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Many intricate pathways contribute to the timely control of gene

expression during development. Polycomb repressive

complexes (PRC1 and PRC2) and long non-coding RNAs

(lncRNAs) are players associated with gene repression in

various developmental processes such as X chromosome

inactivation (XCI) and genomic imprinting. Historically, lncRNAs

were proposed to directly recruit PRC2. However, recent

evidence suggests that promiscuous interactions between

PRC2 and RNA fine-tune the function of the complex through a

multiplicity of mechanisms. A PRC2-recruitment model was

definitively overturned in the paradigm of XCI by Xist RNA,

being replaced by a novel mechanism which puts PRC1 in the

spotlight. This review focuses on these recent advances in

understanding the interplay between RNA and Polycomb

complexes for gene expression control.
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Introduction
The Polycomb family of genes was first identified in the

1980s in relation to their role in the maintenance of Hox
gene silencing in specific segments of the Drosophila
body plan during development (reviewed in Ref. [1]).

Extensive biochemical and genetic experiments contrib-

uted to the identification and characterisation of Poly-

comb group (PcG) proteins in Drosophila as well as many

homologues in mammals. PcG proteins form catalytically

active complexes generally divided in two subgroups:

Polycomb repressive complex 1 (PRC1) which catalyses

H2AK119ub1, and Polycomb repressive complex 2

(PRC2) which methylates lysine 27 of histone H3

(H3K27me1/2/3) (reviewed in Ref. [2,3]). Besides its

catalytic activity, PRC1 affects 3D chromatin structure

in the nucleus (reviewed in Ref. [4]). Because of the

dynamic nature of chromatin changes mediated by
www.sciencedirect.com 
PRC1 and PRC2, timely regulation of Polycomb-medi-

ated repression is fundamental to proper embryonic

development.

The diversity of subunits of PRC1 and PRC2 present in

mammals results in a wide variety of multimeric com-

plexes (Figure 1) with consequences regarding structure,

recruitment mechanisms, dynamics and function in the

cell. ChIP-sequencing (ChIP-seq) experiments of Poly-

comb core components (RING1B and SUZ12) show their

enrichment over CpG island promoters of developmen-

tally regulated genes [5]. Given that unveiling the com-

position of all PcG protein complex variants is still a work

in progress [2,3] and that marks of Polycomb activity (in

this case, H2AK119ub1 and H3K27me1/2) are present

outside of the complexes’ genomic targets identified by

ChIP-seq [6,7], it has been challenging to establish a

model to fully explain the intricacies of Polycomb recruit-

ment genome-wide.

Much of the mammalian genome is transcribed into non-

coding forms of RNA, such as long non-coding RNAs

(lncRNAs) which have diverse cellular functions

(reviewed in Ref. [8]). The correlation between the

presence of the PRC2 mark — H3K27me3 — with the

expression of lncRNAs with known functions in develop-

mental processes, such as X chromosome inactivation [9]

and genomic imprinting [10,11], led researchers to inves-

tigate binding to RNA as a mechanism of Polycomb

recruitment. In this review we describe how the field

has switched from the idea of direct PRC2 recruitment by

RNA to a model by which RNA binding contributes to

local fine-tuning of PRC2 function by multiple mecha-

nisms. We emphasise a newly described mechanism that

involves RNA-mediated PRC1 recruitment through an

adaptor protein, hnRNPK, in the context of X chromo-

some inactivation by the lncRNA Xist as well as in RNA-

mediated genomic imprinting.

PRC2 interaction with RNA regulates its
function rather than its recruitment
At the beginning of the century, increasing interest in the

function of lncRNAs in parallel with an inability to fully

explain Polycomb targeting to chromatin led several

research groups to investigate if these two could somehow

be linked. The hypothesis that lncRNAs could contribute

to Polycomb recruitment seemed plausible since phenom-

ena like X chromosomeinactivation,which isdependenton

the expression of lncRNA Xist [12], or genomic imprinting,

which requires the expression of specific lncRNAs like

Kcnq1ot1 in cis [13], were shown to be defective in mice

lacking the core PRC2 component EED. The majority of
Current Opinion in Genetics & Development 2020, 61:53–61
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Figure 1
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Polycomb repressive complexes subunits, recruitment mechanisms and catalytic activity in mammals.

(a) PRC1 complexes are subdivided into canonical and non-canonical PRC1. Canonical PRC1 is characterised by the presence of one CBX

protein (CBX2/4/6/7/8) that recognises H3K27me3 deposited by PRC2 and mediates recruitment of the complex and a PHC protein (PHC1/2/3),

which dimerises and promotes chromatin folding. In this subtype of PRC1 complex, PCGF2 and PCGF4 bind in a mutually exclusive way to

RING1A/B. Canonical PRC1 has residual catalytic activity (as represented by the dashed arrow). Non-canonical PRC1 complexes are the most

catalytic active and deposit H2AK119ub1 at target genes (represented by full arrows). They are characterised by the presence of RYBP/YAF2

which are able to recognise the H2AK119ub1 mark and promote a positive feedback loop for reinforcement of non-canonical PRC1 recruitment.

Non-canonical PRC1 complexes contain one of six PCGF proteins (PCGF1-6), some of which determine recruitment to specific targets due to

interaction with other components like transcription factors (represented in grey).

(b) PRC2 complexes are subdivided into PRC2.1 and PRC2.2 subtypes. Both subtypes share the same core components: EZH1/EZH2, the

subunit that catalyses H3K27me3 deposition (as represented by the full arrows), EED which recognises H3K27me3 contributing to the propagation

of PRC2 and reinforcement of its own mark (represented on the left), SUZ12, a vital structural component, and the subunit RBBP4/7. PRC2.1

includes the substoichiometric components PCL1/2/3, which are able to bind directly to CG-rich DNA and promote recruitment of this PRC2

subtype to target regions, and the mutually exclusive subunits EPOP and PALI1/2, which modulate its catalytic activity. PRC2.2 includes the

substoichiometric components AEBP2 and JARID2, which also impact the catalytic activity of the complex. JARID2 is able to recognise the

H2AK119ub1 mark deposited by PRC1 and this serves as a mechanism of recruitment for the PRC2.2 subtype.
early studies focused on demonstrating if theseRNAscould

directly recruit PRC2 to chromatin to promote gene silenc-

ing, reflecting the widely held view that PRC2 functions

upstream of PRC1. These reports, together with work on
Current Opinion in Genetics & Development 2020, 61:53–61 
HOTAIRRNA, a classical exampleofanRNAthatcontrols

transcription in trans [14], and many others (reviewed in

Ref. [15]), made use of in vitro RNA binding assays and/or

RNA-immunoprecipitation (RIP) assays to demonstrate
www.sciencedirect.com



Polycomb-RNA interplay to regulate gene silencing Almeida, Bowness and Brockdorff 55
apparently specific interactions between defined lncRNAs

and PRC2 subunits (specifically, EZH2 [16,17], SUZ12

[18,19] and the substoichiometric subunit JARID2 [20]). A

few examples of PRC1 direct binding to RNA mediated by

CBX7 were also published [21,22] but these have not been

extensively revisited [23] and its biological role remains

unclear.

In the X inactivation field it was initially proposed that

PRC2 is recruited by direct interaction with Xist/RepA

[24,25��]. Subsequent observations challenged this

(reviewed in Ref. [26]) and indeed an alternative mecha-

nism has now been demonstrated (see below), yet the

ability of PRC2 to bind RNA was confirmed in several

later studies [17,19,20,27–29]. Resolution of this discrep-

ancy has come from the recognition that PRC2 subunits

interact promiscuously with RNA, including lncRNAs,

short RNAs transcribed from the 5’ end of Polycomb

target genes, and mRNA produced from active genes [29].

These observations deriving from EZH2 RIP-seq
Figure 2
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experiments were further corroborated by in vitro experi-

ments that were central in showing that PRC2 binds to

RNA promiscuously with different affinities depending

on RNA length, sequence and structure [24,25��,29,30��].
PRC2 has high affinity for G-rich RNA, particularly when

forming G-quadruplex structures (Figure 2), but it also

has the ability to bind to other RNAs (like the stem loop

structure of Xist/RepA) and even bacterial RNA [25��].

Several studies have recently explored the role of this

promiscuous PRC2-RNA interaction. Importantly, these

mechanisms are not mutually exclusive and probably

cooperate to fine-tune PRC2 function in the cell.

RNA can inhibit the methyltransferase activity of PRC2

[31,32] by binding to a regulatory allosteric site in

proximity to the catalytic centre [33��]. It is possible that

RNA inhibition of the complex functions to prevent

H3K27me3 deposition during chromatin scanning by

PRC2, which may itself be facilitated by RNA binding
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ting PRC2 function.

the sequence and folding of the RNA: G-quadruplex structures have

 an intermediate binding affinity (contrary to A-rich RNA which binds

re able to compete with PRC2 binding to chromatin, resulting in its

n also directly inhibit its catalytic activity.

 target genes. Enrichment of EPOP-PRC2.1 and/or transcription keeps

lation of H3K27me3 and complete gene silencing.

adation by a nuclear RNA exosome-mediated pathway leads to
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[29]. RNA inhibition of PRC2 can be relieved by

pre-existing H3K27me3 or JARID2 methylation, at least

in vitro [33��], thus these may act as cues at specific sites

leading to H3K27me3 deposition/propagation and gene

silencing. Other mechanisms of PRC2 recruitment

specific for each complex subtype, such as DNA binding

by PRC2.1 [34] and H2AK119ub1 binding by PRC2.2

[35,36] (Figure 1), may also change the dynamics and

local catalytic activity of the core PRC2 complex, but the

ability of these to counteract RNA inhibition has not yet

been tested.

Another observation is that RNA competes with DNA/

chromatin for PRC2 binding [37,38], and in tethering experi-

ments G-quadruplex-containing RNA displaces the com-

plex leadingtoa localdecreaseofH3K27me3withoutalways

reactivating transcription [30��]. In this situation, gene acti-

vation is context dependent [30��], therefore suggesting that

PRC2 displacement from chromatin by RNA binding might

provide the opportunity for changes in gene expression

during development or disease.

Proper localisation of PRC2 complexes to target genes

collectively requires PRC2 substoichiometric subunits

[39,40]. It is plausible that this is affected by associations

with RNA. For example, the PRC2.1 subunit EPOP

interacts with Elongin BC to sustain low levels of expres-

sion at target genes, which counterbalances complete

silencing by overaccumulation of PRC2.2 (Figure 2)

[41,42]. Notably, EPOP is mutually exclusive with

another PRC2.1 subunit, PALI1/2, and their respective

knockouts yield opposite results regarding H3K27me3

deposition [42,43]. Thus, transcripts produced at EPOP-

containing PRC2.1 sites may directly regulate this

balance between PRC2.1 and PRC2.2 complexes on

chromatin to result in different gene expression out-

comes, although this has not been directly investigated.

More recently, two independent publications suggested

that complexes involved in RNA processing and degra-

dation, namely the rixosome (aka 5FMC complex) [44]

and the nuclear RNA exosome [45�], can impact on

Polycomb-mediated silencing through distinct mecha-

nisms. In the latter, the authors found that disruption

of the nuclear RNA exosome pathway leads to accumu-

lation of pA+ nuclear RNA, resulting in impaired PRC2

binding to chromatin and destabilisation of the complex

itself (Figure 2) [45�].

Taken together, recent evidence argues against the idea

that RNA binding contributes to PRC2 recruitment.

Instead, RNA binding to PRC2 fine tunes its activity,

keeping PRC2 poised and in check as previously

proposed [15,32]. This does not rule out that some

lncRNAs might promote Polycomb recruitment to target

genes, but this is most likely mediated by different

mechanisms (see below).
Current Opinion in Genetics & Development 2020, 61:53–61 
A new mechanism for RNA-mediated
Polycomb recruitment in X chromosome
inactivation and imprinted genomic regions
The recruitment of Polycomb complexes and their

respective post-translational histone modifications are

hallmarks of X chromosome inactivation (XCI) seen to

occur rapidly in response to Xist RNA expression.

Alongside other integral pathways [46�,47–50], the

interplay between Xist RNA and Polycomb is a key

aspect of XCI in cellular and in vivo models and a

paradigm for functional associations between Polycomb

and lncRNA. After years of debate, there is an emerging

consensus of how Xist RNA recruits Polycomb through a

mechanism that seems to be common to other lncRNAs.

As noted above, early models for Xist-mediated

Polycomb recruitment invoked a direct interaction of

the PRC2 subunit EZH2 with the A-repeat element of

Xist RNA [51], leading to PRC1 recruitment via the

classical pathway of H3K27me3 recognition by CBX.

Key findings that undermined this model were that Xist

A-repeat deletion abolishes gene silencing but not

Polycomb recruitment [52,53], and that PRC1 can be

recruited by Xist in the absence of PRC2 [54,55]. Further

studies applying RNA-pulldown proteomics [47,50] and

super resolution microscopy [56] argued against a specific

interaction between PRC2 and Xist RNA, and moreover

found evidence for a closer association with non-canonical

PRC1 subunits. The discovery of novel mechanisms of

PRC2 recruitment at classical CpG island promoter

sites also offered alternative pathways relevant in X

inactivation [35,36].

A series of studies, using a variety of models and techniques

(Table 1), have now revealed key details of the Polycomb

recruitment pathway by Xist. The region of Xist RNA

strictly required for recruitment of PRC1 and consequently

PRC2 (see below) lies within the historical XN region

[53,57��], notably distinct from the A-repeat, and encom-

passes a core �0.3 kb B-repeat sequence and the proximal

C-repeat. This region is bound by hnRNPK [58��,59�,60], a

nuclear-matrix associated protein with affinity for triplicate

CCC-motifs [61] which are highly enriched within the

B-repeat region (Figure 3). Loss of function experiments

demonstrated a role for hnRNPK in Polycomb recruitment

by Xist RNA [47,58��,59�].

A landmark study showed a strict requirement for PRC1

upstream of PRC2 redefining the hierarchy of Polycomb

complexrecruitment inXCIandmoreoverdefinedakeyrole

for the non-canonical PCFG3/5-PRC1 complex [57��]. The

newly proposed model postulates that Xist/hnRNPK

interacting  with PCGF3/5-PRC1 is the first event of a

cascade leading to Polycomb enrichment on the inactive

X chromosome (Xi) [57��,58��]. PCGF3/5-PRC1 catalytic

activity then establishes positive feedback loops involving

recruitment of other non-canonical PRC1 complexes, PRC2
www.sciencedirect.com
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Table 1

Recent studies converge upon B/C-repeats of Xist and hnRNPK as central players in Xist-dependent Polycomb recruitment

Model(s)
Xist sequence
for Polycomb 
recruitment

 Effect on 
gene silencing

Iden�fica�on
of hnRNPK

Effect of
hnRNPK KD

Nesterova et al., 
2019 [46•]

XX mESCs with 
inducible Xist n/a n/a

B-repeat 
+ partial C-repeat

(1.1kb)

Moderate defect after 
one day of ΔB/C Xist induction 
in mESCs or six days of  ΔB/C  
Xist induction with differentiation

Bousard et al., 
2019 [60]

XY mESCs with 
inducible Xist n/a

B-repeat 
+ total C-repeat

(2kb) 

Little defect 
after two days of 

ΔB/C Xist induction 
with differentiation

ChIRP-MS comparison 
of full length versus ∆B/C 

Xist RNA

Almeida et al., 
2017 [57•• ]

XY mESCs with 
autosomal Xist 

transgene

XN region: 
F-repeat, B-repeat  

and C-repeat regions
(3.8kb)

Defect after three days of 
Xist induction 

in Pcgf3/5 knockout mESCs
compared to Pcgf5 knockout 

n/a n/a

Pintacuda et al., 
2017 [58•• ]

XY mESCs with 
autosomal Xist 

transgene

B-repeat 
+ partial C-repeat

(0.6kb) 

Defect 
after three days of 
ΔB/C Xist induction

Quantitative MS
comparison of binding to 

in vitro transcribed 
A versus B/C repeat 

sequences

Reduced H2AK119ub1 
enrichment after one day 

of Xist induction 

Colognori et al., 
2019 [59•]

Tetraploid MEFs 
and 

XX mESCs 

B-repeat only
(0.3kb) 

LC-MS/MS of 
aptamer-tagged 
B-repeat RNA, 

 EMSA confirming 
interaction in vitro 

No defect in ΔB/C MEFs, 
major defect after 

fourteen days of ΔB/C 
mESC differentiation

Loss of Xi enrichment 
in MEFs after two days 

(H2AK119ub1) or six days 
(H3K27me3) of RNAi

Schertzer et al., 
2019 [70•• ]

Trophoblast 
stem cells 

(imprinted XCI)
n/a n/a n/a

Reduced enrichment 
of H3K27me3 

on ChrX and other 
lncRNA-imprinted regions

Publica�on

mESC= mouse embryonic stem cells; MEF= mouse embryonic fibroblasts; MS=mass spectometry; ChIRP-MS= comprehensive identification of RNA-binding proteins by MS; LC= liquid 
chromatography; EMSA= electrophoretic mobility assay

Chu et al., 
2015 [47]

XY mESCs with 
autosomal Xist 

transgene
n/a n/a Xist CHIRP-MS 

in mESCs

Reduced H3K27me3/
H2AK119ub1 enrichment 
and gene silencing after 
four days of Xist induction

da Rocha et al., 
2014 [52] 

XY mESCs with Xist 
transgene targeted to

the Hprt locus

XN region: 
F-repeat, B-repeat 

and C-repeat regions
(3.8kb)

No defect in gene silencing by 
RNA-FISH after four days of ΔXN  
Xist induction and similar to WT 
in cell survival assay (five days) 

n/a n/a

mESC, mouse embryonic stem cells; MEF, mouse embryonic fibroblasts; MS, mass spectrometry; ChIRP-MS, comprehensive identification of RNA-

binding proteins by MS; LC, liquid chromatography; EMSA, electrophoretic mobility shift assay.
and consequently canonical PRC1 (Figure 3). If any of these

downstream feedback pathways is ablated before Xist RNA

induction Polycomb enrichment is reduced but not abol-

ished [36,57��]. Recent studies employing ChIP-seq to map

gainofPolycomb-associatedhistonemodificationsuponXist

expression have confirmed this model quantitatively [46�]
and have shown that deposition of H2AK119ub1 dynami-

cally precedes H3K27me3 [62]. Initial Polycomb deposition

occursacross theentirechromosome,but ismostprevalent in

intergenic regions, consistent with the observation that

PCGF3/5-PRC1 normally targets chromatin pervasively to

generate low level H2AK119ub1 deposition genome-wide

[7,46�,62]. Further biochemistry [58��], superresolution

microscopy [57��], and proteomics experiments [47,60] have

also confirmed a close association between PCGF3/5-PRC1

complexes and hnRNPK/Xist.
www.sciencedirect.com 
Recent experiments in PRC1 (RING1A/B) knockout fibro-

blasts, in which XCI is already established, show a reduction

but not erasure of H3K27me3 domains [59�]. This observa-

tion may appear contradictory to the model; however, can

plausibly be explained by PRC2 feedback and the propaga-

tion of H3K27me3 through cell divisions, both of which are

well documented [63–65]. Likewise, the marginal accumu-

lation of H3K27me3 over gene promoters visible by ChIP-

seq after Xist induction  in PRC1 or B/C-repeat mutants

[46�,60] can be attributed  to increased PRC2 activity in

genomic regions where it is naturally targeted (i.e. CpG

islands), facilitated by transcriptional silencing or the

removal of active chromatin modifications at these sites [66].

From RNA-sequencing it has also become clear that in

cellular models of Xist-induced gene repression the
Current Opinion in Genetics & Development 2020, 61:53–61
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Figure 3
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Model illustrating Polycomb recruitment by Xist lncRNA.

Expression of the lncRNA Xist promotes enrichment of all subtypes of Polycomb complexes on the inactive X chromosome. This is mediated by

the direct interaction between the B/C-repeat region of the RNA and a nuclear matrix protein, hnRNPK, which specifically engages PCGF3/5-

PRC1 complexes. Downstream of initial PCGF3/5-PRC1 catalytic activity, self-reinforcing loops of recruitment acting through the recognition

mechanisms represented in Figure 1 involve all non-canonical PRC1 complexes (via RYBP binding H2AK119ub1), PRC2 (via JARID2 binding

H2AK119ub1) and canonical PRC1 (via CBX binding H3K27me3 deposited by PRC2).
functional effect of Polycomb removal is significant but

not absolute (Table 1) [46�,57��,58��,59�,60]. Notably, in

initial silencing PRC1 appears more important than PRC2

[46�], whose role may be limited to later stages of XCI in

differentiation or extraembryonic lineages [67]. A recent

study has shown that PRC1/H2AK119ub1 is required for

the recruitment of the chromosomal protein SMCHD1,

which may account, at least in part for its activity in gene

silencing [68].

It is well-documented that initial gain of Polycomb

modifications correlates with Xist spreading over the Xi

[52,69], and occurs predominantly in intergenic domains

[46�,62] or near CpG islands [70��] pre-marked by Poly-

comb. An emerging concept is that in addition to Xist

recruiting Polycomb, Polycomb may also play a role in

targeting Xist RNA to sites on chromatin, in conjunction

with other known localisation/anchoring factors [71]. One

report observed defective Xist chromatin association and

spreading upon knockout of Ring1A/B, Eed or deletion of

Xist B-repeat region [59�]. These observations fit with

other proposed models for Xist and imprinted lncRNAs

[70��,72], although further studies will be important to

unveil the mechanism by which Polycomb contributes to

lncRNA spreading over chromatin.
Current Opinion in Genetics & Development 2020, 61:53–61 
The emergence of the new model for recruitment of

Polycomb by Xist RNA has led to silencing mechanisms

downstream of other lncRNAs previously reported to

functionally interact with PRC2 being revisited. One

recent example profiled accumulation of Polycomb over

Mb-long genomic imprinted regions controlled in cis by

two lncRNAs paternally expressed in trophoblast stem

cells, Airn and Kncq1ot1 [70��]. Of note, hnRNPK

strongly binds both RNAs, and hnRNPK knockdown

significantly reduced Polycomb accumulation over

its targets [70��], implying that the mechanism of

recruitment characterised for Xist may be generalisable

to other lncRNAs.

Conclusion
In recent years the model for Polycomb recruitment by

RNA has been overturned, with roles for PRC1 and

hnRNPK emerging as key determinants. Consideration

of this mechanism may be useful for redefining other

previously reported functional interactions between

lncRNAs and Polycomb. One such example is HOTAIR,

where a recent study which tethered HOTAIR to a

reporter found that PRC2 deletion had no effect on its

ability to mediate transcriptional silencing [73]. However,

PRC1 has not been similarly tested.
www.sciencedirect.com
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Although RNA does not seem to directly recruit PRC2,

there is evidence to support a function for RNA in

regulating PRC2 activity. Future work will need to

establish how these RNA-associated mechanisms are

integrated with others, such as H2AK119ub1 and DNA

binding, to establish appropriate Polycomb repression

during development.
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