), several preclinical studies have investigated the potential antidepressant effects
of tramadol [5–7]. Early preclinical studies have reported the antidepressant effects of
tramadol in rodents [8,9]. Using a novel network-based drug repositioning method, Zhang
et al. have proposed the antidepressant-like effects of tramadol [10]. Recently, machine
learning analysis applied on patient drug reviews on WebMD predicted the repurposing
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indication of tramadol in the treatment of depression [11]. Moreover, another database
mining on patient drug reviews suggested that tramadol has a fast-onset antidepressant
effect [12].

A major depressive disorder often co-occurs with sleep disruption. The vast majority
of patients with depression suffer from impaired sleep, such as insomnia or hypersomnia [13].
The latter symptoms define the type of antidepressant used in these subgroups of patients [14].
Characteristic sleep-EEG alterations in patients with depression include disinhibition of
rapid eye movement (REM) sleep, disruption of sleep continuity, and changes in non-rapid
eye movement (NREM) sleep. Additionally, several depressed patients show reduced
electroencephalogram (EEG) delta power throughout the night [13].

Most antidepressants show characteristic effects on sleep, both in healthy volunteers
and depressed patients. Reuptake and monoamine-oxidase (MAO) inhibitor antidepres-
sants increase REM sleep latency time and suppress REM sleep time, both in humans
and animals [15,16]. Some other effects on sleep-EEG or EEG variables may be suitable
as biomarkers for the prediction of therapy response in depression [17,18]. Therefore,
the sleep-EEG related effects of investigational and clinically used antidepressants are
extensively studied in humans and animals [13,14,19].

Tramadol is considered to have great potential in the treatment of depression beyond
its analgesic effect; however, only limited information is available regarding its sleep-
related effects. Only one relevant study could be found that has reported a sleep-disturbing
effect in eight healthy volunteers when applying tramadol in a single dose (50 or 100 mg)
during the night following its application. Furthermore, a 100 mg dose of tramadol
shortened the duration of REM sleep, suggesting that the latter effect is dose-dependent,
although clinically relevant higher doses were not tested [20]. Therefore, in this study,
we investigated the dose-dependent effects of acutely administered tramadol on rat sleep
architecture and EEG power. Our results confirm the potential antidepressant effects of
tramadol and suggest beneficial effects for treating sleep disturbance in specific subgroups
of depressed patients.

2. Results

Tramadol, given at the beginning of the passive phase, i.e., light phase of the dark/light
cycle induced dose-dependent effects on sleep and wake parameters and qEEG.

2.1. Effects of Tramadol on the Pattern of Sleep–Wake Cycle
2.1.1. Effects on Wakefulness

Tramadol dose-dependently affected time spent in wakefulness and this effect changed
during the 6 h, post-injection (treatment: F(3, 21) = 21.95, p < 0.0001, treatment × time
interaction: F(27, 189) = 22.36, p < 0.0001, Figure 1a). Lower doses of the drug (5 and
15 mg/kg) promoted wakefulness during the first 2–4 h, while the highest dose (45 mg/kg)
first decreased (1st hour), and then, at 3–5 h, increased the amount of wakefulness.

2.1.2. Effects on NREM Sleep

In parallel with its effects on wakefulness, tramadol dose-dependently affected the
time spent in NREM sleep (treatment: F(3, 21) = 11.03, p = 0.0001, treatment × time interac-
tion: F(27, 189) = 21.73, p < 0.0001, Figure 1b). Lower doses of tramadol (5 and 15 mg/kg)
reduced time spent in NREM sleep during the first 2–4 h, while the highest dose of tra-
madol (45 mg/kg) increased NREM sleep time in the first hour, and decreased NREM sleep
during 3–5 h.

2.1.3. Effects on REM Sleep

The time spent in REM sleep was also dose-dependently reduced after tramadol
administration, but, interestingly, the effect of the highest dose now was not opposite to
those with lower doses at the onset of the effect (treatment: F(3, 21) = 14.31, p < 0.0001,
treatment × time interact: F(27, 189) = 5.613, p < 0.0001, Figure 1c). We also found dose-
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dependent decreases in the REM sleep latency (F(3, 21) = 112.1, p < 0.0001, Figure 2a), and
the number of REM sleep episodes (F(3, 21) = 24.47, p < 0.0001, Figure 2b).
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Figure 1. The effects of intraperitoneally (i.p.) administered single doses of tramadol (5, 15 and 45 mg/kg) or vehicle on the
amount of (a) wakefulness, (b) non-rapid eye movement (NREM) sleep and (c) rapid eye movement (REM) sleep for 10 h
after the injections. The arrows show the time of the administration, at the beginning of the passive phase. At this time
point, all animals were awake. The mean value of the first hour is connected with time zero by dashed lines. The &, # and
* signs represent significant results (p < 0.05) of the post hoc tests, compared to vehicle in the case of the 5, 15 and 45 mg/kg
tramadol-treated groups, respectively. Data are presented as mean ± SEM of n = 8 rats/group.
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Figure 2. The effects of intraperitoneally administered single doses of tramadol (5, 15 and 45 mg/kg i.p.) or vehicle on (a)
REM sleep latency following the first non-rapid eye movement (NREM) sleep episode and (b) the amount of rapid eye
movement (REM) sleep during the first 6 h after drug administration. Significant post hoc results are marked by * p < 0.05,
*** p < 0.001, **** p < 0.0001. Data are presented as mean ± SEM (n = 8 rats/group).

2.2. Effects of Tramadol on qEEG

The effects of tramadol on qEEG were much more prominent in NREM sleep than in
wakefulness (Figures 3 and 4).

Delta power during NREM sleep was markedly increased by the two higher doses
5 h after administration (treatment: F(3, 21) = 11.28, p = 0.0001, treatment × time interaction:
F(27, 184) = 5.570, p < 0.0001, Figure 3B). Notably, the 15 mg/kg of tramadol beforehand
decreased delta power transiently. Delta power during wakefulness was marginally in-
creased by tramadol (15 and 45 mg/kg) 3 h after administration (treatment: F(3, 21) = 16.51,
p < 0.0001, treatment × time interaction: F(27, 189) = 4.913, p < 0.0001, Figure 3A).

Theta power was altered in NREM sleep, namely, a transient decrease followed
by an increase was observed after the two higher doses (no significant treatment ef-
fect: F(3, 21) = 1.352, p = 0.2846, significant treatment × time interaction: F(27, 184) = 6.372,
p < 0.0001, Figure 3B).

Alpha power was significantly decreased during NREM sleep by tramadol at doses
of 15 and 45 mg/kg (treatment: F(3, 21) = 3.526, p < 0.05, treatment × time interaction:
F(27, 184) = 7.198, p < 0.0001, Figure 3B), while during wakefulness tramadol showed no
effect on alpha power (treatment: F(3, 21) = 0.4208, p = 0.7400, Figure 3A).

Beta power was slightly transiently affected by the two higher doses of tramadol
in NREM sleep (no significant treatment effect: F(3, 21) = 1.745, p = 0.1886, significant
treatment × time interaction: F(27, 184) = 6.914, p < 0.0001, Figure 4B). This effect was a
decrease first, followed by an increase in the case of both higher doses, although it was
shifted in time.

Gamma power was significantly increased by all doses of tramadol during NREM
sleep (treatment × time interaction: F(27, 184) = 5.347, p < 0.0001), although the treatment ef-
fect alone did not reach significance level (Figure 4B). In contrast, tramadol slightly reduced
gamma power during wakefulness (treatment: F(3, 21) = 12.89, p < 0.0001, treatment × time
interaction: F(27, 189) = 2.596, p < 0.0001; Figure 4A).

The effects of different doses of the drug on the EEG powers at specific hours (results
of Bonferroni post hoc comparisons) are shown in Figures 3 and 4.
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respectively. Data are presented as SEM (n = 8 rats/group).
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Figure 4. Beta and gamma EEG power changes induced by tramadol (5, 15 and 45 mg/kg i.p.) during (A) wakefulness and
(B) non-rapid eye movement sleep (NREMS) compared to vehicle (presented as value 1.0 with the calculated SEM for each
hour). EEG power data were averaged for each hour after administration of vehicle or tramadol at the beginning of the
passive phase. The &, # and * signs indicate significant post hoc results (p < 0.05) compared to vehicle in case of the 5, 15
and 45 mg/kg tramadol-treated groups, respectively. Data are presented as SEM (n = 8 rats/group).

3. Discussion

Here, we report that acute tramadol treatment markedly affects the architecture of
the sleep–wake cycle and modulates qEEG in a sleep–wake stage dependent manner in
Wistar rats.

With regard to the pattern of sleep–wake stages, the most prominent effect of tra-
madol was found on REM sleep. Namely, tramadol dose-dependently reduced both the
duration of REM sleep and the number of REM episodes, as well as increased REM sleep
latency. These effects of tramadol are in line with earlier data in humans [20] and with the
REM suppressing effects of reuptake inhibitor antidepressants, such as selective serotonin
reuptake inhibitors (SSRIs), serotonin and noradrenaline inhibitors (SNRIs), and tricyclic
antidepressants (TCAs), both in humans and in laboratory animals [19,21,22]. Alterations
in REM sleep, such as shortened REM sleep onset and increased REM sleep duration,
have been linked to depressive states, and have also been considered as biomarkers of
depression. Almost all reuptake inhibitor antidepressants markedly suppress REM sleep,
which is thought to be an important component of their therapeutic effect [15].

Serotoninergic and noradrenergic neurotransmissions play an important role in the
regulation of REM sleep; mainly monoaminergic neurons in the dorsal raphe and locus
coeruleus activate the REM-off circuitry and suppress REM sleep [23–25]. Earlier in vitro
studies have demonstrated the inhibitory effects of tramadol on 5-HT and NA reuptake in
the dorsal raphe nucleus and in the locus coeruleus, respectively [26,27]. Indeed, in vivo
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microdialysis experiments performed on freely moving rats have shown that tramadol
increased extracellular 5-HT and NA levels in the ventral hippocampus. In analgesic doses,
the effects of tramadol on monoamine levels were comparable to dual reuptake inhibitors,
such as duloxetine, venlafaxine, and clomipramine [28]. Thus, the suppressive effect of
tramadol on REM sleep is most likely mediated by its inhibitory effects on the reuptake of
5-HT and NA, but complementary mechanisms might also play a role.

Besides its opioid agonist and reuptake inhibitory effects, tramadol exerts inhibitory
effects on several receptor types, such as muscarinic acetylcholine receptors, NMDA
receptors, and 5-HT2 receptors [2]. Importantly, the anticholinergic scopolamine, the
NMDA antagonist ketamine, and the 5-HT2C receptor antagonist SB-242084 all have fast-
onset antidepressant properties [29,30], and also markedly suppress REM sleep [31,32],
suggesting that the effect of tramadol on muscarinic, NMDA and 5-HT2 receptors may
be key in its antidepressant effect. Furthermore, data mining on the patient drug reviews
database has also suggested that tramadol has a fast-onset antidepressant effect [12]. Taken
together, these data raise the possibility of tramadol’s fast-onset antidepressant properties.

Tramadol dose-dependently affected time spent in wakefulness and NREM sleep;
namely, lower doses promoted wakefulness, while the highest dose first decreased, and
then increased the amount of wakefulness. The wakefulness promoting effects of tramadol
are in line with the results of an exploratory qualitative study, where participants described
tramadol as an effective drug for relieving fatigue or tiredness and stress [33]. Our data
supports this notion, thus tramadol is more likely to be effective in depressed patients with
hypersomnia, or at least in patients who do not have problems falling asleep. In patients
who have insomnia, tramadol might be used with caution.

Tramadol markedly increased delta EEG power during NREM sleep and marginally
in wakefulness. Delta activity is typically associated with NREM sleep states and has
also been linked with cognitive process and motivation during wakefulness [34]. Chronic
exposure to stress in rats decreased delta power during NREM sleep [35]. In line with this,
patients suffering from major depression also show reduced EEG delta power through-
out sleep [13]. Regarding the effect of antidepressants on delta EEG power, we showed
previously that acute escitalopram (SSRI) treatment increased delta power during active
wakefulness in rats [36]. Moreover, antidepressants with 5-HT2 antagonist properties
(e.g., mirtazapine, mianserin and trazodone) mainly increased slow wave sleep and sleep
efficiency, without any significant effects on REM sleep [14,37]. This slow wave sleep en-
hancing effect might be mediated by 5-HT2A and 5-HT2C receptors, as previous studies
show that non-selective 5-HT2 receptor antagonist ritanserin also increased delta activity
and slow wave sleep [38]. Ogata et al. showed that tramadol in pharmacologically relevant
concentrations competitively inhibits the effects of 5-HT on 5-HT2C receptors [39]. Not only
the main compound, but the primary metabolite of tramadol, O-desmethyltramadol, also
has inhibitory effects on 5-HT2C receptors [40]. Therefore, tramadol’s long-term effects on
delta oscillations might be explained by its antagonist effects on 5-HT2C receptors, although
the role of its antagonistic effects on 5-HT2A receptors cannot be ruled out.

The nonselective NMDA receptor antagonist ketamine, which is known to evoke an
immediate antidepressant effect, also increased the EEG delta power during NREM sleep
in rats when applied in single doses [41]. This effect also seems to be important in clinical
settings, because low baseline delta sleep predicted a response to ketamine in patients with
treatment-resistant major depressive disorders [42]. Since tramadol also has inhibitory
effects on NMDA receptors, involvement of this mechanism in the antidepressant-like
effects of tramadol has also been proposed [43,44]. Indeed, tramadol pretreatment before
ketamine administration elicited greater antidepressant effects in the rat forced swimming
test. Moreover, the co-administration of sub-effective doses of tramadol and ketamine
together elicited antidepressant-like effects in the mouse forced swimming test [44,45].
Overall, tramadol’s effect on delta oscillation might be mediated by its activity on 5-HT2C
and NMDA receptors. Anyway, tramadol’s delta activity enhancing effect during NREM
sleep could be beneficial, especially in patients with a decreased delta sleep ratio.
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During wakefulness, tramadol had no effect in any of the applied doses on alpha
power. However, during NREM sleep, tramadol significantly decreased alpha power at
the doses of 15 and 45 mg/kg. In mammals, delta oscillations dominate the EEG during
NREM sleep, and alpha oscillations are decreased [34]. On the other hand, alpha wave
intrusion in delta sleep has been observed in patients with major depression and patients
with fibromyalgia [46,47]. Fibromyalgia is associated with chronic and diffuse muscu-
loskeletal pain, which often co-occurs with sleep disturbances and mood changes [48].
In healthy volunteers, artificially induced alpha activity during NREM sleep produces
fibromyalgia-like symptoms; therefore, increased alpha activity may even be the source of
these symptoms [49]. The alpha EEG power reducing effects of tramadol during NREM
sleep reported in our study are in line with recent clinical evidence that suggests the
positive effect of tramadol on the symptoms of fibromyalgia [48].

Acute tramadol slightly decreased gamma power during wakefulness, while it was ele-
vated during NREM sleep. Gamma EEG power has gained interest recently as a biomarker
for depression. Moreover, it has also been suggested that gamma oscillation may pro-
vide information about the therapeutic effects of all antidepressants [50,51]. In contrast to
tramadol, ketamine and its metabolite (2R,6R)-hydroxynorketamine, in effective antidepres-
sant doses, have been shown to increase gamma power in mice during wakefulness [52].
However, acute treatment with antidepressants such as fluoxetine and citalopram suppress
gamma power in rats, similarly to tramadol [53,54]. Gamma suppression might be the
result of elevated 5-HT levels, which is further proved by the fact that an evoked 5-HT
release, through the electrical stimulation of the dorsal raphe nucleus in rats, also decreased
gamma power [55]. Gamma oscillation has been associated with perceptual and higher
cognitive processes in healthy human subjects and animals [56]. However, abnormally
high gamma power during wakefulness has been associated with positive symptoms
of schizophrenia, such as hallucinations [57]. During sleep, beta and gamma oscillation
contribute to the reactivation of information, and therefore may have an important role
in memory consolidation [58]. Ketamine and certain other NMDA receptor antagonists
increased gamma power during NREM sleep similarly to tramadol [59]. Previously, we
showed that chronic, but not acute, antidepressant treatment elicited an increase in gamma
power during NREM sleep [36]. Additionally, the acute administration of SB-242084, a
5-HT2C receptor antagonist with fast-onset antidepressant-like properties, also elevated
gamma power in slow wave sleep [30,60]. Therefore, tramadol’s acute effects on gamma
oscillation during NREM sleep might be mediated by its antagonist effects on 5-HT2C recep-
tors or NDMA receptors, and may suggest a faster-onset antidepressant-like action. Indeed,
clinical observations and data mining analysis support the rapid onset antidepressant
properties of tramadol [12,61].

Tramadol is a racemic compound and consists of two enantiomers with different
pharmacological effects. Namely, (+)-tramadol is mainly responsible for 5-HT reuptake
inhibition and µ-opioid agonism, while (−)-tramadol mediates the NA reuptake inhibitor
effects of racemic tramadol [62,63]. We evaluated only the effects of the racemic compound
because, in clinical settings, only the racemic tramadol is in use. Future work may dis-
cover enantiomer-specific effects of tramadol on sleep and EEG. Additionally, tramadol is
often used long-term in the management of pain or in off-label treatment of psychiatric
conditions [64], underlining the importance of future investigations into the effects of
chronically administered tramadol on vigilance and qEEG.

In conclusion, our findings provide evidence that acute tramadol markedly affects
sleep parameters, also including those sleep parameters that can be crucial in the patho-
physiology of depression. The REM-suppressing effects of tramadol are similar to those
of 5-HT and NA reuptake blocker antidepressants, while its delta power-inducing effects
during NREM sleep resemble those of 5-HT receptor antagonist antidepressants. Some
qEEG effects of tramadol are similar to those observed with chronic administration of
reuptake blockers or the acute effects of fast acting antidepressants. Effects on alpha power
suggest possible therapeutic value in fibromyalgia. Thus, the sleep related and qEEG
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effects of tramadol suggest antidepressant-like properties and raise the possibility of faster
acting antidepressant action, with specific beneficial effects in selected patient groups.
Furthermore, these data support the possible use of tramadol in fibromyalgia.

4. Materials and Methods
4.1. Animals

All animal experiments and housing conditions were conducted in accordance with
the EU Directive 2010/63/EU and specific national laws (the Hungarian Governmental
Regulations on animal studies 40/2013). All efforts were made to minimize the number of
animals, as well as their pain and discomfort.

Male Wistar rats (Han:WIST, Toxi-Coop, Hungary) were used in the experiments.
The animals were maintained under controlled environmental conditions (21 ± 1 ◦C
temperature, 12-h/12-h light/dark cycle with light on at 10 a.m.). Water and standard
rodent food were available ad libitum.

4.2. Surgery

All rats were implanted with electroencephalographic (EEG) and electromyographic
(EMG) electrodes, as described earlier [65], under 2% isoflurane anesthesia. In brief, for
fronto-parietal EEG recordings, stainless steel screw electrodes were placed epidurally
over the left frontal cortex (1.5 mm lateral and 2.0 mm anterior to bregma), left parietal
cortex (1.5 mm lateral and 2.0 mm anterior to lambda), and over the cerebellum as a ground
electrode. For EMG recordings, a pair of EMG electrodes (stainless steel spring electrodes
covered by silicon rubber, Plastics One Inc., Roanoke, VA, USA) was placed into the neck
musculature. The rats weighed 300–330 g at surgery.

After a recovery period (8–10 days), the rats were kept individually in glass recording
chambers, attached to the EEG system by a recording cable. An electric swivel fixed
above the cages permitted free movement of the rats. The animals remained connected
throughout the whole study.

4.3. Drugs

Tramadol hydrochloride was purchased from Sigma-Aldrich (42965-5G-F, chemical
purity ≥99%). The animals were treated intraperitoneally (i.p.) with 5, 15 or 45 mg/kg of
tramadol or vehicle (saline 1 mL/kg), at the beginning of the light phase, just before the
recordings. Doses of tramadol were chosen on the basis of depression related behavioral rat
studies [66,67] and a previous in vivo microdialysis experiment [28]. All rats received all
treatments in a randomized crossover design with a 5-day-long washout period between
the treatments.

4.4. EEG Recording and Analysis

EEG, EMG, and motor activity were recorded for 10 h after each treatment (Coulburn
Lablinc System, Holliston, MA, USA). The animals remained undisturbed throughout the
recordings. The signals were amplified (EEG: 5000 times, EMG: 10,000 times) and filtered
(below 0.50 Hz, above 100 Hz). Analog-to-digital conversion was performed at 256 Hz
sampling rate.

Sleep–wake stages were differentiated in 4-s epochs, using conventional criteria [65],
as follows: in wakefulness, the EEG was characterized by low-amplitude activity at beta
(14–29 Hz) and alpha (10–13 Hz) frequencies, accompanied by high EMG and motor
activity. In NREM sleep, the EEG was characterized by high-amplitude activity in the delta
(0.5–4 Hz) frequency band, sometimes interrupted by spindles (6–15 Hz), accompanied by
reduced EMG activity and minimal motor activity. In REM sleep, the EEG was characterized
by low-amplitude, high-frequency activity, and regular theta waves (5–9 Hz), accompanied
by neither EMG nor motor activity, except for occasional twitching. For scoring the
vigilance stages, we first used the automatic scoring function of Sleep Sign for Animal
software (Kissei Comtec America Inc., Fort Lee, NJ, USA); then, visual supervision was



Pharmaceuticals 2021, 14, 431 10 of 13

carried out by researchers who were blind to the treatment of the rats. Epochs containing
artefacts or stage transitions were excluded from the power spectral analysis.

The following sleep–wake parameters were calculated: time spent in wakefulness,
NREM sleep, and REM sleep in each hour; number of REM sleep episodes in the first half
of the passive phase; and REM sleep latency. REM sleep latency was calculated as the time
elapsed between first NREM sleep episode and the beginning of the first consecutive REM
sleep episode lasting at least 7 epochs.

EEG power spectral analysis was performed at the frequency range of 0.50–60 Hz (fast
Fourier transformation, Hanning window, frequency resolution: 0.25 Hz). The 0.25-Hz
bins were summed into 1-Hz bins, marked by their upper limits. Bins above 60 Hz were
excluded. Power values were averaged hourly, in wakefulness, NREM sleep, and REM
sleep. Then, the power values of each hour were averaged in the delta (1–4 Hz), theta
(5–9 Hz), alpha (10–13 Hz), beta (14–29 Hz), and gamma (30–60 Hz, excluding 49–51 Hz)
frequency bands.

4.5. Statistics

To evaluate the effect of different doses of tramadol on the time spent in wakefulness,
NREM sleep, and REM sleep for each hour, a two-way double repeated measure ANOVA
was used (treatment and time, both as repeated variables). For the analysis of the effects
of tramadol on the amount of REM sleep and REM sleep latency, a repeated measure
one-way ANOVA was performed. For qEEG data analyses, a mixed-model design ANOVA
(treatment and time, both as repeated variables) was used. For multiple comparisons, a
Bonferroni post hoc test was performed.
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