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Abstract: Plasma immersion ion implantation (PIII) of nitrogen is low-temperature surface tech-
nology which enables the improvement of tribological properties without a deterioration of the
corrosion behavior of austenitic stainless steels. In this paper the corrosion properties of PIII-treated
AISI 316L stainless steel surfaces are evaluated by electrochemical impedance spectroscopy (EIS),
potentiodynamic polarization (PP) and exposure immersion tests (all carried out in the 0.9 wt. % NaCl
solution at 37 ± 0.5 ◦C) and compared with a non-treated surface. Results of the three performed
independent corrosion tests consistently confirmed a significant increase in the corrosion resistance
after two doses of PIII nitriding.

Keywords: plasma immersion ion implantation of nitrogen; austenitic stainless steel; corrosion
resistance; potentiodynamic polarization; electrochemical impedance spectroscopy

1. Introduction

Austenitic stainless steels are widely used biomaterials owing to their high biocom-
patibility and corrosion resistance. Their current study mostly aims to further improve
their mechanical properties, wear and local corrosion resistance [1–4].

Plasma nitriding process is one of the methods for the thermochemical treatment of
austenitic stainless steels to improve the tribological properties of their surfaces. Conven-
tional plasma nitriding performed at the temperatures of above 500 ◦C ensures a high
resistance to wear, however, the precipitation of chromium nitride causes a depletion of
chromium in the solid solution and this leads to a reduction in the corrosion resistance. Un-
like this technology the plasma immersion ion implantation of nitrogen (PIII) is performed
at temperatures below 400 ◦C and it enables the thermochemical surface treatment with a
marked increase of hardness and wear resistance without a deterioration of the corrosion
behaviour of stainless steel [1,2,5–7]. According to numerous authors [1,5–14], so-called
expanded austenite is the phase formed in the N-modified layer under low-temperature
conditions and responsible for the improved properties of such treated stainless steels.
According to the authors of [10], expanded austenite is a crystalline cubic phase with
considerably expanded austenitic lattice which may contain precipitates of different size
and quantity depending on the nitriding temperature used.

PIII technology is based on immersion of the specimen in a plasma and applying
negative high-voltage pulses to it. Positively charged ions are extracted from the plasma
through the plasma sheath and they are implanted on the whole surface at the same time
for reduction of the process time for large pieces and for decreasing the costs [2]. PIII allows
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one to obtain a higher current density of ions with significantly shorter implantation times
and it is also applicable for workpieces with complicated surface shapes [15].

Some authors have studied the corrosion resistance of PIII nitrided stainless steel
surfaces and found improved pitting corrosion resistance in variously concentrated chloride
environments [1,8,11–13]. In contrast, other authors [7] reported different results for AISI
304 stainless steel in 1 wt. % NaCl solution (PIII treated at 300–380 ◦C).

Regarding biomedical applications, the authors of [11] recommend low-temperature
nitriding for improvement of tribological and corrosion properties of 316L stainless steel
implants and for the prevention of metal release as well. The corrosion resistance increase
was recorded in aerated phosphate-buffered saline solution by PP measurements [11].
Similarly, the authors of [16] confirmed an increase of the pitting corrosion resistance of
nitride-coated AISI 316L coronary stents, indicated by PP method and long-term immersion
(6 months) in simulated body fluid at 37 ± 1 ◦C.

According to one study [1], the higher resistance to pitting after PIII nitriding of AISI
316LVM stainless steel (by PP in 3.5 wt. % NaCl solution) can be explained by an increase of the
pitting resistance equivalent number (PREN = wt. % Cr + 3.3 × wt. % Mo + 16 × wt. % N)
in the surface film. The authors also confirmed a close relation between PREN and the
pitting potential.

The objective of the presented paper is to compare the corrosion resistance of PIII
nitrided AISI 316L stainless steel surfaces with that of an original non-treated (as received)
surface. The evaluation is based on three independent test methods: electrochemical
impedance spectroscopy (EIS), potentiodynamic polarization and exposure immersion test,
all carried out in a 0.9 wt. % NaCl solution at the temperature of 37 ± 0.5 ◦C for simulation
of the internal environment of a human body. The nitrided surfaces were also characterized
by SEM and EDX analysis.

2. Materials and Methods

The experimental material AISI 316L is Cr-Ni-Mo austenitic stainless steel (wt. %:
Cr 16.97, Ni 14.75, Mo 2.50, Mn 1.76, C 0.03, Si 0.49, Cu 0.15, Fe balance) purchased in
the form of rectangular specimens 15 mm × 40 mm × 2 mm (BEZNOSKA Slovakia Ltd.,
Banská Bystrica, Skovakia). Its microstructure (Figure 1) is formed by polyhedral austenitic
grains with numerous twins, which could be created by annealing or by rolling.

Materials 2021, 14, 6790 2 of 10

for reduction of the process time for large pieces and for decreasing the costs [2]. PIII al-
lows one to obtain a higher current density of ions with significantly shorter implantation 
times and it is also applicable for workpieces with complicated surface shapes [15].

Some authors have studied the corrosion resistance of PIII nitrided stainless steel sur-
faces and found improved pitting corrosion resistance in variously concentrated chloride
environments [1,8,11–13]. In contrast, other authors [7] reported different results for AISI 
304 stainless steel in 1 wt. % NaCl solution (PIII treated at 300–380 °C). 

Regarding biomedical applications, the authors of [11] recommend low-temperature
nitriding for improvement of tribological and corrosion properties of 316L stainless steel 
implants and for the prevention of metal release as well. The corrosion resistance increase 
was recorded in aerated phosphate-buffered saline solution by PP measurements [11]. 
Similarly, the authors of [16] confirmed an increase of the pitting corrosion resistance of 
nitride-coated AISI 316L coronary stents, indicated by PP method and long-term immer-
sion (6 months) in simulated body fluid at 37 ± 1 °C. 

According to one study [1], the higher resistance to pitting after PIII nitriding of AISI 
316LVM stainless steel (by PP in 3.5 wt. % NaCl solution) can be explained by an increase 
of the pitting resistance equivalent number (PREN = wt. % Cr + 3.3 × wt. % Mo + 16 × wt. 
% N) in the surface film. The authors also confirmed a close relation between PREN and 
the pitting potential. 

The objective of the presented paper is to compare the corrosion resistance of PIII 
nitrided AISI 316L stainless steel surfaces with that of an original non-treated (as received) 
surface. The evaluation is based on three independent test methods: electrochemical im-
pedance spectroscopy (EIS), potentiodynamic polarization and exposure immersion test, 
all carried out in a 0.9 wt. % NaCl solution at the temperature of 37 ± 0.5 °C for simulation 
of the internal environment of a human body. The nitrided surfaces were also character-
ized by SEM and EDX analysis. 

2. Materials and Methods
The experimental material AISI 316L is Cr-Ni-Mo austenitic stainless steel (wt. %: Cr 

16.97, Ni 14.75, Mo 2.50, Mn 1.76, C 0.03, Si 0.49, Cu 0.15, Fe balance) purchased in the 
form of rectangular specimens 15 mm × 40 mm × 2 mm (BEZNOSKA Slovakia Ltd., Banská 
Bystrica, Skovakia). Its microstructure (Figure 1) is formed by polyhedral austenitic grains
with numerous twins, which could be created by annealing or by rolling.

Figure 1. Microstructure of AISI 316L stainless steel, longitudinal section (Kallings 2 etch.). 

PIII nitriding of experimental specimens was performed in the specialized Labora-
tory of Plasma Technologies in the Advanced Technologies Research Institute (Slovak 

Figure 1. Microstructure of AISI 316L stainless steel, longitudinal section (Kallings 2 etch.).



Materials 2021, 14, 6790 3 of 10

PIII nitriding of experimental specimens was performed in the specialized Laboratory
of Plasma Technologies in the Advanced Technologies Research Institute (Slovak University
of Technology Bratislava, Faculty of Materials Science and Technology in Trnava, Slovakia).

Prior to nitriding, the surface of the specimens was not mechanically or chemical-ly
treated and only degreased with ethanol. The specimens were placed on a holder con-
nected to a high voltage power supply and electrically isolated from the chamber wall.
The nitriding took place in two stages.During the first stage, the same dose of nitrogen
(5 × 1017 at/cm2) was used in all samples. In the second stage a half of specimens was
nitrided by one more dose of the nitrogen (5 × 1017 at/cm2) at the same nitriding conditions.
The result was two types of nitrided surfaces: with one applied dose of nitrogen (1N) and
with two applied doses (2N). An overview of the tested surfaces and specimen designations
for the experiments is given in Table 1.

Table 1. Overview of tested surfaces.

Type of Surface Specimen Designation

PIII nitrided by one dose (5 × 1017 at/cm2) 1N
PIII nitrided by two doses (2 × 5 × 1017 at/cm2) 2N

Original non-treated as received

The size of the implanted doses was chosen according to the recommendations of the
authors [1] and [5]. Nitrogen plasma was generated by a radio frequency discharge with a
power of 500 W at a chamber pressure of 0.3 Pa. To improve the processing homogeneity
the samples were rotated (10 rpm) during the process. The one dose application of nitrogen
lasted approximately 5 h. The pulsed accelerating voltage used was 20 kV (due to the
technical dispositions of the device) with a frequency of 150 Hz and a pulse length of 15 µs.
The Rutherford Back Scattering (RBS) method was used to determine the exact implanted
nitrogen dose (Figures 2 and 3).

According to the height of the nitrogen peaks on RBS curves (evaluated by the SIM-
NRA software) the lower implanted dose (1N) was in fact 2.7 × 1017 at/cm2 (the set-
ting on the device was 5 × 1017 at/cm2). The higher implanted dose (2N) was set to
1 × 1018 at/cm2 (which means 2 × 5 × 1017 at/cm2) and in fact 4.2 × 1017 at/cm2 was
measured. The differences between the set and actual dose were caused by the so-called
dust removal effect.
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For more detailed characterization, the nitrided specimen surfaces were displayed and
EDX analysed by a Vega scanning electron microscope (SEM, Tescan, Brno, Czech Republic).

The temperature of 37 ± 0.5 ◦C and 0.9 wt. % sodium chloride solution for simulation
the internal environment of the human body was used as the environment for corrosion
tests. The electrochemical corrosion tests (EIS and potentiodynamic polarization) were
performed in the conventional three-electrode cell system with a calomel reference electrode
(SCE) and a platinum auxiliary electrode (Pt) using a BioLogic corrosion measuring system
a with PGZ 100 measuring unit (BioLogic, Seyssinet-Pariset, France). The time for potential
stabilization between the specimen and the electrolyte was set to 10 min. The exposed area
of a specimen was 1 cm2.

Electrochemical impedance spectroscopy measurements were recorded at the cor-
rosion potential over a frequency range from 100 KHz to 5 mHz. Results of EIS mea-
surements were displayed as Nyquist curves plotted in coordinates of real and imagi-
nary impedance components. The polarization resistance (Rp) values were obtained by
the analysis of the representative Nyquist curves using the EC-LAB software (BioLogic,
Seyssinet-Pariset, France).

The potentiodynamic polarization curves were recorded at the sweep rate of 1 mV/s,
a potential scan range was applied between −0.3 and 1.2 V vs. open circuit potential
(OCP) [17,18]. For both EIS and PP measurements at least three experiment repeats were
carried out for each type of surface.

For 50-days exposure immersion tests specimens of rectangular shape
(15 mm × 40 mm × 1.5 mm) were degreased by ethanol and weighted out with accuracy
(±0.00001 g). A group of three parallel specimens was tested for each type of surface. After
exposure the specimens were carefully brushed, washed with demineralized water, freely
dried and weighed again [18].

3. Results and Discussion

The nitrided surfaces (1N and 2N) observed by SEM and, also EDX maps expressing
N and Fe distribution are shown in Figures 4 and 5. EDX surface analysis revealed an
uneven distribution of nitrogen on the surface layer of the tested stainless steel in the case
of both 1N and 2N specimens. The same as described in studies with similar conditions of
PIII nitriding, nitrogen may be present in the form of expanded austenite [1,2,5,6,8] which
is difficult to identify and it is observable using a transmission electron microscope [1,5].
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3.1. EIS Test

The measured impedance spectra were simple and therefore a single loop circuit
consisting of electrolyte resistance (RΩ), polarization resistance (Rp) and CPE element
connected to the circuit instead of the capacitance (RΩ + CPE/Rp), was used for the Nyquist
curves evaluation [19–21]. The CPE element was used to simulate inhomogeneities of the
surface layer [21]. The Nyquist curves for the tested surfaces are shown in Figure 6, values
of the EIS parameters calculated by the EC-LAB software are listed in Table 2.

The polarization resistance (Rp) enables one to assess the passive film quality: a higher
Rp value points to a higher quality. As can be seen, the PIII nitriding brought a sharp
increase of Rp values of both 1N and 2N surfaces. Two-dose nitriding has been shown
to be particularly effective: Rp value for 2N specimen was more than twice higher than
for 1N. High quality passive film of PIII nitrided specimens may be connected to the
molybdenium present in the tested AISI 316L stainless steel (2.5 wt. %). According to
several authors [12,22,23] Mo atoms tend to stabilize the expanded austenite structure
by attracting nitrogenium atoms around themselves and this leads to the prevention
of chromium nitride precipitation. Two-dose nitriding could enhance these processes,
resulting in a high resistance of a thus-treated surface.
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Table 2. Values of EIS parameters.

Specimen Designation
(Type of Surface)

Polarization Resistance Rp
(kΩ.cm2)

Electrolyte Resistance RΩ

(kΩ.cm2)

As received 27.5 ± 0.3 0.054 ± 0.002
1N 587.1 ± 1.5 0.040 ± 0.001
2N 1256.0 ± 1.9 0.057 ± 0.002

3.2. Potentiodynamic Polarization Test

As shown in Figure 7, the shape of polarization curves is typical for passivating metals
(passive anodic branches reflecting the control of the anodic dissolution rate by the passive
current density) [24] and therefore the corrosion potential (Ecorr) values were determined
directly from the PP curves (Tafel extrapolation was not applicable).

The pitting potential (Ep) values, that denote the disruption of the passive surface
film and the onset of the stable pit growth, were determined as the potentials of a sudden
permanent increase in current density after reaching the passivity state. The values of both
above mentioned PP parameters are listed in Table 3.

Table 3. Values of PP parameters.

Specimen Designation
(Type of Surface)

Corrosion Potential Ecorr
(V vs. SCE)

Pitting Potential Ep
(V vs. SCE)

as received −0.126 ± 0.02 0.449 ± 0.03
1N 0.017 ± 0.03 0.330 ± 0.04
2N 0.059 ± 0.02 0.567 ± 0.03



Materials 2021, 14, 6790 7 of 10Materials 2021, 14, 6790 7 of 10 
 

 

 
Figure 7. Potentiodynamic polarization curves for tested surfaces. 

The pitting potential (Ep) values, that denote the disruption of the passive surface 
film and the onset of the stable pit growth, were determined as the potentials of a sudden 
permanent increase in current density after reaching the passivity state. The values of both 
above mentioned PP parameters are listed in Table 3. 

Table 3. Values of PP parameters. 

Specimen Designation  
(Type of Surface) 

Corrosion Potential Ecorr  

(V vs SCE) 
Pitting Potential Ep 

 (V vs SCE) 
as received −0.126 ± 0.02 0.449 ± 0.03 

1N 0.017 ± 0.03 0.330 ± 0.04 
2N 0.059 ± 0.02 0.567 ± 0.03 

According to the Ecorr values, PIII nitriding caused a marked increase in the thermo-
dynamic stability of the tested surfaces, and the highest Ecorr value was reached for 2N 
surface (0.059 V vs SCE). An Ecorr increase of about 0.1 V between non-treated and PIII 
nitride surfaces (AISI 316L in 5 wt. % NaCl solution) was also recorded by other authors 
[12]. Olzon-Dionisio et al. [8] observed an Ecorr difference of 0.15 V for the same surface 
(AISI 316L in 5 wt. % NaCl solution) after using the same nitriding temperature. 

Regarding the evaluation of the pitting corrosion resistance expressed by the Ep value 
(0.330 V vs SCE), the single dose nitriding (1N) probably did not provide a sufficiently 
uniform passive film. Ep value after 2N nitriding is significantly higher (0.567 vs SCE). A 
similar dependence of Ep on the PIII nitriding time was observed in the study [11], but not 
under the same PP experiment conditions (different solution and temperature). The best 
pitting corrosion resistance of the 2N surface could be related to the role of nitrogen in the 
corrosion pits repassivation process. According to the authors of [13] nitrogen is respon-
sible for pH increase which facilitates the pits’ repassivation, because of its reduction 
(from N0 to N−III) by binding of protons H+ into ammonium cations (NH4+). Subsequently, 
NH4+ cations can undergo oxidation to NO2− anions [13] which can contribute to pit re-
passivation [13]. These processes could be affected by the content of nitrogen in the steel 
surface film. 

  

-8

-7

-6

-5

-4

-3

-2

-1

0

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

lo
g 

i (
A/

cm
2 ) 

E vs SCE (V)

as received
1N
2N

Figure 7. Potentiodynamic polarization curves for tested surfaces.

According to the Ecorr values, PIII nitriding caused a marked increase in the thermody-
namic stability of the tested surfaces, and the highest Ecorr value was reached for 2N surface
(0.059 V vs. SCE). An Ecorr increase of about 0.1 V between non-treated and PIII nitride
surfaces (AISI 316L in 5 wt. % NaCl solution) was also recorded by other authors [12].
Olzon-Dionisio et al. [8] observed an Ecorr difference of 0.15 V for the same surface (AISI
316L in 5 wt. % NaCl solution) after using the same nitriding temperature.

Regarding the evaluation of the pitting corrosion resistance expressed by the Ep value
(0.330 V vs. SCE), the single dose nitriding (1N) probably did not provide a sufficiently
uniform passive film. Ep value after 2N nitriding is significantly higher (0.567 vs. SCE).
A similar dependence of Ep on the PIII nitriding time was observed in the study [11], but
not under the same PP experiment conditions (different solution and temperature). The
best pitting corrosion resistance of the 2N surface could be related to the role of nitrogen
in the corrosion pits repassivation process. According to the authors of [13] nitrogen is
responsible for pH increase which facilitates the pits’ repassivation, because of its reduction
(from N0 to N−III) by binding of protons H+ into ammonium cations (NH4

+). Subsequently,
NH4

+ cations can undergo oxidation to NO2
− anions [13] which can contribute to pit

repassivation [13]. These processes could be affected by the content of nitrogen in the steel
surface film.

3.3. Exposure Immersion Test

The tested stainless steel surfaces before and after 50-days exposure under conditions
simulating the internal human body environment (0.9 wt. % NaCl solution at 37 ◦C) are
shown in Figure 8. The average corrosion rates calculated from the mass losses of the
specimens (mass loss per unit area per unit time, g/(m2 day)) are listed in Table 4.

After performing the exposure tests, all three types of surfaces (as received, 1N, 2N)
showed only very small differences in appearance compared to the state before. According
to the values of average corrosion rates, the pitting seemed to be most pronounced on the
surface of the as received specimens, where is probably related to the sites of mechanical
damage with an imperfect passive film. Pitting corrosion of austenitic stainless steels
initiated in this way has been documented by several authors, e.g., [18,21,25]. The average
corrosion rates values of 1N and 2N specimens are less than half compared to the as
received one. This corresponds with the results of both electrochemical corrosion tests
and points to the abovementioned positive role of nitrogen in the pit repassivation process
(Section 3.2). Recorded low corrosion rates also indicate a potentially negligible leakage of
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harmful substances into the human body [26–30] and suggest a high biocompatibility of
PIII nitrided surfaces [11].
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Table 4. Average corrosion rates calculated from mass losses during the exposure test.

Specimen Designation
(Type of Surface)

Average Corrosion Rate
(g/(m2 day))

As received 0.00094 ± 0.93%
1N 0.00038 ± 0.81%
2N 0.00033 ± 0.84%

4. Conclusions

On the bases of the performed experiments the following can be concluded:

• Surface EDX analysis of 1N and 2N specimens revealed uneven distribution of nitrogen.
• According to the Rp values of 1N and 2N surfaces, PIII nitriding brought about a

significant increase of the passive film quality. Two-dose nitriding resulted in a more
than two-fold higher Rp than recorded for 1N.
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• The results of the PP test showed that the surface after two-dose PIII nitriding (2N)
appeared to be the most resistant to pitting (this was shown by the highest Ecorr and
Ep potential values). This is probably associated with a positive role of nitrogen in the
repassivation process.

• Average corrosion rates calculated from mass losses during exposure immersion test
confirmed the high corrosion resistance of both 1N and 2N surfaces.

According to the obtained experiment results, PIII nitriding appears to be a suitable
method for the surface treatment of austenitic stainless steels implants. However, before
actual biomedical applications deeper studies of the relations between the surface rough-
ness before PIII nitriding and the final biocompatibility (including the corrosion resistance
and resistance to the biofilm formation) would be beneficial.
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