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Objective: Beat-to-beat tele-fetal monitoring and comparison with clinical data are studied with a wavelet 
transformation approach. Tele-fetal monitoring is a big progress toward a wearable medical device for pregnant 
women capable of obtaining prenatal care at home. Study Design: We apply a wavelet transformation algorithm 
for fetal cardiac monitoring using a portable fetal Doppler medical device. After an investigation of 85 different 
mother wavelets, a bio-orthogonal 2.2 mother wavelet in level 4 of decomposition is chosen. The efficiency of the 
proposed method is evaluated using two data sets including public and clinical. Results: From publicly available 
data on PhysioBank, and simultaneous clinical measurement, we prove that the comparison between obtained 
fetal heart rate by the algorithm and the baselines yields a promising accuracy beyond 95%. Conclusion: Finally, 
we conclude that the proposed algorithm would be a robust technique for any similar tele-fetal monitoring 
approach.
1. Introduction

Gestation can end with a live birth, a spontaneous miscarriage, an 
induced abortion, or a stillbirth [1]. Prenatal care by the mother and 
constant monitoring of the gestational period are key elements in im-
proving birth outcomes [2]. Clinically, various medical devices have 
been introduced to monitor the Fetal Heart Rate (FHR) during preg-
nancy. Approaches like cardiotocography (CTG) [3], fetal magnetocar-
diography (fMCG) [4], fetal electrocardiography (fECG) [5], and fetal 
scalp electrocardiography (fsECG) [6] are examples of clinical tech-
niques that can be applied for fHR monitoring.

First of all, fetal scalp electrocardiography in which electrodes are 
applied on the fetal scalp. It captures signals with a high Signal to Noise 
Ratio (SNR). However, it is invasive and increases the risk of infections. 
In addition, it can be used only during the delivery. And, it needs a 
skilled specialist for installation [6].

Secondly, among non-invasive devices, fMCG is a method which 
is well known for its high SNR in data capturing. It uses SQUID (for 
Superconducting QUantum Interference Device) sensors to record the 
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magnetic field of the fetal heart from maternal abdomen. But it is ex-
pensive and needs a shielded room with an expert specialist to apply it 
on the mother’s abdomen [4].

Next non-invasive technique, known as fECG, is a cheap technology 
which enables users to perform continuous monitoring. This method 
not only suffers from low SNR, but also its electrodes should be placed 
on the mother’s abdomen by a skilled specialist [5].

Finally, CTG is a standard non-invasive clinical method. It is a well-
known technique which uses Doppler ultrasound sensors to monitor 
both fHR and uterus contractions. It is highly accurate, and requires 
less skills to operate [7, 8], but it is highly sensitive to the fetal move-
ments [9].

Tele-Fetal Monitoring (TFM) is an approach which makes a preg-
nant woman capable of obtaining prenatal care. It can decrease the risk 
of pregnancies with hypertensive disorders [10]. Moreover, it has illus-
trated profits in other high-risk pregnancies like those with gestational 
diabetes. Also, it can be beneficial in having access to rural pregnant 
women who are far from modern hospitals [11].
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2. State of the arts

In the past decade, many efforts have been dedicated to find a suit-
able way for distant fHR extraction. As an example, fHS analysis is 
considered as a non-invasive method. It is simple to apply and it is 
low-cost. However, fHS signals are profoundly corrupted by noise since 
they are recorded at the maternal abdominal surface. There are various 
sources of noise in fHS signals including fetal movements, contractions 
of mother’s uterus, maternal digestive sounds, sensor movements, am-
bient sounds, maternal respiratory and maternal heart sound [12].

The basic principle behind the fHS processing is that the heart’s 
mechanical activity is accompanied by the generation of various charac-
teristic sounds. These sounds are associated with changes in the speed of 
blood flow, as well as with the opening and closing of heart valves [13]. 
Dia et al. estimated adult heart rate from phonocardiograph (PCG) sig-
nals [14]. They applied a non-negative matrix factorization approach 
on the spectrogram of the taken signals. They evaluated their work 
by considering synchronous ECG and PCG signals. Samieinasab et al. 
[15], used a single-channel denoising framework to reduce the noise 
of fetal PCGs. Then, similar to [14], they utilized non-negative matrix 
factorization method to decompose fPCGs in time-frequency domain. 
In addition, Khandoker et al. proposed a four-channel fPCG system and 
evaluated it using fECG data [16]. They used 10-minutes of clinical data 
for evaluation. Reported results were P<0.01 in cross correlation anal-
ysis and <5% agreement in Bland-Altman plot.

Due to the fact that the most challenging step in fHR extraction from 
fetal heart sound signals is denoising, this paper presents a denoising al-
gorithm based on wavelet transformation technique. Furthermore, the 
aim of the current paper is to introduce an algorithm capable of per-
forming fHR extraction from fetal heartbeat sound in order to facilitate 
tele-fetal monitoring for pregnancies.

Throughout the investigation in this paper, we perform a compre-
hensive investigation among different mother wavelets to find the most 
accurate fHR extraction method from experimental fHS signals. We con-
sider different 85 mother wavelets including Daubechies (order from 
1 to 45), Symlets (order from 1 to 20), Coiflet (order from 1 to 5), 
and Bioorthogonal (order from 1.1 to 6.8). We investigate mentioned 
wavelet families in different levels of decomposition from 1 to 12. In 
total 1020 investigations is performed. Here the methodology is ap-
plied over a tele-monitoring ultrasound device, i.e., we use a pocket-size 
portable doppler device to measure the fHR. We use a wired protocol 
and save the data through a mobile application developed in-house and 
based on the proposed method. Using the portable pocket-size device 
and the proposed method, we aim to embed the fHR algorithm in fu-
ture at the mobile App level for the end-user (mothers) as well as a 
cloud-based solution for gynecologist to monitor pregnancies remotely.

In the following, in section 2, the procedure of clinical measurement, 
data acquisition and applied methods for fHR extraction is described. 
We explain in detail the pre-processing and wavelet filtering ans pro-
cesses established for the fHR evaluation. In section 3, we analyze, 
validate and discuss the results. Finally, the results are discussed and 
concluded in sections 4 and 5, respectively.

3. Clinical measurement, data acquisition and methods

The clinical data collection is based on a simultaneous measurement 
of a portable (pocket-size) ultrasound doppler device and a CTG clini-
cal device as depicted in Fig. 1. The portable device used is Baby Sound 
A pocket fetal doppler from Contec Medical [17] which is under a dis-
tribution brand of Baby Heart Beat from Sana Meditech company.1 The 
portable device is certified under medical CE and FDA approval. On the 
other hand the simultaneous measurement is performed by a clinical 

1 www.babyheartbeat.eu.
2

Fig. 1. Clinical simultaneous measurement of Baby Sound A pocket fetal 
doppler from Contec Medical [17] and CTG clinical device used from Bionet 
brand (FC-1400).

device for validation and to be used as a gold standard (baseline). The 
clinical device used is from Bionet brand with model FC-1400.

Simultaneous measurement would allow us to validate the data col-
lected by the portable device and the software build to process the fHR, 
as an alternative to the clinical CTG device. Total number of 131 sam-
ples is acquired from various pregnant women with ages range between 
19 to 43 years old (average age of 29 years old). The length of each 
sample considered throughout this paper is always more than 1 minute 
and sampling frequency rate of 8 kHz. In Fig. 2 statistical summary of 
the captured clinical data distribution is provided. As it is depicted in 
the Fig. 2a, among all target patients, 5% are high pressure pregnant 
women while around 21% are patients with pregnancy diabetes and 
the rest are in a healthy (normal) situation. Moreover, we report the 
pregnant women’s Body Mass Index (BMI) before pregnancy, as shown 
in the Fig. 2b the minimum BMI is 17.44 while the maximum is 32.83 
with an average and standard deviation of 24.11 and 4.0, respectively. 
The pregnancy gestational age distribution is also reported in Fig. 2c 
with a maximum abundance of 40 weeks (about 69%). Finally, 52% of 
the fetuses are targeted to be boys, and 48% are supposed to be girls 
(Fig. 2d). As a summary we report a brief summary of clinical data ac-
quired in Table 1 for the sake of completeness. Clinical data is recorded 
for rigorous analysis of our algorithm and continuous improvement dur-
ing the development process. The Table 1 illustrates the eligible criteria 
of our study population.

The portable fetal monitoring device of Baby Heart Beat (Baby 
Sound A pocket fetal doppler) has been chosen because of its high qual-
ity, design, and audio precision with respect to other similar portable 
devices. The device has an AUX port which provides a possibility to ex-
port fHS data directly to external storage like a smart cell phone. The 
exported fHS signal is recorded by a dedicated mobile App developed 
internally by Sana Meditech company. In the following, we propose 
a new method consisting of adaptive band pass filtering and wavelet 
transformation in order to extract fHR from recorded fHS signals.

The Fetal heart sound signal collected by an ultrasound doppler de-
vice and from the mother’s abdomen would have a shape like Fig. 3. In 
this figure, the systole and diastole periods are shown. In order to ex-
tract fHR, the distance between two systoles should be calculated [18]. 
For our investigation, we have followed a process for our algorithm de-
velopment which is shown in the Flowchart of Fig. 4 and depicts overall 
signal processing steps for fHR extraction from fHS signals. As seen, the 
algorithm starts with pre-processing. In later steps, those peaks which 
are related to systole are identified, and ultimately the fHR is extracted. 
Finally, a smoothing step is performed. In the following sections, we 
describe the major steps shown in the flowchart.

3.1. Pre-processing: pre-development algorithm with simulated data

For the pre-development and testing of our algorithm, we initially 
use a simulated fetal heartbeat sound data set provided by Cesarelli [19] 
which is publicly available in physionet [20]. It contains 37 signals with 

https://www.babyheartbeat.eu/
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Fig. 2. Statistical distribution of clinical data of pregnant women. The distributions of (a) Normal vs high risk pregnancies, (b) BMI of pregnant moms before 
pregnancy, (c) gestational pregnancy week, (d) gender of the fetus, are depicted.

Table 1. Brief summary of clinical data acquired population study and eligible criteria.

Eligible Criteria

Age (year) Type of pregnancy Gestation (week) Body Mass Index Anomaly
from 18 to 50 singleton greater than 32 from 15 to 45 allowed

Fig. 3. A schematic representation of a single heartbeat cycle from an ultrasound probe. Temporal differences between heart sounds and ECG signals are shown.
a duration of about 8 minutes each, and sampling frequency is 1 kHz. As 
pointed out by the authors in [19] in order to simulate environmental 
noises, this data set signals are provoked by different SNR values from 
-26.7 dB to -4.4 dB. For more information about this data set, we refer 
the reader to reference [20].

Fetal heart sound signals are heavily corrupted by noise since they 
are recorded at the maternal abdominal surface. Fetal movements, con-
tractions of the mother’s uterus, mother’s abdominal sounds, sensor 
movements, ambient sounds, maternal respiratory, and heart sounds 
are the various sources of noise [12]. In this study, noise reduction is 
performed based on the use of the wavelet transformation technique.

3.1.1. Wavelet transformation

The basic idea behind Wavelet Transformation (WT) is to define a 
new basis function which can be enlarged or compressed to capture 
both low frequency and high frequency component of the signal. Here 
we use WT to denoise and clean our signal. Mathematically WT is a 
3

time-frequency processing method and its definition for an input signal 
𝑥(𝑡) is given Eq. (1):

𝑊 𝑇𝑥(𝑎,𝑏) =

+∞

∫
−∞

𝑥(𝑡)Ψ∗
𝑎,𝑏
(𝑡)𝑑𝑡 ;𝑎 ≠ 0 (1)

where the basic function, Ψ𝑎,𝑏(𝑡), is featured by scale and time-shift pa-
rameters (𝑎 and 𝑏, respectively) as Eq. (2):

Ψ𝑎,𝑏(𝑡) =
1√
𝑎
𝜓( 𝑡− 𝑏

𝑎
) (2)

Ψ𝑎,𝑏(𝑡) is also been used for signal decomposition. The main chal-
lenge in using WT for denoising is to choose the optimum mother 
wavelet for the given tasks. In order to systematically decide on which 
mother wavelet is suitable for a specific purpose, main properties such 
as vanishing moments, size of support, regularity, orthogonality, bio-
orthogonality, energy, symmetry, and the ability of implementing on 
discrete signals are investigated [21, 22]. In Table 2 we summarize 14 
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Table 2. A Summary of Different Mother Wavelets’ Properties.
Mother Wavelet Compact 

Support
Vanishing 
Moment

Regularity Orthogonal Bio 
Orthogonal

Symmetric Energy Discrete Wavelet Continues 
Wavelet

References

HAAR 1 × [23]

Daubechies N 0.2N × [23]

Symlets N - near [23]

Coiflets 2N - near [23]

Biorthogonal Nr Nr-1 × [23]

Fejer-Korovkin N - × × [24, 25]

Meyers × N inf ∗ [23]

Gaussian × - - × × ∗∗ × × [26]

Mexican hat × 2 - × × × × [23, 27]

Morlet × - - × × × × [23]

Complex Gaussian × - - × × ∗∗ × × [26]

Shannon × N - × × × × [28]

Freq. B-Spline × - - × × × × [28]

Complex Morlet × - - × × × × [28]
∗ It is possible but without fast WT.

∗∗ They are symmetric if their order is even.
Fig. 4. Flowchart of the steps for our algorithm development for the fHR eval-
uation.

different families of mother wavelets that we have investigated in this 
p, about Over the next section we describe in the tail the procedure of 
choosing the best chosen mother wavelet accordingly for the fHS de-
noising.

3.1.2. Mother wavelet selection

As explained, the procedure we follow is that the selection of the 
most suitable mother wavelet is performed by looking at each mother 
wavelet’s properties (see Table 2). Therefore firstly we discard mother 
wavelets which are far from our goal which is denoising of fHS signals. 
For instance, we need a mother wavelet that preserves the energy of 
the signal after decomposition (like orthogonal and bio-orthogonal). As 
a result, we cross out non-orthogonal mother wavelets including Gaus-
sian, Mexican hat, Morlet, Complex Gaussian, Shannon, Freq B-Spline 
and Complex Morlet. Similarly, the chosen wavelet family should be 
able to offer the possibility of performing the discrete wavelet trans-
formion. Since the Meyer family can not do fast WT for discrete data, 
we exclude it from our further investigation.

Relatively complex mother wavelets, with a minimum number of 
vanishing moments are needed. This will allow to represent more 
complex functions with fewer wavelet coefficients [29]. Considering 
the mentioned specifications, mother wavelets of Daubechies, Symlets, 
Coiflets and Biorthogonal are chosen. In this paper, all mother wavelets 
4

of 𝑑𝑏1, 𝑑𝑏2, … , 𝑑𝑏45, 𝑠𝑦𝑚1, 𝑠𝑦𝑚2, … , 𝑠𝑦𝑚20, 𝑐𝑜𝑖𝑓1, 𝑐𝑜𝑖𝑓2, … , 𝑐𝑜𝑖𝑓5, 
and 𝑏𝑖𝑜𝑟1.1, 𝑏𝑖𝑜𝑟1.2, … , 𝑏𝑖𝑜𝑟6.8 are investigated.

In order to find the most proper mother wavelet among others, two 
factors are important to be taken into account: energy and entropy. 
Energy clarifies how much a signal and a mother wavelet are similar to 
each other. The energy of a detail signal at each resolution level, 𝑗 is 
defined as Eq. (3).

𝐸𝑗 =
𝐽∑
𝑗=1

|𝐶𝑗 (𝑘)|2 (3)

where 𝐶𝑗 (𝑘) is wavelet coefficients in level 𝑗. In consequence, the total 
energy can be obtained by Eq. (4).

𝐸𝑡𝑜𝑡 =
∑
𝑗

∑
𝑘

|𝐶𝑗 (𝑘)|2| =
∑
𝑗=1
𝐸𝑗 (4)

Relative wavelet energy will assist to choose an effective mother 
wavelet. It can detect the degree of similarities between different seg-
ments of a signal [30] and is defined as Eq. (5). Entropy shows the 
effect of the mother wavelet on the accuracy of reconstruction. It il-
lustrates how many data will be missed by a chosen mother wavelet. 
The definition of entropy is presented in Eq. (6), where 𝑝𝑗 is the 
energy probability distribution of the wavelet coefficients defined in 
Eq. (5).

𝑝𝑗 =
𝐸𝑗

𝐸𝑡𝑜𝑡
(5)

𝐻(𝑗) = −
𝐽∑
𝑗=1
𝑝2
𝑗
𝑙𝑜𝑔(𝑝2

𝑗
) (6)

By Dividing relative wavelet energy by entropy (see Eq. (7)) we ob-
tain a ratio that clearly indicates which mother wavelet mostly resem-
bles the original signal. The mother wavelet we are mostly interested 
in, will be the one that obtains a higher value of this ratio, meaning that 
the similarities between the wavelet and the original signal are greater 
than the non-conserved information between them.

𝑅𝑊𝐸𝐸𝑅(𝑗) = 𝐸(𝑗)
𝐻(𝑗)

(7)

where RWEER is a representative of Relative Wavelet Energy to Entropy 
Ratio.

In this study, RWEER is calculated until level 𝑗 = 12 on 215 abdom-
inal fetal heart sound sections. 85 mother wavelets are investigated to 
select the most proper one. These mother wavelets are 𝑑𝑏1, 𝑑𝑏2, ..., 𝑑𝑏45, 
𝑠𝑦𝑚1, 𝑠𝑦𝑚2, ..., 𝑠𝑦𝑚20, 𝑐𝑜𝑖𝑓1, ..., 𝑐𝑜𝑖𝑓5, and 𝑏𝑖𝑜𝑟1.1, ..., 𝑏𝑖𝑜𝑟6.8. Maximum 
RWEER for each level is obtained. The first row of Fig. 5 shows 
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Fig. 5. Distribution plot of RWEER for different 85 mother wavelets including Daubechies (𝑑𝑏 1, 𝑑𝑏 2, . . . , 𝑑𝑏 45) , Symlets (𝑠𝑦𝑚 1, 𝑠𝑦𝑚 2, . . . , 𝑠𝑦𝑚 20), Coiflets 
(𝑐𝑜𝑖𝑓 1, 𝑐𝑜𝑖𝑓 2, . . . , 𝑐𝑜𝑖𝑓 5), and Biorthogonal (𝑏𝑖𝑜𝑟 1.1, 𝑏𝑖𝑜𝑟 1.3, . . . , and 𝑏𝑖𝑜𝑟 6.8), respectively. First row: The effect of wavelet decomposition in different levels 
on the abundance of maximum RWEER. It shows that level 𝑗 = 4 works better than others. Second row: The investigation of RWEER for 215 sections with different 
mother wavelets on level 𝑗 = 4, red dash-dot graph interprets the proposed algorithm’s execution time for each mother wavelet, the black dash-dot graph represents 
the value of 𝑚𝑒𝑎𝑛

𝑠𝑡𝑑
for shown box-plot. Outliers are drawn in red plus.
that the highest RWEER happens in level 4. Therefore, level 𝑗 = 4 is 
chosen. In the next step, RWEER is calculated for 𝑙𝑒𝑣𝑒𝑙 = 4 to find 
the best mother wavelet. In Fig. 5 bottom, the shown boxplot de-
picts the RWEER distribution for each mother wavelet applied on 
215 fHS sections. Also, the red-dashed graph illustrates the execu-
tion time for each mother wavelet, and the black-dash line displays 
the ratio of mean to the standard deviation for RWEER of all 215 
sections. Numbers in the x-axis refer to different mother wavelets as 
Daubechies (1-45), Symlets (46-65), Coiflets (66-70), and Biorthogo-
nal (71-85). Based on this figure, mother wavelet number 74, bior2.2, 
is chosen to denoise fHS signals. It has the highest mean/std ratio 
and it also is more repeatable than others while its time execution is 
low.

To sum up, in this work, decomposition, denoising, and reconstruc-
tion of fHS signals was performed by the use of 𝑏𝑖𝑜𝑟2.2 with 4 levels 
of decomposition. An example of a noisy fHS versus denoised fHS is 
shown in Fig. 6. In the Fig. 6a, 1-second of original fHS signal, and in 
the Fig. 6b denoised fHS signal are shown using the proposed denois-
ing approach. This will facilitate extracting the S peaks shown in the 
Fig. 6c.

3.2. Systole extraction

The detection of systole is essential for fHR extraction (shown in 
Fig. 3). In fHS signals, the distance between systole (S) and diastole (D) 
is much shorter than that in an adult’s heartbeat signal. Considering the 
fact that diastolic duration is longer than systolic duration, D falls at 
least 100 ms after preceding S and at most 200 ms before successive 
S [31]. As a result, a reasonable approach for S extraction is to first 
find all the candidates (including S and D) and secondly select S among 
them.

In the first place, two steps including enveloping and finding local 
maxima are applied to extract all peaks (S and D). Considering Fig. 6, 
the local maxima can be taken into account as potential candidates for S 
peaks. The procedure of S selection is based on the fact that the normal 
duration of a fetal beating heart cycle is 430 ms while the minimum is 
375 ms and the maximum is 545 ms [31]. Therefore, in this study, a 
thresholding method is chosen to extract S peaks. Selected S-peaks are 
passed through the next step, which is the fHR calculation. An example 
of the results of S-selection is shown in Fig. 6c. In this figure, the red 
5

graph shows the obtained envelope. All candidates are illustrated in red 
bullet points while selected S-peaks are depicted in green bullet points.

3.3. fHR cardiograph visualization

Knowing that the time elapsed between two successive S in an fHS 
signal, is a combination of systolic time and diastolic time [32], fHR 
can be calculated using Eq. (8).

𝑓𝐻𝑅(𝑏𝑝𝑚) = 60
𝑇𝑠𝑠(𝑠𝑒𝑐)

(8)

where 𝑇𝑠𝑠 is the time duration between two S and the unit of the ob-
tained fHR is beat per minute (bpm).

For a better projection of fHR when we visualize it in a cardiograph, 
we smooth the data by looking after possible outliers with a high level 
of volatility in the beat-to-beat analysis, e.g., we remove surrounding 
noises with high and low frequencies and replace them with a corrected 
value according to our correction algorithm when applicable. This step 
is performed for the visualization of the cardiograph and for the sake of 
avoiding stress levels for end users. In the cardio fHR graph, we report 
elaborated fHR data points, i.e., in case there is a missing signal data 
point from the device, we keep the nearest fHR measured by the clinical 
device.

In order to obtain fHR for the graph, different methods such as ‘mov-
ing median’ and ‘moving mean’ have been used. These methods are used 
for the sake of correctness of a final cardiograph signal with the objec-
tive of a less volatile fHR plot which is mainly caused by spontaneous 
movements and artifacts.

4. Analysis and validation of results

The analysis and validation of this study are applied on a personal 
computer using Matlab R2020a on two sets of experiments. Firstly, the 
public standard simulated fHS database [19] is used for algorithm im-
plementation. This dataset contains 37 simulated fPCG signals. Each 
signal has a duration of at least 8 minutes and a sampling frequency 
of 1 kHz. In order to evaluate the performance of our algorithm, the 
analysis of beat-to-beat correlation and Bland-Altman plot [33] are per-
formed between obtained fHR and extracted fHR from the reference 
data (baseline).
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Fig. 6. A sample of an original fHS signal before and after filtering: (a) Original signal, (b) Denoised signal using the proposed method, and (c) Extracted S-peaks. 
The red graph shows the obtained envelope and the red bullets represent all local maxima. Green bullets illustrate the position of selected S.

Fig. 7. Single measurement data (signal of around 8 minutes) for the beat-to-beat cross-correlation analysis (Left plot), as well as the Bland-Altman plot for the 
obtained fHR by the proposed algorithm and the reference data (Right plot). Here 𝑆𝑁𝑅 =−26.7 dB, and the p-value is < 0.0001 for the simulated measurement data.
4.1. Analysis over simulated data

Firstly we analyze the performance and accuracy of our algorithm 
for a single measurement signal of about 8 minutes. In Fig. 7 we have 
calculated the cross-correlation and Bland-Altman statistical analysis 
which is often used to display of the relationship between two paired 
variables using the same scale. As it is depicted in the figure, we have 
obtained the p-value of < 0.0001. Statistically, the significance of our re-
sult is reported by the p-value in the figure: if the p-value falls below 
the significance level (normally < 0.05), then the result is statistically 
significant. Here the confidence interval is chosen to be 95% and the 
SNR is reported in the caption of the figure.

Secondly, we statistically evaluate our algorithm performance over 
37 signals of the simulation sample data and hence obtain the over-
all accuracy and correlation of our algorithm. By using a confidence 
interval of 95%, the p-value obtained is very promising with an av-
erage value of < 0.0008 for the simulated data (see Fig. 8). Moreover, 
for RMSE (bpm) of simulated data, an average value of 2.74 bpm is 
obtained. In Fig. 8 detailed analysis aggregated by each measurement 
signal of the simulated dataset is reported.
6

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1
𝑁𝑇

𝐾∑
𝑖=1

(
𝑁𝐸𝑖

60
) (9)

4.2. Analysis over clinical data

Eventually, the algorithm is analyzed and further tuned using the 
clinical dataset simultaneously collected by a portable medical device 
and the clinical device. For this purpose, the portable Baby Heart Beat 
fetal Doppler device is used and the fHS signals data are saved by the 
mobile App. Simultaneously, a clinical device, Bionet model FC-1400 is 
used to record the fetal signals with fHR. The ultimate fHR reported by 
the clinical device is saved in an image format by the device shown in 
Fig. 9a, where the y-axis shows fHR value (bpm) while the x-axis re-
flects the measurement timestamp (second). In this image, the height of 
each scale square is 10 bpm while its width is 10 seconds. Using image 
processing techniques in MATLAB, we extract the clinical fHR from the 
image (Fig. 9b and Fig. 9c). Based on the following medical report [34], 
calculated fHR by the algorithm could be accepted if its value is ±7 bpm 
than the one reported by a standard clinical device. Therefore, ±7 bpm 
is highlighted as a medical acceptance interval in Fig. 9d (shown in 
green). Finally, after identifying the confidence interval of our baseline 
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Fig. 8. Statistical analysis over the performance of the algorithm is reported. The 
difference and standard deviation (STD) difference between calculated fHR and base

Fig. 9. The use of image processing techniques for validation of the proposed algo
Confidence interval definition, and e) Adding fHR results obtained from the propose
which is the clinical fHR, in Fig. 9e we overlay the obtained fHR with 
our sophisticated algorithm for the comparison and error rate detection.

Fig. 10 shows another example in which errors are depicted by red 
arrows and demonstrates how we detect the errors and optimize the 
performance of our algorithm.

Note that throughout this paper each sample of clinical data is ob-

jected to having more than a 1-minute duration. In order to validate the 
proposed algorithm, average accuracy is calculated (Eq. (9)). Consider 
𝑁𝐸𝑖 is the number of errors in signal 𝑖. The length of each signal is 60 
seconds, and 𝑁𝑇 shows the total length of the used dataset. Consider-

ing 131 samples of data collected for our investigation, 𝑁𝑇 equals 7860 
(131 times 60 sec of sample data). The total number of reported errors 
is only 390 which shows an accuracy of 95.03% and, consequently, an 
error of 4.96%. The distribution of the median of calculated fHR as well 
as the obtained error is shown in Fig. 11a. Moreover, in order to provide 
a sense of distribution per measurement, we report the quantile distri-

bution of the measurement fHR values in the boxplot of Fig. 11b. The 
boxplot reflects the volatility of the fHR and the statistical distribution 
and characteristics of each measurement.

Just to mention that high error rates in some measurements are due 
to missing datapoints with the clinical device which is often the case. 
We note that our algorithm can perform much better for those corner 
cases in comparison with the standard clinical device. We believe that 
by further tuning our algorithm with more clinical data, we would be 
able to build a groundbreaking approach for fetal monitoring.
7
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average p-value is < 0.0008. Left: root mean square error (RMSE). Right: mean 
line for the simulated dataset are plotted.

rithm. a) Saved image from the clinical device. b, c) fHR graph extraction, d) 
d algorithm in red.

Fig. 10. A comparison sample between the algorithm’s final graph (in red) and 
the result of the clinical device (in black). The confidence interval is shown in 
green. Outliers are shown by red arrows.
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Fig. 11. The error obtained for each data. (a) The percentage of obtained error (orange graph) as well as the distribution of the median of calculated fHR for each 
data in bpm (purple bars). (b) The quantile distribution of the measured fHR values in bpm.
5. Discussion

In order to compare the performance of the proposed algorithm ver-
sus existing ones, competitive wavelet families including ‘db1’, ‘db5’, 
‘db6’, ‘sym1’, sym7’, coif2’, and ‘coif4’ are selected. To do this, the 37 
signals of the simulated dataset were used. The accuracy of the fHR ex-
traction was calculated after using different methods for denoising and 
presented in Fig. 12. The results in this figure illustrate that the applied 
method provides the best performance in most cases

The fetal heartbeat sound signals are often very noisy. There are 
several sources of noise related to the mother and fetus as well as the 
environment. In order to extract the fetal heart rate from fHS signals, 
denoising is the most important step. The better denoising, the higher 
accuracy will be achieved in fHR extraction. In this paper, a compre-
hensive study has been performed on fHS denoising using the wavelet 
technique. We cover many mother wavelets in many different levels of 
decomposition. Mother wavelet families of Daubechies from 1st order 
to 45th order, Coiflets from 1st order to 5th order, Symlet from 1st or-
8

der to 20th order, and Biorthogonal from order 1.1 to order 6.8 were all 
explored. All levels from second to 12 were also investigated. In total, 
we have performed 1020 investigations to cover four mother wavelet 
families completely. In addition, we captured more than 131 minutes 
of clinical data from different pregnant women with different BMIs in 
different weeks of pregnancy. Among captured data, there are mothers 
with diabetes and high pressure, too. This proves that the proposed al-
gorithm is quite promising in a clinical environment. In addition, the 
embedded software which is provided by the proposed algorithm and 
is connected to a pocket-size doppler device could help clinicians to 
reduce unnecessary loads. It also provides a possibility of remote moni-
toring of high-risk pregnancies with a connected medical device.

6. Conclusion

Fetal heartbeat sound signals, generally, have low amplitude and 
are hidden by high-amplitude noises that may come from the sounds 
of mother breath, fetal movements, and other ambient sounds. In the 
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Fig. 12. The results of the comparison of the current work with the works performed by others [35, 36].
present paper, an algorithm has been developed for the estimation of 
fHR from fHS signals. Firstly, a pre-processing task has been done for 
denoising based on wavelet transformation. Then, a combination of en-
veloping and finding local maximum is applied for the extraction of 
systole and diastole peaks. Further, systole peaks have been selected 
using distance information between S-peaks and D-peaks. Finally, fHR 
was calculated through the computation of interval times between the 
S-peaks.

Based on the obtained results and the comparison between those 
and the ones obtained from simulated/clinical signals, we can conclude 
that our proposed method is a promising tool for the identification of 
reliable fHR. In the future, by collecting more hours of annotated data 
with abnormalities, we would like to address fetal anomaly classifica-
tion analysis with sophisticated machine learning techniques.
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