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Abstract: Assessing the risk of fall in elderly people is a difficult challenge for clinicians. Since falls
represent one of the first causes of death in such people, numerous clinical tests have been created and
validated over the past 30 years to ascertain the risk of falls. More recently, the developments of low-cost
motion capture sensors have facilitated observations of gait differences between fallers and nonfallers.
The aim of this study is twofold. First, to design a method combining clinical tests and motion capture
sensors in order to optimize the prediction of the risk of fall. Second to assess the ability of artificial
intelligence to predict risk of fall from sensor raw data only. Seventy-three nursing home residents over
the age of 65 underwent the Timed Up and Go (TUG) and six-minute walking tests equipped with a
home-designed wearable Inertial Measurement Unit during two sets of measurements at a six-month
interval. Observed falls during that interval enabled us to divide residents into two categories: fallers
and nonfallers. We show that the TUG test results coupled to gait variability indicators, measured during
a six-minute walking test, improve (from 68% to 76%) the accuracy of risk of fall’s prediction at six
months. In addition, we show that an artificial intelligence algorithm trained on the sensor raw data of
57 participants reveals an accuracy of 75% on the remaining 16 participants.

Keywords: risk of fall; elderly; wearable sensor; gait variability; clinical tests

1. Introduction

Falls are an inevitable part of aging and their prediction and prevention are of paramount importance
to health care. According to the World Health Organization (WHO), falls are the second cause of accidental
death and approximately 646,000 people die every year following falls, particularly people over the age
of 65. In the European Union (EU), an average of 35,848 elderly people/y (65 and above) are reported to
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have died from falls [1]. As the population of elderly people in the EU is expected to grow by 60% by 2050,
the number of fall-related deaths is expected to increase to almost 60,000/y by 2050, unless additional
measures are taken to predict and prevent falls. Additionally, falls result in significant physical and
psychosocial costs that have to be incurred by patients and social security. The social security cost for
treating fall-related injuries in the EU is estimated to be €25 billion each year [2].

In nursing homes, falls frequency is higher for elderly people than at home with a yearly rate of falls of
50% [3]. This phenomenon is foreseen to increase in the future in view of the population aging. Risk factors
for falls in elderly people are higher among nursing home residents compared to home-based individuals [4].
Those factors are usually grouped in three main categories: intrinsic (age, sex, cognitive disorders, eyesight
impairment, sarcopenia, multiple medication use, sensory impairment, gait disorders, postural instability
and neurodegenerative diseases), behavioral (inappropriate footwear, alcohol use), and environmental
(slippery surfaces, poor lighting, worn carpeting) [3–5].

It is well-known that the assessment of the risk of falls is better achieved through screening tools
designed for that purpose. One of the most well-known tests is the Timed Up and Go (TUG) test [6]. It is
considered as the gold standard in fall risk assessment and has numerous advantages. It is simple and
easy to describe and to perform, and, therefore, widely used [7]. It is also recommended by the American
Geriatric Society and the British Geriatric Society [8]. The typical time to perform the test is around 20–30 s.
Unfortunately, this is too short to enable a full assessment of the gait kinematics and more specifically
the long-term variability of the stride interval. This is correlated to the risk of fall in home-based older
people [9] but requires a time series of a typical duration of 10 min. More recently, the TUG test has
been performed with patients equipped with an accelerometer. This allowed an analysis focusing on
sit-to-stand and stand-to-sit subtasks, which is useful to identify fall risk in home-based fallers versus
healthy controls [10]. The findings of this study show that the TUG test allows successfully identifying
63% of fallers and this is increased by up to 87% in accelerometer-equipped patients.

Another widely used tool in clinical practice that allows the study of gait for a longer period is the
six-minute walking test [11]. Similar to the TUG test, the accelerometer-based six-minute walking test
has been used in patients with chronic heart failure [12] and chronic obstructive pulmonary disease [13].
To the best of our knowledge, the accelerometer-based six-minute walking test has not been performed in
elderly people to assess risk of fall.

Today, the availability of low-cost inertial sensors enables 3D measurement of acceleration and angular
speed during human movements. In a recent study, we successfully used a homemade ultralow-cost
wearable inertial sensor (DYSKIMOT) to capture the rotational movements of the head during a standardized
test [14]. It is part of the DYSKIMOT project to show the relevance of the proposed sensor in a wide
variety of clinically relevant situations, and the present study aims at extending the range of applications
of the DYSKIMOT sensor. Of course, many other wearable sensors are relevant in gait analysis, e.g.,
smart socks [15] or instrumented shirts [16]. Our results can also be transposed in principle to other
systems using inertial sensors. Here, we used this sensor to capture locomotor movements during the
six-minute walking test to increase the predictive power of the TUG test on the risk of falls among elderly
nursing home fallers and nonfallers during two sets of measurements at six months interval (TUG+ test).
We also present an analysis of kinematic data based on variability assessment and on artificial intelligence
(AI) techniques. Current hardware capacities the processing and management of huge datasets required
for such tools to converge to a solution. That is why these techniques have gained popularity in recent
years and are recognized as efficient tools in fall detection in particular [17].

The main objective of this study is to show that it is possible to design a test identifying nursing home
residents presenting a risk of fall, the test’s accuracy being assessed by comparison to their actual falls
during six months after the test. A secondary objective is to present three different ways of assessing the
risk of falls: a standard clinical test (TUG), a standard clinical test augmented by sensor measurements
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(TUG+), and an AI algorithm based on sensor measurements only. The first two tests require the presence
of a therapist, while the third could be implemented in an autonomous wearable system.

2. Materials and Methods

2.1. Population

Participants in this survey (Table 1) were at least 65 years old or over and lived in 4 nursing homes in
the Charleroi area in Belgium. The experiment protocol was designed according to the Helsinki declaration
and was approved by the Bioethical Academic Committee (No. B200-2017-144). Exclusion criteria were as
follows: lower limb musculoskeletal or cardio-respiratory disorders preventing a six-minute walking test
or major cognitive disorders preventing a full patient’s cooperation. During the experiment, participants
who experienced a major illness such as stroke or limb fracture were excluded.

Table 1. Main characteristics, comorbidities and number of medications increasing the risk of fall of the
participants. Fallers were identified according to the fall records between the 6 months interval (t1 and t2).

t1 t2

N 80 73
Age (years) 83.2 ± 8.2 83.0 ± 8.3

Male/Female 28/52 28/45
Walking aid required 49 52

Hypertension (%) 44 42
Number of medications 4 [2–5] 4 [2–5]

Cerebrovascular accident (%) 10 10
Dementia (%) 14 16

Previous heart surgery (%) 21 23
Diabetes (%) 16 15

Hip or knee replacement (%) 16 16
Fallers 23

TUG (s) 20 [17–27] 17 [14–23]

Age is indicated under the form mean ± standard deviation. Medications increasing the risk of fall: psychotrope,
antiarrhythmic, diuretics [18]. Timed Up and Go (TUG) and number of medications results are given under the form
median [1st quartile–3rd quartile]. Hypertension is defined as a value >140/90 mmHg.

Participants who chose to discontinue their participation, were admitted to hospital, had their
medication changed thus preventing the continuation of the experiment or died before the completion of
the experiment were also excluded.

Ninety-two individuals started the initial test. Twelve of them were excluded from the survey in view
of the above criteria. Seventy-three participants completed the experiment.

2.2. Protocol

The survey took place between the month of May (t1) and the month of November (t2) 2018. At t1,
the TUG test was performed in all participants. Participants sat down with their back against a 46 cm
high chair rest. When signaled, participants were asked to get up, walk three meters, turn around and
sit down again. Participants then performed the six-minute walking test with the right to take short
pauses as required. Measurements were taken by the two same experimenters (L.C. and R.G.), who always
walked aside the patient to prevent any fall in case they lost balance. Six-minute tests were performed by
walking a typical point-to-point track of 25 m with serial turnarounds. The turnaround points were clearly
marked with strong adhesive tape stuck on the floor. During the six-minute walking test, participants
were equipped with a homemade sensor collecting several kinematic data. The ultralow-cost sensor,
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called DYSKIMOT, was presented in a previous survey [14]. It is based on the Magnetic Angular Rate
and Gravity (MARG) sensor LSM9DS1 (SparkFun), composed of a 3-axis accelerometer, gyrometer and
magnetometer, plus a temperature sensor (Figure 1A,B). It is light (10.44 g) and small enough (3 × 3 cm) to
be worn by a patient without any disturbance (Figure 1B). Among other quantities, the MARG sensor
measures acceleration,

→
a(t) (in [g], ±16 [g]), and angular velocity,

→

ω(t) (in ◦/s, ±2000 ◦/s) at a sampling
frequency of 100 Hz. The data are transmitted to a PC via an Arduino Uno Rev 3 and a USB cable (RS232
serial link) and then transferred to a homemade acquisition software for further analysis. More details can
be found in [14], including a comparison between DYSKIMOT and a gold standard optoelectronic sensor.
The sensitivity depends on the sensor and on the selected range; detailed information is given in
the datasheet (https://www.st.com/en/mems-and-sensors/lsm9ds1.html). For example, the gyrometer
sensitivity is 8.75 × 10−3 ◦/s/LSB at the range ±245 ◦/s, i.e., the range we use in the present study, and the
accelerometer sensitivity is 0.322×mg/LSB at the range ±4× g. During the experiment, the DYSKIMOT
was positioned in the lumbar region of the individual at the level of the L4 vertebra (Figure 1C,D) in such a
way that the sensor’s cartesian frame matched with walking directions.
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Figure 1. (A) The LSM9DS1 sensor (SparkFun) used to record acceleration and angular speed. (B) LSM9DS1
sensor within the DYSKIMOT system. Sensor’s cartesian frame is indicated. The curved arrows give
rotation’s positive direction. (C) Schematic placement of a DYSKIMOT sensor on a patient. The sensor’s
cartesian frame matches the walking directions. (D) A patient equipped with DYSKIMOT sensor (right)
with one experimenter (R.G.) walking aside.

Between t1 and t2, each fall of a participant was recorded by the nursing home staff. The fall records
were used at t2 to categorize participants into fallers and nonfallers. At the end of the survey, 23 fallers
and 50 nonfallers were noted. Among the 23 fallers, 17 participants made 1 fall, while 2 participants fell
two, three and four times. The lack of “frequent fallers” (more than 1 fall) in our population has led us to
consider a binary classification rather than a more detailed description in terms of, say, the number of falls
between t1 and t2.

2.3. Data Analysis

Time series included
→

ω =
(
ωml,ωv,ωap

)
and

→
a =

(
aml, av, aap

)
(2 times 3 components). Typical traces

of selected time series are shown in Figure 2. The indices ml, v and ap stand for mediolateral, vertical and

https://www.st.com/en/mems-and-sensors/lsm9ds1.html
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anteroposterior, respectively. We recorded for analysis the data at t1 and t2 of the 73 participants still
included at t2.
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Figure 2. (A) Typical traces of anteroposterior (aap) and vertical (av) accelerations measured by the
DYSKIMOT during the six-minute walking test. (B) Typical trace of vertical angular speeds (ωv) measured
by the DYSKIMOT during the six-minute walking test. The regularly spaced peaks correspond to
turnarounds made by the participants.

We chose to focus on the assessment of time series variability. As shown in [5], gait variability can
be correlated with the risk of fall. Further studies such as [9] have analyzed it using mathematical tools
such as fractal dimension and have demonstrated that those tools can discriminate between healthy and
disabled individuals, healthy individuals showing a higher fractal dimension. The parameters identified
in the present study are the standard deviation (SD) and fractal dimension (D) obtained from the six
time series (

→
a and

→

ω) recorded during the six-minute walking test. Fractal dimension was computed
by resorting to the box counting method: If N(ε) is the number of square boxes of side ε necessary to
cover the plot of the time series under study, then N(ε) scales as ε−D when ε→ 0 . D is, therefore, the
slope of N(ε) vs. ε in a log–log plot for small values of ε. Computational details about the method we
use are presented in [19] and additional mathematical references can be found in [20]. SD and D give
complementary information about gait variability: SD provides an indication about the magnitude of the
fluctuations while D represents the time series complexity, i.e., smooth (D close to 1) or abrupt (D close to
2) relative changes in successive measurements.

Due to failed normality tests on data, a Mann–Whitney test was performed with a significance level
of 0.05 in order to ascertain potential differences between fallers and nonfallers at t1.

Three classification algorithms were then defined to classify participants as presenting a risk
of fall or not: the TUG test, the TUG+ test and the AI algorithm (see below for more details).
Standard tools belonging to binary classification were then used to compare our “diagnostic” (risk
of fall or not) to the actual faller or nonfaller status of our participants. Sensitivity (Se = TP

TP+FN ),
specificity (Sp = TN

TN+FP ), positive (PPV = TP
TP+FP ) and negative (NPV = TN

TN+FN ) predictive values,
and accuracy (Acc = TP+TN

TP+FP+TN+FN ) were calculated, with TP the true positives, FP the false positives,
FN the false negatives, and TN the true negatives. The positive (LR+ = Se

1−Sp ) and negative (LR− = 1−Se
Sp )

likelihood ratios were also computed.
The TUG test at t1 was first analyzed by computing a Receiver Operating Characteristic (ROC) curve.

The time maximizing Youden’s index Sp+ Se− 1 was computed and chosen as the threshold, t*, to separate
participants with and without risk of fall. An augmented TUG test (TUG+) was then designed following
the decision tree shown in Figure 3. It includes information from the variability indices that showed a
significant difference between fallers and nonfallers at t1. If an individual is recognized by the clinical
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test as a faller, then he/she is assessed a second time by one or more kinematic parameters displaying a
significant difference between fallers and nonfallers (according to fall recording). Threshold values were
chosen after several attempts at designing an augmented TUG test as it provided the best accuracy.Sensors 2020, 20, x FOR PEER REVIEW 6 of 14 
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Figure 3. (A) Decision tree illustrating the TUG test. T* is the threshold time maximizing Youden’s index.
(B) Decision tree illustrating the TUG+ test. X, Y, etc., are variability indices and X*, Y*, etc., are threshold
values. The selected indices and thresholds are given in Figure 5B.

The AI algorithm was designed as follows. The times series related to a participant were divided into
fixed-duration windows so that the inputs of our model are fixed-size vectors. Models were trained and
tested for different window sizes; the value 20 s was chosen, see Section 3.3 for a justification. Splitting one
6 min time series into smaller ones may also have the advantage of avoiding the AI to learn long-term
autocorrelations which are typical of human walk [9,21]. We used a 10 s overlapping during the frame
generation of the training dataset (Figure 4) to increase its size and to remove any bias regarding the
starting position of the frames. The obtained dataset was divided by test/validation datasets and training as
a compromise between having enough fallers data for test/validation and for training. The test/validation
is made up of 16 participants (8 fallers and 8 nonfallers randomly chosen) and the training dataset is
made up of 57 participants (16 fallers and 41 nonfallers). Models based on Convolutional Neural Network
(CNN) [22] have then been trained and tested to find the optimal accuracy on the risk of fall prediction in
the test/validation dataset. We have chosen an AI classification based on deep learning (CNN) among
other machine learning solutions because of its capacity to extract features by itself. Since TUG and
TUG+ methods are based on features we selected (TUG time and variability indices), such a deep learning
approach was preferred because it is complementary.

Sigmaplot (v. 11.0) and R (v. 3.5.0) software were used to perform the statistical calculations.
AI algorithm was designed by using the standard software Keras over Tensorflow 2.0. R package
pROC was used.
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Figure 4. Example of sequence splitting for the train dataset. A duration of 20 s is chosen with
10 s overlapping.

3. Results

3.1. Variability Indices

The variability indices (SD and D) computed from the six time series recorded during the six-minute
test are shown in Table 2. The medians are compared and the p-values are indicated. Two parameters
are significantly different for the fallers and nonfallers: SDaap is significantly larger for fallers and Dav

is significantly smaller. Those parameters will then be selected in the TUG+ test. Note that the fractal
dimensions are globally smaller for fallers than for nonfallers.

Table 2. Comparison between various indices of fallers and nonfallers at t1. Data are given under the form
median [1st quartile–3rd quartile]. SD = standard deviation, D = fractal dimension. These indices are
followed by a subscript labeling the time series from which it was obtained. Results of the TUG test are
given in the last line. Significant differences are written in bold font.

Fallers Nonfallers p

SDav (m/s2) 0.0949 [0.0810–0.149] 0.101 [0.0868–0.130] 0.245
SDaml (m/s2) 0.0864 [0.0752–0.109] 0.0950 [0.0747–0.109] 0.891
SDaap (m/s2) 0.120 [0.0901–0.173] 0.0900 [0.0753–0.120] 0.010
SDωv (◦/s) 17.4 [15.5–20.2] 18.4 [15.0–21.9] 0.957
SDωml (◦/s) 15.8 [12.3–20.3] 13.7 [11.1–19.2] 0.480
SDωap (◦/s) 8.29 [6.77–11.6] 8.79 [7.44–12.6] 0.487

Dav 1.78 [1.73–1.82] 1.81 [1.77–1.85] 0.044
Daml 1.78 [1.66–1.81] 1.81 [1.77–1.83] 0.088
Daap 1.73 [1.68–1.80] 1.79 [1.73–1.83] 0.072
Dωv 1.71 [1.67–1.76] 1.74 [1.69–1.76] 0.376
Dωml 1.74 [1.71–1.78] 1.78 [1.72–1.82] 0.098
Dωap 1.81 [1.75–1.83] 1.82 [1.78–1.85] 0.149

TUG (s) 23 [19–31] 19 [16–25] 0.035
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3.2. TUG and TUG+ Tests

Fallers perform the TUG test significantly slower than nonfallers. ROC curve and confusion matrix
for the TUG test are shown in Figures 5 and 6. Related parameters are shown in Table 3. Youden’s statistics
for the TUG test leads to an optimal threshold of 22.5 s. An individual performing the TUG test over that
threshold is likely to be considered as presenting a risk of fall in our population.
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The threshold of 22.5 s is kept in the TUG+. The SDaap and Dav thresholds were adjusted in order
to maximize the TUG+ test’s accuracy: They are shown in Figure 5. The TUG+ test has better accuracy
than the TUG test—an Mc Nemar test performed on the TUG and TUG+ classifications confirm that both
tests are significantly different (p = 0.013). A detailed comparison between both tests is given in Table 3.
The confusion matrix for the TUG+ test is also shown in Figure 6.

We have purposely designed TUG and TUG+ tests in a simple way, like how clinical tests are usually
designed. For example, the TUG+ test can be seen as a checklist with three questions: Does the patient lie
above the TUG and SDaap, or below Dav thresholds? A “diagnostic” of the risk/no risk of fall can be made
from these three answers. Both tests could have been designed in a more complex way by resorting to
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logistic regressions: We present that approach in Appendix A. The performances of both versions of the
TUG+ test are equivalent.

Table 3. Characterization of the TUG and TUG+ test. The following parameters are displayed:
sensitivity (Se), specificity (Sp), positive (LR+) and negative (LR−) likelihood ratios, positive (PPV)
and negative (NPV) predictive values and accuracy (Acc). Improvements of TUG+ and AI methods with
respect to TUG are emphasized in bold font.

TUG TUG+ AI

Se 0.714 0.857 0.750
Sp 0.541 0.500 0.750

LR+ 1.56 1.71 3.00
LR− 0.529 0.286 0.333
PPV 0.481 0.778 0.750
NPV 0.761 0.632 0.750
Acc 0.657 0.739 0.750

3.3. AI Classification

Models were trained and tested for the following window sizes: 1, 2, 5, 10, 20 and 60 s. Twenty seconds
windows showed the best convergence rate as shown in Figure 7. We have then performed a random
search hyperparametric study to optimize the accuracy of our AI algorithm [23]. The convergence rate may
seem small but it is the consequence of the small (with respect to deep learning) dataset at our disposal
and of the wide range of parameters we explored in the parameter space.
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Figure 7. Convergence rate of the AI algorithm versus window size. The convergence rate is the ratio of
models that reached a precision of at least 65% on test data and the total amount of models trained for a
specific window size.

We have kept the solution presented in Figure 8, leading to the confusion matrix displayed in Figure 6D.
It showed maximal accuracy while being equally specific and sensitive (Sp = Se). One solution with higher
accuracy was found (Acc = 81%) but at the expense of sensitivity (Se = 62.5%) and was, therefore, not kept.
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Figure 8. CNN-based AI algorithm used to predict the risk of fall. The input layer receives a 20 s frame from
the 6 inputs of the DYSKIMOT sensor. The convolutional layers (Conv2D layer) extract meaningful features
from its input and present it to the next stage. Pooling layers (MaxPool2D Layer) reduce the dimension of
the feature space by retaining the meaningful inputs of its layer only. After several convolutional stages,
the remaining features are injected in a three layers neural network (dense layer) in order to classify the
participant’s frames (output layer). The risk of fall is the mean (ranging from 0 to 1) of prediction on all
frames of the participant’s sequence. A mean greater than 0.5 denotes a participant with risk of fall.

4. Discussion

Our study aimed at designing tests assessing the risk of fall in nursing home patients. The predictions
of these tests were compared to the faller/nonfaller status of the participants. The originality of the present
work is that two examination times separated by six months were included, and that the fall records of the
nursing home during that time was used to classify participants as fallers or nonfallers.

We first confirm that the TUG test alone may predict falls despite its simplicity. We do not observe
sensitivity and specificity as high as in [24] (Sp and Se of 87%). This could be explained by the fact that
their sample only included 30 participants. Furthermore, a difference of 3.9 s between fallers and nonfallers
is observed in our survey, which correlates with that of [25] (difference of 3.59 s). The threshold defining
the risk of falls varies between 13 and 32.6 s according to the studies quoted by [26]. Our value of 22.5 s is
intermediate. This latter study shows that the TUG test is a test that allows a better division between fallers
and nonfallers when they are nursing home residents but not when they are home-based. This conclusion
is shared by [26].

Kinematic analysis of the six-minute walking using the DYSKIMOT sensor reveals that this low-cost
wearable device is able to measure significant differences between fallers and nonfallers. It is the first
time our homemade system is applied to a geriatric population. The homemade sensor we used is not
wireless yet. Placing the sensor in the lower limb (e.g., in one shoe) would have been relevant, as it is
known from the literature, that instrumented socks are able to identify gait events [27,28], but the wire was
uncomfortable for participants. This is coherent with the findings of [29] showing that patients mostly favor
devices placed in the upper part of the body. The most comfortable solution we found is the placement
in the lumbar region, which leads moreover to a sensor near the participant’s body center of mass, i.e.,
a crucial point as far as stability and balance are concerned.

The magnitude of anteroposterior acceleration’s fluctuations is significantly larger in fallers. It is
coherent with the findings of [30] showing that elderly people who have already fallen have longer
deceleration periods during a walking cycle than healthy young people. This behavior aims at reducing
the swing phase to shorten unstable periods during the walking cycle. fallers also present smaller fractal
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dimensions. This observation can be related to the optimal complexity framework of [31]. They argued
that physiological signals recorded in a healthy individual have a maximal complexity (e.g., high fractal
dimension or entropy). A loss in complexity is associated with aging or disease. For instance, a smaller
complexity in the walking pattern of healthy aged participants was observed in [32]. In our population,
fallers are less able to perform quick modifications of their walking pattern and show a less complex
behavior than nonfallers. Note that the six-minute walking test was interrupted by turnarounds due
to the typical 25 m length of the nursing home corridors. Even if in the case of a point-to-point track,
a walking course of 30 m is preferred, the minimum recommended length is 15 m [33]. Still, it is worth
noticing that turnarounds are complex motor tasks that are representative of the daily activities of nursing
home residents. Therefore, the kinematic information contained in the turnarounds could be isolated from
the straight gait time series for separate analysis.

According to the review [34], techniques combining sensors and clinical tests are encouraging but
the protocols used have yet to be standardized (sensor position, choice of clinical tests, data analysis).
It is, therefore, possible to find combinations of clinical tests and kinematic parameters with an accuracy
between 47.9% and 100% in a given sample [34]. The choice of the TUG test appears adequate in view of its
intensive use in the field of geriatric rehabilitation and simplicity to perform. This test provides important
information to predict the risk of fall when combined with kinematic data. The position of the inertial
sensor in the lumbar area is relevant as it is close to the body center of mass. Studies such as [35] show
that it is at this position that the best information can be gathered in order to differentiate between fallers
and nonfallers. Furthermore, our choice of a six-minute walking test with an inertial sensor provides
long-term information about an individual’s gait. Such information is not available with the TUG test
alone. It appears from our study that the TUG test combined with kinematic parameters such as SCaap

and Dav collected during the six-minute walking test improves the accuracy in predicting falls.
We report here for the first time on the increase of accuracy of TUG+ compared to TUG in predicting

falls in elderly nursing home people. The novelty of this TUG+ is to combine TUG stopwatch-based duration
results to gait variability indicators measured during a six-minute walking test by the DYSKIMOT sensor.
Previous studies followed a similar approach. The study [36] is an attempt to improve the TUG test
by increasing the walking distance and by timing each phase of this move (chair lifting, walking time,
turnaround time) in order to get more information during the test. Others chose to complement the TUG
test with additional sensors in order to improve its effectiveness [37,38]. In [38], the TUG test is specifically
coupled with inertial sensors and shows an accuracy of 88%. In another survey, the same authors combined
a questionnaire-based clinical evaluation with kinematic data measured by an inertial sensor during the
TUG test [37]. They obtained accuracies of 68% for clinical evaluation alone, 73% for inertial sensors alone
and 76% for combined evaluation. Those results are similar to ours: We find that the TUG+ test is a better
way to predict the risk of falls in the elderly than the TUG test alone: We managed to increase the accuracy
of the TUG test by 8.2% (Table 3). Using the TUG+ test, about 74% of the individuals on our sample were
correctly categorized. To our knowledge, it is the first time that TUG and six-minute walking test results
are merged that way.

We finally have built a complementary approach: AI analysis of six-minute walking kinematical
time series in view of predicting the risk of fall. AI techniques are nowadays able to detect falls in
real-time [39–41]. The particularity of our first attempt is to focus on a six-month prediction rather
than on real-time detection. The obvious weakness of our AI classification, based on a convolutional
neural network, is the size of our data set. Still, it shows the feasibility of risk of fall prediction from the
kinematic data of an elderly walking six minutes, with an accuracy, specificity and sensibility of 75%.

The TUG+ test is an interesting solution in nursing homes because patients generally favor systems
that do not replace a therapist [42]. Since our thresholds were fitted on the full population, we can safely
conclude that a simple augmented clinical test is able to assess the risk of fall in our sample. The next step



Sensors 2020, 20, 3207 12 of 15

in this research is to study a different sample of nursing home patients with the tests built in the present
study in order to fully assess our test’s predictive power. We hope to present such results in future work.

AI classification of the risk of fall, combined with a wearable sensor, gives hope that relevant tools
monitoring the risk of fall of home-based elderly will become available in the near future. The MARG
sensor we used is small (9 cm2) and light (10.44 g) enough to imagine several sensors attached on a
wearable shirt, as proposed in [16,43] where it is shown that an undershirt equipped with 11 sensors is
able to recognize several complex manual material handling tasks and basic postures (sitting, standing
and lying down) as well as walking and running. In view of these promising results, it can be hoped that
increasing the number of sensors in our system will increase the AI’s accuracy in the assessment of risk
of fall. We leave such a program for future works.

Author Contributions: Conceptualization, F.B., F.D., R.G. and L.C.; methodology, F.D., R.G., L.J., D.F. and L.C.;
software, F.B., R.G., L.J., D.F. and L.C.; validation, F.B., F.D. and V.B.; investigation, R.G. and L.C.; data curation, F.B.,
R.G. and L.C.; writing—original draft preparation, F.B., F.D. and V.B.; writing—review and editing, F.B., F.D., V.B., L.J.,
D.F., R.G. and L.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors thank the following Belgian nursing homes for their support to the project: l’Adret
(Gosselies), le Centenaire (Châtelet), le home Notre-Dame De Bonne Espérance (Châtelet) and Au Temps des Cerises
(Châtelet). The authors also thank CeREF’s technical department for having allowed the use of DYSKIMOT sensor.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A TUG and TUG+ Tests with Logistic Regressions

Instead of computing the threshold for TUG time from the ROC curve, a logistic regression of
LOGIT = ln

(
P

1−P

)
vs. the TUG time can be performed, P being the probability of being a faller (the R

package caret is used). This test, called TUG (Logit), is defined by LOGIT = −1.71 + 0.0435 TUG(s) and
the threshold P* = 0.41; its confusion matrix is presented in Figure A1 and its parameters are given in
Table A1. The threshold was fitted to reach optimal accuracy.
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Figure A1. Confusion matrices for the logistic regression-based versions of the TUG and TUG+ tests.
(A) TUG test. (B) TUG+ test.

Table A1. Characterization of the TUG (Logit) and TUG+ (Logit) tests. Values in bold font represent
improvements of TUG+ (Logit) test with respect to TUG (Logit) test.

TUG (Logit) TUG+ (Logit)

Se 0.837 0.898
Sp 0.250 0.333

LR+ 1.12 1.35
LR− 0.652 0.306
PPV 0.695 0.733
NPV 0.439 0.615
Acc 0.644 0.712
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The TUG+ test can also be reformulated by using a logistic regression of LOGIT vs. TUG time,
SDaap and Dav. This test, called TUG+ (Logit), is defined by LOGIT = −3.58 + 0.0481 TUG(s) +
7.29 SDaap

(
m
s2

)
+ 0.577 Dav. With the same threshold, one is led to the results presented in Figure A1 and

Table A1.
The features of TUG (Logit) test are significantly different from TUG test: A Mc Nemar test leads

to p < 0.01. The TUG test has a higher accuracy than the TUG (Logit) one. However, the performance of
TUG+ (Logit) and TUG+ tests are very similar. A Mc Nemar test leads to p = 0.149.
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