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Introduction

The coronavirus disease 2019 (COVID-19) pandemic, a viral

illness caused by the severe acute respiratory syndrome coro-

navirus-2 (SARS-CoV-2),1 has produced at the time of this

writing nearly 33 million cases of infection, with over a mil-

lion deaths in 235 countries,2 causing an unprecedented bur-

den on healthcare systems and a severe global socioeconomic

crisis. As the pandemic spreads, knowledge on the disease

course, as well as potential risk factors and predictors of

severity is increasing daily, and initial data from randomised

controlled studies have allowed care providers to refine ther-

apeutic strategies. Nonetheless, mortality is markedly elevated

among those presenting with severe disease, long-term seque-

lae among survivors are unknown, and vaccine-based thera-

pies currently remain at early stages of development.

Most reported cases are asymptomatic or present with mild

symptoms; however, 7–26% of hospitalised patients experience

severe disease, often requiring admission to intensive care units

(ICUs), with progressive multiple organ dysfunction and high

mortality.3–5 Such differences in clinical outcomes have led

physicians to initiate diverse pharmacological therapies at vari-

ous stages of the disease, generating challenges as to the most

appropriate therapeutic choice for COVID-19. In this context,

the use of dexamethasone has significantly reduced mortality

rates in critically ill patients requiring supplemental oxygen or

mechanical ventilation,6 and remdesivir has demonstrated

clinical benefit in hospitalised patients, but with unknown sur-

vival benefit to date7; additional effective treatment options are

therefore urgently needed.

In an initial attempt to provide a uniform and widely

reproducible methodology to guide systematic treatment

strategies, a three-stage classification of COVID-19 has been

proposed.8 The Stage I or ‘early infection’ occurs at the ini-

tial establishment of disease with high viral replication, and

commonly presents with a range of complaints that can

include mild and often non-specific influenza-like signs and

symptoms. Stage II is the ‘pulmonary phase’, with preferen-

tial viral-mediated injury of the lung parenchyma and this is

characterised by shortness of breath, hypoxia and pulmonary

infiltrates with some degree of lung inflammation. Stage III

is characterised by an exaggerated host immune-inflamma-

tory response to the virus, leading to acute respiratory dis-

tress syndrome (ARDS) and multi-organ failure (MOF).

Endothelial cells are a preferential target of
COVID-19 resulting in widespread endotheliitis

Emerging evidence suggests that endothelial damage and sub-

sequent morphological and functional changes in the

endothelium play important roles in COVID-19-induced

hyperinflammation. The virus, which binds to the

Correspondence: Paul Richardson, MD, Division of Hematologic

Malignancies, Department of Medical Oncology, Dana-Farber Cancer

Institute, Harvard Medical School, Boston, MA, USA.

E-mail: paul_richardson@dfci.harvard.edu

Carmelo Carlo-Stella, MD, Department of Oncology and

Hematology, Humanitas Cancer Center, IRCCS, Milan, Italy.

E-mail: carmelo.carlostella@hunimed.eu

*Co-senior authors

commentary

ª 2021 British Society for Haematology and John Wiley & Sons Ltd
British Journal of Haematology, 2021, 193, 43–51

First published online 4 February 2021
doi: 10.1111/bjh.17240

https://orcid.org/0000-0002-8105-1322
https://orcid.org/0000-0002-8105-1322
https://orcid.org/0000-0002-8105-1322
https://orcid.org/0000-0003-3144-0124
https://orcid.org/0000-0003-3144-0124
https://orcid.org/0000-0003-3144-0124
mailto:
mailto:


angiotensin-converting enzyme 2 (ACE2) receptor,9 displays

a profound tropism for human lung and small intestine

epithelium, as well as the vascular endothelium.10 In an

important case series from Varga et al.,11 postmortem histol-

ogy from three patients affected by late-stage COVID-19,

revealed viral inclusions in endothelial apoptotic cells and

microvascular lymphocytic endotheliitis, with infiltration of

inflammatory cells around the vessels and endothelial cells

(ECs), as well as evidence of endothelial apoptotic cell death

in the lung, kidney, small bowel and heart. Additionally,

autopsy findings of 27 patients in another series confirmed

the detection of the SARS-CoV-2 in multiple organs, includ-

ing the respiratory tract, pharynx, heart, liver, brain, and kid-

neys.12 Immunofluorescence of kidney specimens from six of

the 27 patients showed the presence of SARS-CoV-2 protein

in all renal compartments, and in three of the patients pref-

erentially in the endothelium of the glomerulus. Similar

microscopic findings were also noted in lung specimens from

seven patients with COVID-19, which displayed small vessel

endotheliitis, microvascular thrombosis and angiogenesis,

along with the presence of SARS-CoV-2 in pulmonary ECs,

an observation strongly supporting the vascular tropism of

the virus.13 Lastly, Stahl et al.14 have identified in the plasma

and serum of 19 critically ill patients with COVID-19 evi-

dence of disruption of the endothelial glycocalyx, reflected by

increased levels of the Tie-2 receptor and syndecan-1 (SDC-

1), a heparan sulphate (HS) proteoglycan. This particular

observation is of interest as the endothelial glycocalyx covers

the luminal surface of ECs, and its integrity is vital for the

maintenance of vascular homeostasis.

Such findings suggest that virus-mediated apoptosis may

promote endothelial barrier disruption with interstitial

oedema and increased recruitment of circulating activated

immune cells, thus causing widespread endothelial dysfunc-

tion, as well as activation of platelets and the coagulation

cascade leading to venous and arterial thrombosis.15 Altered

pro-inflammatory and pro-thrombotic status is confirmed by

the presence of elevated inflammation-related indices (e.g. C-

reactive protein and serum ferritin), humoral biomarkers [in-

terleukin (IL)-2, IL-6, IL-7, granulocyte-colony stimulating

factor (G-CSF), tumour necrosis factor-alpha (TNF-a)], and
indicators of an increased pro-coagulant-fibrinolytic state

[e.g. von Willebrand factor (VWF), D-dimer, fibrinogen].

Further, factor VIII (FVIII), a potent and key factor in the

coagulation process, is greatly increased in ICU patients with

COVID-19.16

In this setting, it has been proposed that the systemic

hyperinflammation observed in severe COVID-19 is compa-

rable to a cytokine release syndrome (CRS), or cytokine

storm. IL-6 has a central role in the generation of the cyto-

kine storm, and is commonly elevated in the serum of

severely ill patients with COVID-19.17 High levels of IL-6

activate ECs, thus resulting in vascular leakage, further cyto-

kine secretion and activation of the complement and coagu-

lation cascades.18 Interestingly, a population of IL-6

producing monocytes was found to be expanded in the

peripheral blood of ICU patients19 and an aberrant macro-

phage response exhibiting increased levels of pro-inflamma-

tory cytokines has been detected in bronchoalveolar fluid,

especially in severely ill patients.20 Although the exact driver

of monocyte activation remains unclear, such cells are

attracted to the endothelium, where the release of highly

noxious molecules, such as reactive oxygen species (ROS),

contributes to endothelial dysfunction and promotes hyper-

inflammation.21 Further, activated monocytes enhance tissue

factor expression and form aggregates with platelets through

P-selectin interaction and hence augmenting the pro-coagu-

lant response.22 Indeed, significantly increased levels of VWF

and FVIII and thrombomodulin,16 aberrant coagulation,

thrombosis and microangiopathy are very common in criti-

cally ill patients with COVID-19, resulting in a disseminated

intravascular coagulation (DIC)-like syndrome characterised

by massive fibrin formation and organ dysfunction.23 Like-

wise, adaptive immunity actively participates in the establish-

ment of the inflammatory response; specifically, activated

and proliferating CD8+ T cells are prevalent in mild COVID-

19, whereas critically ill patients display higher levels of

hyperactive IL-6-producing CD4+ T cells, which may con-

tribute to disease severity, even after viral clearance.17 Inter-

estingly, T cells show phenotypical signs of an exhausted,

functionally unresponsive state, thus allowing viral escape

from immune surveillance.22 Once initiated, the endotheliitis

and resultant cytokine storm become self-sustaining, leading

to widespread organ damage. Some patients may also display

features of haemophagocytic lymphohistiocytosis, such as

cytopenias, hyperferritinaemia and rapid onset of MOF.

Overall, once hyperinflammation and CRS develop, rates

of mortality significantly increase.24–26 As direct viral activa-

tion of the vascular endothelium has an important role in

initiating and maintaining the hyperinflammatory response,

attempting to blunt such a response with endothelial-protec-

tive agents is a very rational strategy. Controlled clinical trials

focussing on the use of anti-cytokine antibodies, including

tocilizumab (IL-6 inhibitor), have failed to show significant

activity in this stage of the disease.27 However, increasing evi-

dence suggests that the altered homeostasis of the endothe-

lium may be a key initiating event in the pathogenesis of the

disease, therefore representing a potentially more promising

target.28

Endothelial cell-related disorders in
haematology: post-bone marrow
transplantation syndromes and sickle cell
disease and the overlap with the pathobiology
of COVID-19

Clinically and histopathologically, COVID-19-associated

endotheliitis resembles a spectrum of post-bone marrow and

stem cell transplantation (BMT) syndromes characterised by

disruption of endothelial homeostasis and consequently
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dysregulation of coagulation, vascular tone, endothelial per-

meability and vascular inflammation.29 These disorders

include hepatic veno-occlusive disease (VOD)/sinusoidal

obstruction syndrome (SOS), idiopathic pneumonia syn-

drome (IPS), transplant-associated thrombotic microangiopa-

thy and graft-versus-host disease (GvHD).

Hepatic VOD/SOS develops as a result of endothelial dam-

age to hepatic sinusoids and subsequent hepatocyte necro-

sis30. Damage to the ECs leads to a hypercoagulable state,

production of inflammatory mediators, and the upregulation

as well as release of heparanase.31 Heparanase degrades the

heparan sulphate scaffold of the subendothelial basement

membrane, consequently allowing the extravasation of blood-

borne cells, including activated T lymphocytes, neutrophils

and macrophages.32 This cascade of events leads to postsinu-

soidal hypertension, hyperinflammation and ultimately MOF.

Severe VOD/SOS associated with MOF without effective ther-

apy is fatal in >80% of cases.33 Interestingly, the histopatho-

logical examination of lung lesions in VOD/SOS shows early

alveolar epithelial and lung endothelial injury, resulting in

accumulation of protein- and fibrin-rich inflammatory oede-

matous fluid in the alveolar space and progression to intersti-

tial fibrosis,34,35 as is also seen in fatal COVID-19 cases.

Similarly, IPS, a widespread alveolar injury in the absence

of identifiable infectious or non-infectious causes, is charac-

terised by histological evidence of EC injury with fibrin accu-

mulation, luminal thrombosis and fibrotic processes.

Adhesion molecules, such as intercellular adhesion molecule

1 (ICAM-1) and/or vascular cell adhesion molecule 1

(VCAM-1), are commonly upregulated, thus reflecting pro-

found endothelial activation.36 It has been suggested that

TNF-a directly causes endothelial injury, and increased levels

of angiopoietin-2 (Ang-2), have been recently reported in

cases of acute exacerbations of IPS,37 similar to that seen in

severely ill patients with COVID-19.38

Likewise, multifactorial endothelial damage has been also

implicated in the development of transplant-associated

thrombotic microangiopathy, where micro-vessel intimal

swelling and necrosis lead to the formation of luminal

microthrombi and subsequent microangiopathic haemolytic

anaemia. Plasma levels of markers of EC injury and inflam-

mation, such as thrombomodulin, plasminogen activator

inhibitor-1 (PAI-1), ICAM-1, VCAM-1, IL-1, TNF-a, inter-
feron gamma and IL-8 are commonly elevated.39,40 Endothe-

lial dysfunction predominantly affects the kidneys and the

brain, but may become widespread and progress to MOF,

which in turn is associated with high mortality.

Lastly, acute GvHD (aGvHD) develops as a consequence of

the activation of the immune system. Antigen-presenting cells

become activated by endothelial and tissue damage derived

from direct toxicity of the conditioning regimen, thus initiat-

ing an alloreactive T-cell response directed against recipient

tissues.41 As a result, SDC-1 is commonly elevated in the

serum of patients with GvHD and correlates with disease

severity.42 In addition to cell-mediated cytotoxic damage, the

cytokine storm generated in response to T-cell activation and

proliferation causes targeted organ damage involving mainly

the skin, liver and gut.43 It has recently been suggested that

endothelial vulnerability and pro-thrombotic shift precedes

clinically evident aGvHD and that angiogenesis driven by

early endothelial activation is an initiating event.44 Indeed,

increased plasma levels of VWF,45 Ang-246 and TNF receptor

147 have been detected in patients prior to development of

aGvHD, correlating with response to therapy.

Similarly, markers of endothelial dysfunction and inflam-

matory activation have been detected also in the serum of

patients with sickle cell disease (SCD), especially during

vaso-occlusive episodes. SCD is characterised by a chronic

course of relapsing-remitting episodes of ischaemia and then

reperfusion. The polymerisation of defective haemoglobin S

upon deoxygenation initiates many pathological processes,

such as complement activation, generation of ROS and pro-

thrombotic molecules, secretion of numerous pro-inflamma-

tory cytokines and chemokines and ultimately leucocyte

recruitment.48 Oxidative stress and endothelial dysregulation

plays a key role in vaso-occlusion; ECs activated by sub-

stances released by the haemolytic process and by red blood

cell adhesion initiate production and release of soluble medi-

ators such as IL-1b, IL-8, IL-6, IL-1a and PAI-1,49,50 and

increase the expression of adhesion molecules such as

VCAM-1, ICAM-1, E-selectin and P-selectin,51,52 reflecting a

pro-inflammatory and pro-thrombotic shift. Vaso-occlusive

phenomena commonly affect the lung vasculature, provoking

acute chest syndrome (ACS), a spectrum of diseases ranging

from mild pneumonia to ARDS and MOF, which is the lead-

ing cause of morbidity and mortality in SCD.53 Lung speci-

mens from ACS cases showed micro-thrombotic occlusion,

endothelial VWF deposition and arterial vessel re-modelling

with initial fibrotic processes,54 fascinatingly all comparable

to the histopathological findings in COVID-19.55 Impor-

tantly, heme-mediated endothelial damage to alveolar cells is

regulated by the p38 mitogen-activated protein kinase

(MAPK) pathway, which plays a crucial role in the biosyn-

thesis of pro-inflammatory cytokines and collagen produc-

tion.56 This key pathway is also upregulated in COVID-19 as

a result of decreased ACE2 tissue functionality consequent to

viral binding, and may consequently promote endotheliitis,

hypercoagulation and end-stage fibrosis.57,58

In summary, post-BMT syndromes, vaso-occlusive organ

dysfunction in SCD and COVID-19-associated endotheliitis

share common pathological mechanisms including: i) dysreg-

ulation of the homeostasis of the endothelial milieu toward a

pro-inflammatory and pro-thrombotic phenotype with

thrombotic microangiopathy; ii) hyperproduction of inflam-

matory cytokines such as IL-6, IL-8 and TNF-a;59–62 and iii)

small vessel endotheliitis and endothelial barrier dysfunction,

leading to oedema of the microvascular bed, protein and fib-

rin accumulation and subsequent fibrotic shift.34,36 All these

conditions if untreated irremediably lead to MOF and display

similar microscopic and macroscopic features in target
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organs upon pathological examination. At the molecular

level, the p38 MAPK pathway may also be critical in promot-

ing vasoconstrictive and inflammatory phenomena; its activa-

tion is described in SCD, COVID-19 and also as a result of

conditioning regimen-induced endothelial damage in BMT.63

Together, these findings support the notion that the pleiotro-

pic character of the endothelium as a key regulator of the

internal homeostasis, vascular tone, blood coagulation and

the inflammatory process and therefore of so called ‘im-

mune-thrombosis’ events, make it an intriguing therapeutic

target for post-BMT disorders, SCD, and COVID-19.

Agents targeting EC-related disorders

Heparins

Classically, heparins have been the most widely used drugs for

the treatment and prevention of endothelial cell disorders. Sev-

eral animal studies and clinical trials have suggested that, in

addition to its well-known anticoagulant effects, heparin also

possesses anti-inflammatory properties, mainly mediated by

inhibition of IL-6 release and its activity,64 a phenomena also

demonstrated in patients with COVID-19 treated with low-

molecular-weight heparin.65 Further, heparin is structurally

related to HS,66 a negatively charged glycosaminoglycan as

described earlier, which serves as binding sites for growth fac-

tors, cytokines, selectins, extracellular-matrix molecules, and a

large number of human viruses,67 including the SARS-CoV-2

virus.68,69 Indeed, Clausen et al.70 have recently demonstrated

that the SARS-CoV-2 spike protein must bind both the ACE2

receptor and HS to enter human cells. The structural analogies

between heparin and HS may result in competitive inhibition,

where heparin and related compounds compete with the cell

surface HS for viral binding to target cells,68,69 thus potentially

blocking or at least attenuating viral entry. The beneficial

effects of heparin-based therapies are also linked to their inhi-

bition of circulating heparanase enzymatic activity.32 Hepara-

nase, an endo-b-glucuronidase, physiologically cleaves HS

chains located in extracellular matrices and on cell surfaces.32

It is often overexpressed during viral infections and act as a

regulator of virus release after replication has occurred, pro-

moting its dissemination.71–74 Additionally, it may be upregu-

lated by pro-inflammatory molecules such as IL-1 and TNF-a.
Once activated, heparanase stimulates the expression and

release of pro-inflammatory cytokines, including TNF-a, IL-1
and IL-6.75 The enzyme has been implicated in cancer progres-

sion, inflammation,76 VOD/SOS development77 and other vas-

cular pathologies.71

Currently, numerous clinical trials are underway to inves-

tigate the therapeutic potential of intravenous and subcuta-

neous heparin, as well as the appropriate dose regimen in

COVID-19. Further, nebulised heparin delivered directly to

the airways may be effective in preventing infection and miti-

gating lung disease (clinicaltrials.gov; NCT04545541,

NCT04511923). Notwithstanding their anticoagulant, anti-

inflammatory and anti-viral properties, the use of heparins is

associated with a substantially increased risk of systemic

bleeding, and other challenging ‘off-target’ effects, making its

use potentially part of the standard of care, but not without

qualification, as well as highlighting the need for combina-

tion approaches.

Defibrotide

The use of defibrotide (DF), which has both comparable but

distinct properties from heparins and negligible haemor-

rhagic risk78 may therefore be warranted, especially given the

established propensity for the development of DIC later in

the COVID-19 clinical course. DF is a naturally derived,

complex mixture of poly-deoxyribonuleotides extracted origi-

nally from bovine lung and now exclusively from porcine gut

mucosa.79,80 Since its original isolation >30 years ago, DF

has demonstrated locally acting pro-fibrinolytic,81-84 anti-

thrombotic,85,86 anti-ischaemic and anti-inflammatory activi-

ties, which exert protective effects on small vessel endothelia.

It is currently approved for the treatment of paediatric and

adult hepatic VOD/SOS with MOF.87–89 In this setting, DF

has demonstrated efficacy and safety in critically ill patients

with MOF, as well as a significant reduction in PAI-1 and

other markers of endothelial stress in patients with VOD/

SOS and MOF successfully treated with DF.89-91 Further-

more, in a pivotal Phase III trial, DF prophylaxis reduced the

incidence and severity of VOD/SOS in high-risk children

undergoing BMT.92 In a more recent study, Palomo et al.93

demonstrated that DF directly interacts with the cell mem-

brane and becomes internalised by ECs, thus providing phys-

ical evidence of its endothelial-protective properties. In

particular, DF appears to decrease levels of pro-inflammatory

proteins, such as TNF-a,94 IL-6, vascular endothelial growth

factor (VEGF)95 and to downregulate major histocompatibil-

ity complex (MHC) Class I and Class II molecules,96,97 there-

fore attenuating both the inflammatory and immune

responses. Furthermore, it appears to decrease interaction

between leucocytes and ECs by downregulating P-selectin,98

ICAM-195 and VCAM-1.99 Lastly, DF displays potent adeno-

sine agonism.100 Such activity may be clinically relevant, not

least based on substantial improvement observed in an ani-

mal model of acute lung injury upon treatment with adeno-

sine receptor agonists.101

Based on such properties, the use of DF can be reasonably

extended to other post-BMT syndromes and other microan-

giopathies involving CRS complicating a variety of disease

states and treatment modalities, such as chimeric antigen

receptor (CAR) T-cell therapy.102 Indeed, paediatric and

adult patients receiving DF as VOD/SOS prophylaxis also

exhibited a reduced incidence of aGvHD,92,103 a finding that

is strongly supported by a preclinical model of aGvHD.99

Additionally, a retrospective survey from paediatric patients

treated with DF for transplant-associated thrombotic

microangiopathy showed resolution of clinical disease in
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77% of patients.104 Currently, Phase II studies investigating

the use of DF for prevention of transplant-associated throm-

botic microangiopathy and VOD, and in the same context

the treatment of ACS are ongoing (clinicaltrials.gov;

NCT03384693, NCT03805581, NCT02675959). Notably, DF

suppresses the expression of heparanase transcripts, cell sur-

face expression and enzymatic activity,95 suggesting that DF

may have anti-viral properties, although this remains to be

confirmed.71–73 Heparanase is putatively upregulated by the

cytokine storm of advanced COVID-19 and may contribute

to further inflammation, oedema of the microvascular bed

and coagulopathy.28,75,105,106 DF is a potent inhibitor of hep-

aranase in terms of both cell surface and gene expression,

and therefore is especially attractive. Furthermore, the thera-

peutic use of DF in a murine model of IPS significantly

improved survival compared to untreated controls by reduc-

ing, among other biomarkers, the levels of Ang-2,107 which is

known to correlate with ARDS and is markedly elevated in

critically ill patients with COVID-19.38

In addition, ICU-admitted patients with COVID-19 may

display increased platelet activation and subsequent forma-

tion of platelet-monocyte aggregates upon interaction with

P-selectin, thus stimulating monocyte-induced inflammation

and thrombosis.22 By reducing P-selectin and other adhesion

molecules expression, DF may inhibit monocyte-derived

inflammatory and pro-coagulant signals. Lastly and most

importantly, DF has also been shown to decrease the activity

of p38 MAPK and its pathway,93 the importance of which is

increasingly recognised in the pathogenesis of the COVID-19

hyperinflammation syndrome and this may be a key thera-

peutic target in this process.58,108

In summary, the multitargeted endothelial-based therapeu-

tic properties of DF and its relative safety, as well as its regu-

latory approval, make it an ideal potential therapeutic

candidate for the treatment of COVID-19 vascular complica-

tions.28 In contrast to heparin, DF also exhibits broader anti-

cytokine, anti-inflammatory and endothelial-stabilising prop-

erties. Importantly, by acting on the heparanase-HS axis,74,102

Fig 1. Potential mechanisms of action of defibrotide in the treatment of COVID-19. Left, defibrotide limits viral attachment by interfering with

Syndecan-1, the primary cell surface heparan sulfate on ECs, and reduces viral dissemination, by inhibiting HPSE-mediated viral release. Right,

effects of defibrotide on endothelial-mediated pathological processes. Viral infection of ECs promotes apoptosis with breakdown of endothelial

barrier and exposure of the subendothelium, with subsequent platelet activation and thrombotic phenomena. Defibrotide inhibits platelet activa-

tion and leukocyte recruitment and blocks the generation of the cytokine storm; specifically, HPSE-mediated activation of immune cells is sup-

pressed, thus limiting the development of cytokine release syndrome. Sars-Cov-2, severe acute respiratory syndrome coronavirus-2; ACE2,

angiotensin-converting enzyme 2; Ang-2, angiopoietin-2; GI, gastrointestinal; IL, interleukin; NFKB, nuclear factor kappa-light chain-enhancer of

activated B cells; TNF-a, tumor necrosis factor-alpha; VWF, von Willebrand Factor. [Colour figure can be viewed at wileyonlinelibrary.com]
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DF may limit viral infectivity given its capacity to i) compete

with HS and thereby possibly inhibit virus–cell adhesion and

entry, ii) inhibit heparanase enzymatic activity and thereby

attenuate virus detachment/release and spread74 and iii) inhi-

bit heparanase-mediated activation of immune cells and

thereby upregulation of pro-inflammatory cytokines and the

associated self-sustaining systemic inflammatory host

response (Fig 1). Actively accruing, international Phase II

clinical trials are now underway and should shed critical light

on DF’s therapeutic potential in patients with COVID-19

(examples include clinicaltrials.gov; NCT04348383,

NCT04335201). Strikingly, two critically ill paediatric

patients treated with DF for a SARS-CoV-2-associated multi-

system inflammatory syndrome experienced complete resolu-

tion and no attributable toxicity, with correlative studies

supporting the mechanistic effects described above, as well as

favourable effects seen on complement activation.109 Simi-

larly, preliminary results from the current studies as part of

the international DEFACOVID (Defibrotide as Prevention

and Treatment of Respiratory Distress and Cytokine Release

Syndrome of COVID-19) study group support both safety

and promising potential efficacy to date.

Other heparanase inhibitors

Given the heparanase-inhibiting activity of heparin, effort

has been directed towards modifications of its structure to

endow candidate molecules with potentiated anti-heparanase

activity while limiting anticoagulant effects. Specifically, N-

acetylated and glycol-split heparins are promising agents pre-

senting such characteristics. Indeed, administration of N-

acetylheparin (NAH) in murine models of sepsis ameliorated

lung and intestinal injury and subsequent oedema by reduc-

ing tissue neutrophilic infiltration and suppressing IL-6, IL-

1b and TNF-a production.110,111 Furthermore, roneparstat,

the most developed glycol-split NAH, restored pathological

renal cellular damage caused by ischaemia-reperfusion by

reducing release of pro-inflammatory cytokines and reverted

established fibrotic processes, thus restoring normal tissue

histology in preclinical models.112 This aspect is especially

relevant, considering the extensive formation of fibrosis and

irreversible end-organ damage in post-BMT syndromes, SCD

and advanced COVID-19.

Additionally, much interest has been directed towards the

novel heparanase-inhibiting agent pixatimod, a modified

oligosaccharide glycoside with heparan sulphate-mimetic

properties. Pixatimod is a potent inhibitor of Type 1 T-

helper cells (Th1)/Th17 effector functions,113 IL-6 expres-

sion,114 M2 macrophage activation,115 angiogenesis and

tumour progression in vivo. Furthermore, it exhibits mild

anticoagulant activity and despite transient infusion reactions

is otherwise generally well tolerated. Guimond et al.116 have

recently demonstrated that pixatimod interacts with the

SARS-CoV-2 spike protein binding site, and this is coherent

with its heparan sulphate-mimetic activity. Moreover,

pixatimod was found to markedly inhibit SARS-CoV-2 infec-

tivity,116 supporting its clinical application as a novel thera-

peutic intervention for prophylaxis and treatment of

COVID-19. Taken together, heparanase emerges as a host-

encoded virulence factor that once activated enhances viral

spread and triggers downstream inflammatory cascades.

These preliminary data indicate that heparanase inhibitors

currently under development are possible candidates for mul-

tisystem inflammatory conditions, such as COVID-19, sepsis,

thrombotic microangiopathies and cancer, but as of now

studies remain preclinical with clinical application pending.

Conclusions

In conclusion, increasing evidence suggests that the SARS-

CoV-2 directly targets ECs, promoting the release of pro-in-

flammatory and pro-thrombotic molecules. Endothelial dys-

function appears to be a crucial initiating step in the

pathogenesis of the disease and its ensuing morbidity and

mortality. Endotheliitis with the hyperproduction of cytoki-

nes leading to CRS, hypercoagulability and thrombotic

microangiopathy are hallmarks shared by COVID-19, VOD/

SOS and other endothelial injury syndromes, underpinned by

inflammation and including the vaso-occlusive crises of SCD,

so providing a common pathobiology across these respective

syndromes. Most importantly, endothelial-protective agents,

such as DF, represent a promising and rational therapeutic

strategy in COVID-19, with DF currently under investigation

in a variety of settings and combinations. As a unifying con-

cept, heparanase inhibition, with the modulation of related

pathways and other effects on endothelial stress responses

may thus be crucial in mediating anti-viral and anti-inflam-

matory activity. In particular, as this relates to endotheliitis,

it may directly abrogate CRS and its sequelae, which in turn

may lead to improved patient outcome.
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