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Abstract
The tumor microenvironment (TME) plays an important role in the occurrence and development of soft tissue sarcoma (STS). A
number of studies have shown that to inhibit tumor growth, the TME can be remodeled into an environment unsuitable for tumor
proliferation. However, a lack of understanding exists regarding the dynamic regulation of TME.
In this study, we used CIBERSORT and ESTIMATE calculation methods from the Cancer Genome Atlas (TCGA) database to

calculate the proportion of tumor infiltrating immune cells (TICs) and the number of immune and stromal components in 263 STS
samples. Differential expression genes (DEGs) shared by Immune Score and Stromal Score were obtained via difference analysis.
Univariate Cox regression analysis and construction of protein–protein interaction (PPI) networks were applied to the DEGs.
Through intersection analysis of univariate COX and PPI, PLCG2 was determined as the indicator. Further analysis showed that

PLCG2 expression was positively correlated with the survival of STS patients. Gene set enrichment analysis (GSEA) showed that
genes in the highly expressed PLCG2 group were enriched in immune-related activities. In the low-expression PLCG2 group, genes
were enriched in the E2F, G2M, and MYC pathways. Difference analysis and correlation analysis showed that CD8+ T cells, gamma
delta T cells, monocytes, and M1 macrophages were positively correlated with PLCG2 expression, indicating that PLCG2 may
represent the immune status of TME.
Therefore, the level of PLCG2 may aid in determining the prognosis of STS patients, especially the status of TME. These data

provide additional insights into the remodeling of TME.

Abbreviations: DAG = diacylglycerol, DEGs = differential expression genes, FDR = false discovery rate, GO = gene ontology,
GSEA = gene set enrichment analysis, IP3 = inositol 1, 4, 5-trisphosphate, KEGG = Kyoto Encyclopedia of Genes and Genomes,
LPS = lipopolysaccharide, OS = overall survival, PD-1 = programmed cell death-1, PGN = peptidoglycan, PIP2 =
phosphatidylinositol 4, 5-bisphosphate, PLC = phospholipase C, PPI = protein–protein interaction, STS = soft tissue sarcoma,
TCGA = the cancer genome atlas, TICs = tumor infiltrating immune cells, TME = tumor microenvironment.

Keywords: immune cells, prognosis, soft tissue sarcoma, the cancer genome atlas, tumor microenvironment, tumor
microenvironment remodeling
Editor: Sampurna Chatterjee.

ZL and LJ contributed equally to this work.

This work was financially supported by the Natural Science Foundation of China
(Grant No. 81660372) and Natural Science Foundation of Guangxi (Grant No.
AB19110030; Grant No. 2017GXNSFAA198159).

The datasets used and/or analyzed in the current study are available from the
corresponding author upon reasonable request.

The authors have no conflicts of interests to disclose.

The datasets generated during and/or analyzed during the current study are
publicly available.
a Guangxi Medical University, b Department of Bone and Joint Surgery, The First
Affiliated Hospital of Guangxi Medical University, Nanning, c Department of
Anesthesiology, The second Hospital of Anhui Medical University, Hefei, China.
∗
Correspondence: Gang Du, Department of Bone and Joint Surgery, The First

Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
(e-mail: 1730951693@qq.com).

Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc.
This is an open access article distributed under the Creative Commons
Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

How to cite this article: Li Z, Zhao R, Yang W, Li C, Huang J, Wen Z, Du G,
Jiang L. PLCG2 as a potential indicator of tumor microenvironment remodeling in
soft tissue sarcoma. Medicine 2021;100:11(e25008).

Received: 28 November 2020 / Received in final form: 27 January 2021 /
Accepted: 11 February 2021

http://dx.doi.org/10.1097/MD.0000000000025008

1

1. Introduction

Soft tissue sarcoma (STS) is a rare and heterogenous mesenchy-
mal neoplasm. It is estimated that there were 13,040 newly
diagnosed STS cases and 5150 deaths in the United States in
2018.[1] STS is a complex disease that includes more than 50
histological subtypes, which can occur throughout the body
including the limbs, trunk, and retroperitoneum.[2] Owing to the
diversity of STS, some patients exhibit obvious symptoms where
other cases are discovered unintentionally. Thus, imaging and
pathology play particularly important roles in the early diagnosis
of STS. Localized STS can be effectively treated with surgery.
However, some patients present with metastatic disease at initial
diagnosis; their median overall survival (OS) is 14months despite
comprehensive management.[3] Therefore, there is an urgent need
to explore the carcinogenesis and therapeutics of STS.
The tumor microenvironment (TME) is defined as the internal

and external environment in which tumor cells exist. It is
composed of surrounding blood vessels, other non-malignant
cells, the extracellular matrix, and signaling molecules. The TME
not only plays a pivotal role in tumorigenesis, progression, and
metastasis, but also has a significant effect on treatment
efficacy.[4–7] Stromal cells, as core members of the TME, facilitate
the proliferation of pancreatic cancer cells and build a barrier to
reduce the efficacy of chemotherapeutic drugs.[8] It is well known
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that the microenvironment is initially involved in curbing the
growth of the tumor and protecting the survival of normal cells.
However, as the tumor cells continue to proliferate, the
microenvironment is gradually transformed into a suitable
milieu for the survival of tumor cells. A growing body of studies
have shown that to inhibit tumor growth, the TME can be
remodeled into an unsuitable environment for tumor cell
proliferation.[9,10] At present, current therapies targeting the
TME are used in clinical practice such as angiogenesis inhibitors
and aromatase inhibitors (applied in breast cancer).[11] There-
fore, TME remolding may be crucial to effectively inhibiting STS
progression, However, there is relatively little research in this
area.
Tumor-infiltrating immune cells (TICs), which are the main

immune components in the TME, are immune cells that migrate
from the blood to the tumor tissues. Normally, immune cells
recognize and trap abnormal cells in the body. However, in the
TME, immune cells may instead aid tumor cells in escaping
immune surveillance. The struggle between cancer and immune
cells occurs in 3 stages: elimination, equilibrium, and es-
cape.[12,13] With deeper study of tumor immune mechanisms,
it has been found that TICs are closely correlated with clinical
outcomes and may therefore be used as a drug target to improve
patient survival.[14–16] For example, TICs in lung cancer may be
used to determine both prognosis and response to immuno-
therapies.[17] Therefore, determination of immune status in TME
may have an important impact on the prognosis and treatment of
tumor patients, and it may play a role in the remodeling of the
TME.
The aim of this study was to identify an indicator for the status

of the TME via bioinformatics analysis. In this study, we analyzed
differentially expressed genes (DEGs) generated via comparison
between immune components and stromal components in
STS samples from the Cancer Genome Atlas (TCGA).
Results revealed that PLCG2 may be a potential indicator of
TME remodeling and may be involved in curbing STS tumor
growth.

2. Material and methods

2.1. Raw data access

We downloaded transcriptome data and the corresponding
clinical data of STS patients from the TCGA database (http://
cancergenome.nih.gov/).
2.2. Generation of TME score

TheTMEscore of each samplewas generated using the“Estimate”
package in R software (version 4.0.0; https://www.r-project.org/).
We used 3 different scores (Stromal Score, Immune Score, and
Estimate Score) to represent the proportions of stromal cells,
immune cells, and the sumof these 2TMEcomponents. The higher
the score, the greater the amount in the TME.

2.3. TME component-related survival analysis

We divided 259 samples into a high-score subgroup and a low-
score group according to the median value of the 3 scores and
performed survival analysis. The survival curve was drawn using
the Kaplan–Meier method, and log-rank test was utilized to
determine statistical significance. A P< .05 was considered
statistically significant.
2

2.4. Correlation analysis of TME components and STS
patient gender

We performed correlation analysis to determine correlation
between the proportion of TME components and gender. A
P< .05 was considered statistically significant.
2.5. TME component-related difference analysis of gene
expression

We performed difference analysis for gene expression in the
stromal and immune components via the “limma” package in R.
The genes thatmet the requirement of jlogFCj>1 andhadaP value
<.05 (adjusted by false discovery rate [FDR]) were considered
differentially expressed.Genes thatwere differentially expressed in
the stromal and immune components were intersected to identify
the final differentially expressed genes (DEGs).
2.6. Functional enrichment analysis

Both gene ontology (GO) analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses were
used to investigate the impact of DEGs via the “clusterProfiler,”
“org.Hs.eg.db,” “enrichplot” and “ggplot2” packages in R.
2.7. PPI network establishment and key DEGs
identification

The STRING database (https://string-db.org/) was utilized to
identify protein interaction networks based on above DEGs
(interaction score=0.95), and the PPI network plot was drawn
using Cytoscape software (version 3.7.2; https://cytoscape.org/).
Node counts were used as evaluation criterion to identify 30 key
DEGs from the PPI network.

2.8. COX regression analysis

We performed univariate COX analysis among the DEGs via the
“survival” package in R. The resultant prognostic genes (P< .01)
were added into an intersection analysis with the key DEGs
chosen from the PPI network to identify the final key gene.
2.9. Gene set enrichment analysis (GSEA)

We utilized GSEA software (version 4.0.3; https://www.gsea-
msigdb.org/gsea/) in the Hallmark gene sets to investigate the
functional pathway in which the final key gene may be enriched.
Gene sets were considered significant only when their nominal
P value was <.05 and the FDR q value was <0.05.

2.10. Tumor infiltrate immune cell profile

Weassessed the relative quantity of immune cells in tumor samples
by applying CIBERSORT, a complete immune cell estimation
analysis algorithm. P< .05 suggested an accurate estimation.

3. Results

3.1. TME score generation and related survival analysis

The workflow of this study is shown in Figure 1. Based on the
transcriptome data from 263 STS samples (total samples: 265;
normal samples: 2; tumor samples: 263), we calculated the
proportions of TME components and applied 3 scores (Stromal
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Figure 1. Study workflow.
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Score, Immune Score, and Estimate Score) to represent the
proportions of stromal cells, immune cells, and the sum of the 2
components, respectively. The higher the score, the greater the
amount of the corresponding component in the TME. After the
263 samples were scored, theywere grouped by themean values of
the 3 scores. The results were then added to the survival analysis
from the STS patient survival data. K–M curves of the 3 survival
analyses are shown in Figure 2. The results of the log-rank test
indicated that both the Estimate Score (Fig. 2C) and the Immune
Score (Fig. 2A) considerably influenced theOSof patientswhile the
Stromal Score (Fig. 2B) did not. These results implied that immune
Figure 2. Correlation of scores with the survival of STS patients. (A) Survival analy
determined by comparison with themedian (P= .010). (B) Survival curve of Stromal S
soft tissue sarcoma.
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components in the TMEwere suitable for indicating the prognosis
of STSpatients. Interestingly, correlation analysis showed that all 3
scores were clearly related with the gender of STS patients. This
indicates that the above scores of male patients were significantly
different from those of the female patients (P< .05, Fig. 3A–C).

3.2. TME score-related gene expression difference analysis

The comparison between the high Stromal Score subgroup and
the low score group screened 999 upregulated genes and 1517
downregulated genes. Similarly, the difference analysis of the
sis of STS patients grouped into high or low score groups in Immune Score as
core with P= .068. (C) Survival analysis of Estimate Score with P= .0.13. STS=
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Figure 3. Correlation of Immune Score, Stromal Score, and Estimate Score with gender.

Li et al. Medicine (2021) 100:11 Medicine
high vs low Immune Score subgroups screened differentially
expressed genes, including 1065 upregulated genes and 1134
downregulated genes. A heatmap of the genes is shown in
Figure 4A, B. As shown by the Venn diagram (Fig. 4C, D),
difference analyses between the high and low score subgroups
from the Immune Score and Stromal Score subgroups also co-
identified 1508 differently expressed genes (DEGs).

3.3. Enrichment analysis

GO and KEGG enrichment analyses were used to investigate the
tumor-related mechanisms of the DEGs. Significant enrichment
Figure 4. Heatmaps, Venn plots, GO enrichment analysis, and KEGG of DEGs. (A
low score group in Immune Score and Stromal Score, respectively. (C, D) Venn plots
Score and Stromal Score. (E, F) GO and KEGG enrichment analysis of DEGs. D
Encyclopedia of Genes and Genomes.
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of DEGs in immune-related GO terms (i.e., leukocyte cell-cell
adhesion and T-cell activation) were observed (Fig. 4E). The
KEGG enrichment analysis illustrated that DEGs were abun-
dantly enriched in some well-known pathways that play
important roles in regulating cell proliferation, growth, and
differentiation, such as the Ras, MAPK, and calcium signaling
pathways (Fig. 4F). This suggests that DEGs play a role in
immune function. More detailed results are shown in the
supplementary materials. Thus, the overall function of the DEGs
were mapped to immune-related activities, implying that the
involvement of immune factors is a predominant feature of the
TME in STS.
, B) Heatmap of DEGs generated by comparison of the high score group vs the
showing common up-regulated and down-regulated DEGs shared by Immune
EGs = differentially expressed genes, GO = gene ontology, KEGG = Kyoto



Figure 5. Protein–protein interaction network and univariate COX regression analysis. (A) Interaction network constructed with the nodes from the interaction
confidence value >0.95. (B) The top 30 genes ordered by the number of nodes. (C) Univariate COX regression analysis with 1,508 DEGs (P< .01). (D) Venn plot
showing the common factors shared by 30 leading nodes in the PPI and top significant factors from the univariate COX regression.
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3.4. PPI network and univariate COX regression

Based on the 1508 DEGs, we constructed a protein–protein
interaction network (consisting of 285 nodes and 408 edges) and
a PPI plot (Fig. 5A) drawn using Cytoscape software. Genes that
contributed to the PPI were sorted by number of nodes, as shown
in Figure 5B. In addition, we performed univariate Cox
regression analysis (Table 1) using survival information from
the STS patients and identified 15 prognostic genes. The resultant
genes are displayed in Figure 5C. To further identify the key gene,
results of the 2 above analyses were intersected and ultimately,
the PLCG2 gene was selected (Venn diagram, Fig. 5D).

3.5. The correlation between PLCG2 expression and the
survival of STS patients

PLCG2 was selected for further research in this study. Survival
analysis of 261 patients was conducted by dividing the sample
into a high expression phenotype gene set and a low expression
gene set using the mean expression degree of PLCG2. Results
indicated that PLCG2 influenced the survival status of STS
patients (Fig. 6A). Our study showed that the expression level of
PLCG2 was significantly different in male and female patients
5

(Fig. 6B). The above results clearly indicate that the expression of
PLCG2 in the TME was positively correlated with the prognosis
of STS patients.

3.6. Gene set enrichment analysis (GSEA)

GSEA performed on the 2 groups (high PLCG2 expression and
low expression) showed that the genes in the PLCG2 high
expression group were mainly enriched in immune-related
pathway such as IL-2/STAT5 signaling pathway, IL-6/JAK/
STAT3 signaling pathway and interferon response (Fig. 7A). In
the PLCG2 low expression group, the genes were enriched in
E2F, G2M, and MYC function gene sets (Fig. 7B). These results
suggest that PLCG2 may be a potential indicator of TME status.

3.7. Tumor immune cell infiltration analysis

Using CIBERSORT, a complete immune cell estimation analysis
method, we assessed the proportions of 22 types of immune cells
in STS samples and provided a graphical view of the resultant
output profiles via Barplot and Heatmap (Fig. 8A, B). We also
performed difference analysis on the TICs between 2 groups (high

http://www.md-journal.com


Table 1

Univariate Cox regression analysis results.

Gene KM HR HR.95L HR.95H P value

PLCG2 0.00899 0.65859 0.49587 0.87470 .00391
APOL1 0.00789 0.99289 0.98791 0.99790 .00550
TMEM176B 0.00043 0.99524 0.99260 0.99788 .00042
MFNG 0.00605 0.91663 0.86495 0.97141 .00328
LYL1 0.00074 0.86906 0.79508 0.94994 .00199
TMEM176A 0.00026 0.98803 0.98073 0.99538 .00146
RIPK3 0.00133 0.66357 0.52657 0.83622 .00050
SERPING1 0.00021 0.99692 0.99502 0.99882 .00150
ARHGAP45 0.00755 0.94887 0.91222 0.98700 .00903
C1S 0.00246 0.99622 0.99365 0.99880 .00416
TMEM273 0.00658 0.83206 0.74443 0.93001 .00120
ADA2 0.00271 0.96117 0.93484 0.98824 .00520
DMRT1 0.00474 1.11982 1.04092 1.20471 .00239
ZNF730 0.00808 1.96557 1.31887 2.92935 .00090
GREM2 0.00017 0.91591 0.85938 0.97616 .00688

∗H = high, HR = hazard ratio, KM = Kaplan–Meier, L = low.
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PLCG2 expression group and low expression group); the results
are shown via violin plot (Fig. 9A). Then, correction analysis of
PLCG2 expression and TICs proportion was performed (Fig. 9B).
The results from the difference and correlation analyses showed
that a total of 6 types of TICs were correlated with the expression
of PLCG2 (Fig. 9C, Table 2). Among these, 4 types of TICs were
positively correlated with PLCG2 expression, including CD8+ T
cells, monocytes, M1 macrophages, and gamma delta T cells.
Additionally, 2 types of TICs were negatively correlated with
PLCG2 expression, resting NK cells andM0macrophages. These
results further support the hypothesis that PLCG2 level may
affect TME immune activity.

4. Discussion

The TME contains diverse cell types, which are important
components of tumor tissues and play an essential role in the
initiation and development of cancer. The cells and molecules
within the TME change dynamically, indicating tumor character-
istics and promoting immune escape, growth, andmetastasis.[18,19]
Figure 6. The correlation between PLCG2 expression and s
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A number of studies have shed light on the clinical significance of
the TME in the prediction of treatment efficacy and patient
prognosis.[20–22] In recent years, multiple drugs aimed at the TME
such as immune checkpoint inhibitors and angiogenesis inhibitors
have demonstrated remarkable efficacy in restraining the progres-
sion andmetastasis of tumors.[23,24] Likewise, exploration of TME
status and relevant therapies for STS has also made progress.
Studies have shown that the internal components of the TME can
change and that its status is transmitted by signaling pathways that
influence the efficacy of antineoplastic drugs such as programmed
cell death-1 (PD-1) inhibitors in STS.[25] In addition, recent studies
indicate that remodeling of the TME by immune checkpoint
inhibitors or adoptive cell transfer exhibited satisfactory effects in
reducing tumor progression and improving treatment outcomes in
some types of STS.[26,27] This evidence suggests that remodeling of
theTME inSTS isof clinical significance anddeserves further study.
To further understand the TME and its dynamic process in

STS, we identified an indicator of TME status that may be used to
predict the prognosis of STS patients. This indicator may also be a
therapeutic target that could be leveraged to convert the TME
urvival as well as gender characteristics of STS patients.



Figure 7. GSEA of samples with high and low PLCG2 expression. (A) The enriched gene sets in the HALLMARK collection for the high PLCG2 expression sample.
Only gene sets with NOM P< .05 and FDR q<0.06 were considered significant. Only the leading gene sets are displayed in the plot. (B) The enriched gene sets in
the HALLMARK collection from samples with low PLCG2 expression. (C) Enriched gene sets in the C7 collection, the immunologic gene sets, from samples with
high PLCG2 expression. Only the leading gene sets are shown in the plot. (D) Enriched gene sets in the C7 collection from the low PLCG2 expression group. Only
the leading gene sets are shown in the plot.
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status into 1 of tumor suppression. In our study, we identified the
TME-related genes that may be used to predict TME status by
performing relevant bioinformatics analyses using STS data from
the TCGA database.
We also calculated the proportions of TME components and

performed related survival analysis. The results indicated that
both the Estimate Score (P = .013) and the Immune Score
(P= .010) were significantly related to the OS of STS patients
while the Stromal Score (P= .068) was not. This implies that the
immune components of the TME are relevant to the prognosis of
STS patients and suitable as prognosis biomarkers. Previous
studies had proved that TICs have crucial prognosis value in solid
tumors, and this was influenced by type, density, and location of
immune cells, consistent with our results.[28–34] Further, we
unexpectedly found that all 3 scores in the TME of male patients
were higher than in female patients. The cause and practical
significance of this result is unclear and requires additional
research. Then, we identifiedDEGs using TME score-related gene
expression difference analysis and conducted GO and KEGG
enrichment analysis. The results illustrated that the DEGs were
enriched in immune-related terms such as leukocyte cell-cell
adhesion and T-cell activation, as well as pathways including the
calcium signaling pathway, MAPK signaling pathway, and Ras
signaling pathway. Therefore, hypothesize that TME-related
DEGs influence the TME immune microenvironment through
these signaling pathways. The DEGs were further applied to the
PPI network and univariate COX regression analysis. The 2
analysis methods are mainly used to screen feature variables and
build the best model. And then, the intersection analysis between
the leading nodes in PPI network and the top 15 factors ranked by
the P value of univariate COX regression was carried out, and
only 1 factors, PLCG2, was overlapping from the above analysis
(Fig. 5). Thus, we identified phospholipase C gamma 2 (PLCG2)
as the optimal TME-related target gene via the above intersection
analysis. It should be noted, however, that the PLCG2, whichwas
selected by integrating the union of features from the above 2
analysis methods, was reliable in further validations in this study,
suggesting that the integration strategy was feasible. Further
7

analysis confirmed that PLCG2 was significantly related to OS
(P= .009) and the gender of STS patients. PLCG2 encodes a
transmembrane signaling enzyme, which catalyzes the hydrolysis
of phosphatidylinositol 4, 5-bisphosphate (PIP2) into diacylgly-
cerol (DAG) and inositol 1, 4, 5-trisphosphate (IP3), and second
messenger molecules, which are vital for delivering signals from
growth factor and immune system receptors across the cell
membrane, with the aid of calcium.[35] A risk score predicting OS
was built utilizing PLCG2 and genes identified in colon cancer
patients, and was correlated with the number of tumor-
infiltrating immune cells.[36] Furthermore, mutational analyses
performed in chronic lymphocytic leukemia patients suggested
that acquired ibrutinib resistance and progression was linked to
mutation of the PLCG2 gene.[37,38] However, studies focused on
PLCG2 in other solid tumors, especially STS, are lacking. The
GSEA results suggested that the high PLCG2 expression group
was mainly enriched in immune-related pathways such as IL-2/
STAT5 signaling pathway and IL-6/JAK/STAT3 signaling
pathway, while the low PLCG2 expression group was enriched
in 3 gene sets whose function is uncertain. Hence, we inferred that
the reduction of PLCG2 expression was correlated with the status
conversion of TME from strong immune to weak immune. The
IL-6/JAK/STAT3 pathway has a key role in the growth and
development of many human cancers. Multiple cell types in the
TME produce IL-6, leading to activation of JAK/STAT3 signaling
in both tumor cells and tumor-infiltrating immune cells, which
can promote tumor-cell proliferation, survival, invasiveness, and
metastasis.[39] STAT3 is often hyperactivated in tumor-infiltrat-
ing immune cells and exerts negative regulatory effects on
neutrophils, natural killer (NK) cells, effector T cells, and
dendritic cells (DCs), suggesting that STAT3 activation in
immune cells likely leads to downmodulation of anti-tumor
immunity.[40–44] Although several studies have linked STAT3 to
tumor growth and metastases in various types of neoplasms, it
was reported that STAT3 activation is also correlated with a
better prognosis in some tumors, such as head and neck
squamous cell carcinoma.[45] STS are rare and heterogeneous
mesenchymal neoplams, with more 70 histological subtypes, and
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Figure 8. TIC profile in tumor samples and correlation analysis. (A) Bar plot showing the proportion of 22 types of TICs in STS tumor samples. (B) Heatmap showing
the correlation between 22 types of TICs.
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various subtypes having a different prognostic.[46] Management
of STS is increasingly subtype-dependent. Hirofumi Bekki et al.
reported that phosphorylation of STAT3 in undifferentiated
pleomorphic sarcoma was correlated with a favorable progno-
sis.[47] R Lai et al found that among 31 patients who presented
with localized Ewing sarcoma, high-level STAT3 activation
correlated with better OS.[48] Similarity, Nokitaka Setsu et al also
reported that activator of STAT3 in soft tissue leiomyosarcoma is
associated with a better prognosis.[49] Research had shown that
high expression of PLCG2 can promote the activation of IL2 and
STAT3 in TME,[50] which is consistent with our GSEA results. De
La Iglesia et al[51] reported that STAT3 plays a pro-oncogenic or
tumor suppressive role in glioblastoma depending on the
8

mutational profile of the tumor. STAT3 seems to have a
double-sided effect on tumor progression and it is possible that it
functions as an oncoprotein or a tumor suppressor protein. In
conclusion, PLCG2 may affect IL-6/JAK/STAT3 signaling
pathway to form anti-tumor TME, which may depend on the
subtype of STS and the role of STAT3 in TME. It will require
more further research in the future. The above works indicated
that PLCG2 might be a potential indicator of the TME status in
STS patients and that TME remodeling targeted to PLCG2 may
provide a strategy for suppressing tumor progression.
Tumor immune cell infiltration analysis verified the above

conclusion and identified 6 types of TICs correlated with PLCG2
expression. Among these, CD8+ T cells, gamma delta T cells, M1



Figure 9. Correlation of TICs proportion with PLCG2 expression. (A) Violin plot showing the differentiation ratio of 22 types of immune cells between STS tumor
samples with low or high PLCG2 expression, relative to the median PLCG2 expression level. (B) Scatter plot showing the correlation of 9 types of TICs with PLCG2
expression (P< .05). (C) Venn diagram displaying 6 types of TICs correlated with PLCG2 expression.
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macrophages, and monocytes were positively correlated with
PLCG2 expression, while resting NK cells and M0 macrophages
were negatively correlated with PLCG2 expression. Previous
studies using preclinicalmodels showed the impact of CD8+ T cells
on the suppression of tumor cell growth, tumor infiltration
inhibition, and the regulationof complete tumorelimination.[52–54]

Similarly, several studies have indicated that gamma delta T cells
can kill a wide range of tumor cells from both solid tumors and
hematopoietic malignancies.[55,56] Macrophages can be activated
by a variety of different cytokines within the microenvironment.
M1macrophageswere associatedwith anti-tumorigenic functions,
Table 2

Difference test and correlation test results.

Difference test P value Correlation test P value

B cells memory .034 Plasma cells .045
T cells CD8 <.001 T cells CD8 <.001
T cells gamma delta .024 T cells regulatory (Tregs) .017
NK cells resting <.001 T cells gamma delta <.001
Monocytes <.001 NK cells resting <.001
Macrophages M0 <.001 Monocytes <.001
Macrophages M1 .001 Macrophages M0 <.001
Dendritic cells resting .022 Macrophages M1 <.001
Mast cells activated .044 Neutrophils .022

9

whileM2macrophages tend tobe associatedwith pro-tumorigenic
phenotypes. M1 macrophages are considered antitumor because
they contribute to the innate host defense and tumor cell
destruction by producing pro-inflammatory cytokines and other
substances.[57] Induction of macrophage phenotype polarization
from M2 macrophages to M1 macrophages facilitates TME
conversion froman immune-suppressive to an immune-promoting
environment, which is currently applied in the clinical therapy of
tumors.[58] However, our study showed a positive correlation
between the expression of PLCG2 and M1 macrophages,
indicating that the activation or high expression of PLCG2 was
conducive to thepolarizationofmacrophages toM1macrophages,
and the polarized M1 macrophages might convert the suppressed
TME to anti-tumor TME. Numerous evidences have confirmed
that monocytes and the above immune cell types, as well as the
presenceof tertiary lymphoid structures, are associatedwithagood
prognosis and that their infiltration into the TME is a positive
prognostic indicator inmany tumors.[59–61] Although the ability of
activated NK cells to destroy solid tumors has been questioned,
their capacity to prevent metastatic dissemination by killing
circulating cancer cells is well known. Some researchers showed
that NK cells arrive early in the TME and cooperate with dendritic
cells resulting in effective immune responses mediated by CD8T
cells.[62,63] In particular, PLCG2was shown to be vital for cellular
cytotoxicity in natural killer (NK) cells.[64] Therefore, the higher

http://www.md-journal.com
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the expression of PLCG2, the lower the resting NK cell density,
which suggests that the regulation of the activity of restingNKcells
might play an anti-tumor role. In recent years, clinical researchers
have attempted to improve NK cell activity using various anti-
tumor approaches and have decreased the number of resting NK
cells, which are disadvantageous to tumor suppression.[65,66] In
addition,M0macrophage infiltration in the TMEhas been proved
to be amarker of poor prognosis in some tumors.[14,67] Thus, these
results indicate that the expression of PLCG2 influenced activation
of the immune component within the TME in STS. PLCG2 might
promote ananti-tumorTMEbyaffecting the density, composition,
and distribution of these above immune cells. But there are no
corresponding drugs to modulate the activity of plcg2 clinically,
which implied that there might be a unique regulatory mechanism
of the role of PLCG2 in TME. While Phospholipase C (PLC),
proteins encoded by PLC gene, could be inhibited by aminosteroid
U73122. U73122, which could selectively inhibit a series of
reactions induced by PLC via inhibiting from PLC cleaving second
messengers PIP2 to IP3 and DAG, had been broadly applied to
investigate PLC-dependent activation and modulation.[68,69] Aki
et al[70] identified that increased-tyrosine phosphorylation level of
PLCG2 with lipopolysaccharide (LPS) and peptidoglycan (PGN)
stimulation, inducing the Ca2+ mobilization in macrophages and
dendritic cells, enhancing cytokine production. Besides, they also
found that Both PGN- and LPS-induced intracellular Ca2+

mobilization motioned above was not observed in PLCG2
knockout mice, implied that PLCG2 and PLCG2 signal pathway
played an important role in the bacterial ligands-induced reactions
in cell-mediated immunity. We believe that in-depth study of the
downstream molecular mechanisms related to PLCG2 will be a
direction for future research, which will provide a new perspective
for further understanding of the pathogenesis of STS and the
selection of diagnostic and therapeutic targets.
5. Conclusion

We successfully identified PLCG2 as a TME-related gene in STS
via a variety of bioinformatics analysis methods. The limitations
of this study include that the correlation between PLCG2 and
TME status in STS was not explored completely and the sample
capacity was relatively small. In conclusion, PLCG2 has potential
as an important indicator of prognosis and TME remodeling in
STS.
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