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Background: Increasing evidence has shown that amyotrophic lateral sclerosis (ALS)
can result in abnormal energy metabolism and sleep disorders, even before motor
dysfunction. Although the hypothalamus and thalamus are important structures in these
processes, few ALS studies have reported abnormal MRI structural findings in the
hypothalamus and thalamus.

Purpose: We aimed to investigate volumetric changes in the thalamus and
hypothalamus by using the automatic brain structure volumetry tool AccuBrain R©.

Methods: 3D T1-weighted magnetization-prepared gradient echo imaging (MPRAGE)
scans were acquired from 16 patients with ALS with normal cognitive scores and 16
age-, sex- and education-matched healthy controls. Brain tissue and structure volumes
were automatically calculated using AccuBrain R©.

Results: There were no significant differences in bilateral thalamic (F = 1.31, p = 0.287)
or hypothalamic volumes (F = 1.65, p = 0.213) between the ALS and control groups
by multivariate analysis of covariance (MANCOVA). Left and right hypothalamic volumes
were correlated with whole-brain volume in patients with ALS (t = 3.19, p = 0.036;
t = 3.03, p = 0.044), while the correlation between age and bilateral thalamic volumes
tended to be significant after Bonferroni correction (t = 2.76, p = 0.068; t = 2.83,
p = 0.06). In the control group, left and right thalamic volumes were correlated with
whole-brain volume (t = 4.26, p = 0.004; t = 4.52, p = 0.004).

Conclusion: Thalamic and hypothalamic volumes did not show differences between
patients with normal frontotemporal function ALS and healthy controls, but further
studies are still needed.
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BACKGROUND

Amyotrophic lateral sclerosis is a multiple-system neurodegenerative disease that has a far greater
impact than motor system dysfunction. In recent years, more researchers in neurosciences have
expanded their interest beyond motor dysfunction and explored other research axes, such as energy
homeostasis and sleep disorder, in patients with amyotrophic lateral sclerosis (ALS). Patients with
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ALS generally have normal or low body mass index (BMI).
Weight loss may begin before the onset of motor symptoms,
which is probably caused by dysphagia and hypermetabolism.
Early weight loss is associated with a higher rate of ALS
progression with a grimmer prognosis (Dupuis et al., 2011;
Gallo et al., 2013; O’Reilly et al., 2013; Huisman et al., 2015;
Ahmed et al., 2016). Clinical trials have demonstrated that
strengthening intake may benefit patients with ALS (Wills et al.,
2014; Dorst et al., 2015). In addition to energy homeostasis, sleep
disorders are also fairly common in patients with ALS (Diaz-
Abad et al., 2018; Liu et al., 2018; Congiu et al., 2019). Animal
studies have shown that sleep disorders may initiate before the
onset of motor symptoms (Liu et al., 2015; Zhang et al., 2018).
Interestingly, as both energy metabolism and sleep are closely
related to the function of the hypothalamus (Vercruysse et al.,
2018), it is not surprising that pathological abnormalities in
the hypothalamus were found in patients with ALS (Cykowski
et al., 2014; Nakamura et al., 2015). In 33 autopsy-confirmed
patients with ALS, six patients presented TDP-43 pathology in
the hypothalamus (Cykowski et al., 2014). In the autopsy of a
patient with familiar ALS, SOD1 immunohistochemistry showed
neuronal cytoplasmic inclusions, glial cytoplasmic inclusions,
and dystrophic neurites in the brain and spinal cord, with
a predilection for the hypothalamus and central gray matter
(Nakamura et al., 2015). Hypothalamic neuropeptide levels were
shown to be changed in ALS mouse models (Vercruysse et al.,
2016). In addition to these biomolecular abnormalities, structural
changes have also been reported: Up to 15% of patients diagnosed
with behavioral variant frontotemporal dementia (bvFTD), a
similar but different disease within the spectrum of ALS (Strong
et al., 2017; van Es et al., 2017), were reported to have
hypothalamic atrophy (Bocchetta et al., 2015; Ahmed et al., 2017).
However, few studies have reported hypothalamic atrophy in
patients with ALS (Gorges et al., 2017).

C9orf72 repeat expansion is one of the most important gene
mutations in the ALS-FTD disease spectrum (Gijselinck et al.,
2012; Balendra and Isaacs, 2018). In addition to commonly
reported brain areas, such as the motor cortex, frontal and
temporal lobes, and corpus callosum (Foerster et al., 2013),
changes in the thalamus have been the focus of relatively
few studies. Machts reported bilateral thalamic atrophy in
patients with ALS-FTD (Machts et al., 2015). Schönecker’s study
subsequently showed thalamic atrophy in ALS/FTD C9orf72
mutation carriers that extended beyond the expected atrophy
in the prefrontal and temporal subregions (Schönecker et al.,
2018). However, Westeneng found that, although patients with
ALS with C9orf72 repeat expansion had more severe bilateral
thalamic atrophy, 21% of patients with ALS without the C9orf72
mutation had a similar neuroimaging phenotype (Westeneng
et al., 2016). Chipika also found thalamic atrophy in patients
with ALS without the C9orf72 mutation (Chipika et al., 2020).
Some earlier studies found structural or functional changes in
the thalamus in patients with ALS but lacked cognitive and
behavioral assessments (Douaud et al., 2011; Sharma et al., 2011,
2013). Therefore, it remains unclear whether thalamic atrophy
could occur in patients with pure ALS.

AccuBrain R© (BrainNow Ltd., Shenzhen, China) is a cloud-
based National Medical Products Administration (NMPA)

and Conformité Européenne (CE)-marked software tool
that performs brain MRI segmentation. It is based on a
multi-atlas segmentation method with a statistical anatomical
atlas previously generated by experienced experts, and it
automatically calculates the brain volume of various brain
structures. AccuBrain R© presents less inter-scanner variability
than FreeSurfer and FSL-FIRST based on the comparison of
their coefficient of variation values of brain volumetry, especially
in basal ganglia structures, such as the thalamus (p < 0.001)
(Liu et al., 2020). Abrigo’s study showed that AccuBrain R© could
provide accurate automated hippocampal segmentation in
accordance with the EADCADNI standard (Abrigo et al., 2018).
The clinical value of AccuBrain R© has also been demonstrated in
various neurological disease studies (Guo et al., 2019; Wang et al.,
2019; Zhao et al., 2019; Dou et al., 2020; Hou et al., 2020; Liu
et al., 2020). AccuBrain R© may, therefore, be a rapid and sensitive
tool for detecting brain structures in neurodegenerative diseases.

The aim of this study was to determine whether thalamic and
hypothalamic atrophy occurs in patients with ALS by using the
AccuBrain R© technique.

MATERIALS AND METHODS

Participants
In total, 16 right-handed patients who met the ALS-revised El
Escorial criteria (Brook et al., 2000) at Peking University Third
Hospital (PUTH) between 2011 and 2012 and 16 right-handed
healthy controls were enrolled. All the patients underwent the
Mini-Mental State Examination (MMSE), Frontal Assessment
Battery (FAB), verbal fluency (VF), and prospective memory
(PM) tests before inclusion. The exclusion criteria were as
follows: (1) dementia or cognitive dysfunction, brain trauma,
epilepsy, stroke, psychiatric disorders, and other central nervous
system diseases; (2) absolute or relative contraindication for MRI;
and (3) pregnancy.

The clinical characteristics are shown in Table 1. The patients
with ALS were followed up until death; during this follow-up
period, contact with eight of 16 patients was lost before this
endpoint. The life span was the time from the disease onset to
death. All the participants provided informed consent. The study
was approved by the ethics committee of PUTH.

MRI Acquisition
The data for 16 patients with ALS and 16 healthy controls were
acquired on a Siemens 3.0 T Trio TIM MR scanner. Structural
MRI data were obtained using a high-resolution 3-D T1-weighted
magnetization-prepared gradient echo imaging (MPRAGE)
sequence [192 sagittal slices, no gap, layer thickness = 1 mm;
field of view (FOV) = 256 mm × 256 mm; repetition time
(TR) = 2,530 ms; echo time (TE) = 3.44 ms; inversion time
(TI) = 1,100 ms; acquisition time = 363 s].

Brain Volumetry
All images were processed using AccuBrain R© (BrainNow Medical
Technology Ltd., China), which is a brain quantification tool
that performs brain structure and tissue segmentation and
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TABLE 1 | Characteristics of the participants: patients with ALS and healthy
controls.

Characteristic ALS patients Healthy
controls

p-value

Age (years) (mean ± SD) 51.25 ± 11.19 52.06 ± 11.76 0.86

Education (years) (mean ± SD) 11.75 ± 4.78 12.19 ± 4.83 0.73

Sex Male 7/16 7/16 1.00

Female 9/16 9/16

Onset of disease Bulbar 3/16

Extremities 13/16

Diagnostic level Definite 3/16

Probable 5/16

Lab-supported
probable

7/16

Possible 1/16

Disease stage Advanced ALS 8/16

Early ALS 8/16

Duration of illness (months) (mean ± SD) 14.69 ± 9.16

Bulbar involvement 12/16

ALSFRS-R (mean ± SD) 36.75 ± 7.42

Life span (months) (mean ± SD) 48.25 ± 14.99

Gene mutation 0/16

ALSFRS-R, revised ALS functional rating scale; MMSE, mini-mental state
examination. Gene mutation includes C9orf72, SOD1, FUS, and TDP43.

quantification in a fully automatic mode. Given the T1-
weighted MRI data, several brain structures and three major
brain tissues are segmented automatically based on prior
anatomical knowledge specified by experienced radiologists. The
anatomical information is automatically transformed onto the
individual brain. The absolute volume (in ml) of 20 brain
structures and their bilateral components were automatically
calculated. These measures and structures included but were
not limited to intracranial volume, whole-brain parenchyma,
hippocampus, amygdala, ventricular system, lateral ventricle,
third ventricle, inferior lateral ventricle, caudate, putamen,
pallidum, hypothalamus, thalamus, pons, midbrain, and gray
matter in different lobes.

Statistics
During enrollment, although trying to meet the similarity
between the ALS and control groups in sex, age, and education,
paired enrollment was still not strictly performed. Therefore,
when comparing the clinical characteristics between the ALS
and control groups, the chi-square test was used for sex. For
age and education factors, t-tests were used when the variables
were normally distributed, and Mann–Whitney U tests were used
when the variables were not normally distributed. Multivariate
analysis of covariance (MANCOVA) was used to compare the
differences in thalamic and hypothalamic volumes between
patients with ALS and controls. During the univariate analysis,
when studying the relationship between brain volumes and
age, years of education, duration of illness, revised functional
rating scale (FRS-R) scores and life span, Pearson correlations
were used when the data were continuous, normally distributed
and had a linear relationship; otherwise, Spearman correlations
were performed. When studying the relationship between brain

volumes and sex, bulbar involvement and disease stage, t-tests
were used when the variables were normally distributed, and
Mann–Whitney U tests were used when the variables were not
normally distributed. ANOVA was used to compare the brain
volumes among different diagnostic levels. Then, multivariable
linear regression analysis was used. The standard statistical
significance level was set at p < 0.05. IBM SPSS V20 software was
used for all statistical analyses.

RESULTS

Comparisons of Thalamic Volume
Between Patients With Amyotrophic
Lateral Sclerosis and Healthy Controls
Multivariate analysis of covariance was used, in which volumes in
the left thalamus and right thalamus were set as two dependent
variables; patients with ALS or healthy controls were set as
independent variables; and whole-brain volume, age, sex, and
education years were set as covariates. The volumes were
normally distributed. The patients with ALS and controls were
two independent groups. There was homogeneity of variance-
covariance matrices assessed using Box’s M test of equality
of covariance (F = 1.249, p = 0.290). However, there was
no significant difference between the ALS and control groups
(F = 1.311, p = 0.287). Descriptive measures of brain volumes
were listed in Supplementary Table 1.

Comparisons of Hypothalamic Volume
Between Patients With Amyotrophic
Lateral Sclerosis and Healthy Controls
Multivariate analysis of covariance was used, in which volumes
in the left hypothalamus and right hypothalamus were set as
two dependent variables; The patients with ALS or healthy
controls were set as independent variables; and whole-brain
volume, age, sex, and education years were set as covariates. The
volumes were normally distributed. The patients with ALS and
controls were two independent groups. There was homogeneity
of variance-covariance matrices assessed using Box’s M test of
equality of covariance (F = 2.533, p = 0.055). However, there
was no significant difference between the ALS and control groups
(F = 1.647, p = 0.213). Descriptive measures of brain volumes are
listed in Supplementary Table 1.

Thalamic and Hypothalamic Volumes
and Clinical Characteristics
Univariate analysis was first used to choose possible variants for
multivariable linear regression analysis. Variants with p < 0.1
were chosen (Table 2). Descriptive measures of categorical
variables, such as disease stages, sex, and bulbar involvement, are
listed in Supplementary Table 2.

Multivariable linear regression analysis was separately
performed with bilateral thalamic and hypothalamic volumes
as the dependent variables and whole-brain volume and factors
chosen above as the independent variables. The results are
shown in Tables 3, 4. However, after Bonferroni correction
(p < 0.0125), left and right hypothalamic volumes were
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TABLE 2 | Univariate analysis of brain volumes and clinical characteristics.

Left thalamus Right thalamus Left hypothalamus Right hypothalamus

Age (r, p) −0.54, 0.03 −0.61, 0.01 0.17, 0.54 0.21, 0.44
Sex (t, p) 0.21, 0.84 0.17, 0.87 1.92, 0.08 1.93, 0.08
Years of education (r, p) 0.45, 0.08 0.41, 0.12 0.27, 0.31 0.37, 0.15
Duration of illness (r, p) −0.07, 0.79 −0.08, 0.76 −0.20, 0.46 −0.23, 0.39
Bulbar involved (t, p) 0.59, 0.57 0.68, 0.51 0.80, 0.44 0.38, 0.71
Diagnostic level (F, p) 2.54, 0.11 2.07, 0.16 2.30, 0.13 2.46, 0.11
Disease stage (t, p) 0.35, 0.73 0.01, 0.99 2.16, 0.05 2.22, 0.04
ALSFRS-R score (r, p) −0.07, 0.79 −0.13, 0.64 0.28, 0.29 0.07, 0.79
Life span (r, p) 0.12, 0.78 0.02, 0.95 0.25, 0.55 −0.17, 0.69

Factors with p < 0.1 were chosen as variants for multiple linear regression.

TABLE 3 | Multiple linear regression of brain volumes and clinical characteristics in ALS.

Left thalamus Right thalamus Left hypothalamus Right hypothalamus

Regression model (R2) 0.63 0.56 0.70 0.66

Regression model (F, p) 6.70, 0.007* 5.11, 0.017* 6.34, 0.007* 5.30, 0.013*

Age (t,p) 2.76, 0.017* 2.83, 0.015* 1.70, 0.117 0.93, 0.374

Whole-brain volume (t, p) 2.21, 0.047* 1.64, 0.127 3.19, 0.009* 3.03, 0.011*

Education year (t, p) 1.12, 0.283 0.69, 0.502 – –

Sex (t, p) – – 0.35, 0.731 0.55, 0.591

Disease stage (t, p) – – 0.24, 0.813 0.21, 0.835

Four multiple linear regression models were separately made for patients with ALS, *p < 0.05.

TABLE 4 | Multiple linear regression of brain volumes and clinical characteristics in controls.

Left thalamus Right thalamus Left hypothalamus Right hypothalamus

Regression model (R2) 0.70 0.73 0.73 0.48

Regression model (F, p) 9.42, 0.002* 10.91, 0.001* 10.60, 0.001* 3.65, 0.045*

Age (t, p) 2.44, 0.031* 2.65, 0.021* 1.05, 0.316 0.67, 0.519

Whole-brain volume (t, p) 4.26, 0.001* 4.52, 0.001* 2.31, 0.040* 1.93, 0.078

Education year (t, p) 0.59, 0.569 0.76, 0.460 – –

Sex (t, p) – – 3.00, 0.011* 1.17, 0.265

Four multiple linear regression models were separately made for controls, *p < 0.05.

correlated with whole-brain volume in the patients with ALS,
while the correlation between age and bilateral thalamic volumes
tended to be significant. In the control group, left and right
thalamic volumes were correlated with whole-brain volume, and
sex was correlated with left hypothalamus volume.

Validation of the Automatic
Segmentation of the Thalamus
Validation of the automatic segmentation of the thalamus
was conducted by comparing the automatically generated

TABLE 5 | Validation of the automatic segmentations of thalamus and
hypothalamus.

Brain region Mean dice Min-max

Left thalamus 0.998 0.990–1.000

Right thalamus 0.999 0.986–1.000

Left hypothalamus 0.995 0.958–1.000

Right hypothalamus 0.994 0.967–1.000

segmentation labels with the corrected labels manually
performed based on the automatic results. The dice similarity
coefficient (range: 0–1) was used as the metric of segmentation
accuracy (Table 5).

DISCUSSION

In this study, hypothalamic volume was not different (F = 1.65,
p = 0.213) between the patients with ALS and healthy
controls after adjusting for age, sex, education year, and whole-
brain volume. Although relatively few studies have reported
hypothalamic volume in patients with ALS, Cykowski and
Nakamura found pathological changes in ALS autopsy (Cykowski
et al., 2014; Nakamura et al., 2015), and Gorges found
hypothalamic atrophy in patients with ALS (Gorges et al., 2017).
The probable reasons for the negative result in this study include
the following: (1) the study did not include subregional analysis
of the hypothalamus, which might have covered some potential
significance; (2) the sensitivity of AccuBrain R© software: Although
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the study provided a comparison with post-segmentation manual
correction, it was not comparable to validation studies of
alternative software (Wolff et al., 2018; Billot et al., 2020); and (3)
the sample of this study was small, which might have affected the
accuracy of the analyses.

Thalamic volume was also not different (F = 1.31, p = 0.287)
between the patients with ALS and healthy controls after
adjusting for age, sex, education year, and whole-brain volume
in this study. There were actually more reports of thalamic
atrophy than hypothalamic atrophy in the patients with ALS
(Douaud et al., 2011; Sharma et al., 2011, 2013; Machts et al.,
2015; Westeneng et al., 2016; Christidi et al., 2018; Chipika
et al., 2020), although this study did not show a difference.
In addition to the probable reasons listed as hypothalamic
volume, thalamic atrophy was most commonly reported in the
patients with ALS who also had frontotemporal dysfunctions
(Machts et al., 2015; Westeneng et al., 2016; Christidi et al.,
2018). Other studies did not mention cognitive function
(Douaud et al., 2011; Sharma et al., 2011, 2013). Patients with
normal cognitive function have seldom been reported. Since
the cognition of this group of the patients with ALS was
normal, we hypothesize that thalamic atrophy in the patients
with ALS may be more related to frontotemporal dysfunction and
needs further study.

Age is commonly recognized to have a negative correlation
with brain volumes. However, although there were trends of
significance between age and thalamic volume, there were no
significant differences between age and hypothalamic volume
in either the patients with ALS or controls. Gorges’s (Gorges
et al., 2017) study found that the age at the onset was
correlated with anterior hypothalamic volume but not with
total or posterior hypothalamic volumes. Our study did not
divide the hypothalamus into anterior and posterior parts; thus,
it is unknown whether any subregional differences exist. It
is also worth noting that, unlike the thalamus, hypothalamic
volume was not correlated with whole-brain volume in healthy
controls but was significantly correlated in the patients with
ALS. Thus, we speculate that hypothalamic volume may be
a potential age-independent biomarker for ALS. Additionally,
hypothalamic volume was not correlated with the disease stage.
These characteristics suggest that further in-depth investigation
is required to determine the structural and functional roles of
the hypothalamus.

Generally, there are some limitations of this study. First, the
sample size was small, which may have affected the accuracy
of the analyses, and the results need confirmation in further
large-sample studies. Second, we did not divide subregions
of the thalamus and hypothalamus, which may have different
brain network connections. Third, we used the AccuBrain R©

technique to analyze thalamic and hypothalamic volumes. The
software is commercial and inaccessible to other researchers;
therefore, it is not easy to replicate by fellow colleagues.
As our study did not provide commonly accepted measures
but only a comparison with the post-segmentation manual
correction, it is not comparable to validation studies assessing
alternative software. For future work, it will be important to
compare volumes by using these different sensitive techniques

to confirm the results. Much work remains to be done for
automated thalamus and hypothalamus volumetry, requiring
larger sample sizes to compensate for the measurement errors
and to provide a deeper understanding of the role of the thalamus
and hypothalamus.

CONCLUSION

Thalamic and hypothalamic volumes did not show differences
between the patients with normal frontotemporal function ALS
and healthy controls, but further studies are needed.
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