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Purpose: To provide a comprehensive analysis of associated genes with osteoarthritis (OA). Here, we reported a network analysis of 
OA progression by using a Steiner minimal tree algorithm.
Methods: We collected the OA-related genes through screening the publications in MEDLINE. We performed functional analysis to 
analyze the associated biochemical pathways of the OA-related genes. Pathway crosstalk analysis was constructed to explore 
interactions of the enriched pathways. Steiner minimal tree algorithm was used to analyze molecular pathway networks. The average 
clustering coefficient was compared with the corresponding values of the Osteoarthritis-specific network. The new finding RNA was 
compared with former single-cell RNA-seq analysis results.
Results: A gene set with 177 members reported to be significantly associated with Osteoarthritis was collected from 187 studies. 
Functional enrichment analysis revealed a specific related-OA gene including skeletal system development, cytokine-mediated 
signaling pathway, inflammatory response, cartilage development, and extracellular matrix organization. We performed a pathway 
crosstalk analysis among the 72 significantly enriched pathways. A total of 151 of the 177 genes in the Osteoarthritis gene set were 
included in the human interactome network. There were 31 genes in the former single-cell RNA-seq analysis results. The CLU, ENO1, 
SRRM1, UBC, HMGB1, NR3C1, NOTCH2NL, and CBX5 have significantly increased expression in seven molecularly defined 
populations of OA cartilage.
Conclusion: The Steiner tree-based approach finds new biological molecules associated with OA genes.
Keywords: network analysis, Steiner minimal tree, osteoarthritis, bioinformatics, osteoarthritis genes

Introduction
Osteoarthritis (OA) is the leading cause of disability and source of societal cost in older adults.1 Risk factors associated 
with OA include joint injuries, aging, and obesity.2 It is projected that by 2040, OA will affect 78 million people.3 The 
impact of OA on individuals includes pain, loss of mobility, and loss of independence, with 25% of patients unable to 
perform normal daily activities. OA is characterized by various factors including subchondral bone remodeling,4 

degeneration of the meniscus,5,6 inflammation, and fibrosis of the infrapatellar fat pad and synovial membrane.7

OA will remain a large and growing global problem for clinical and public health systems. Although OA is 
a significant medical condition, there are currently no registered therapies available that can stop the structural damage 
caused by the disease. Symptom-modifying interventions only offer moderate long-term effects, at best.8 To advance in 
the treatment of OA, it is crucial to have a deep understanding of the cellular and molecular pathophysiology.
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Several genes and pathways associated with mechanical, inflammatory, and synovial factors have been identified in 
OA.9 The identification of the possible essential genes such as MMP-3, MMP-13, VEGF, TIMP-1, TGFB1, FGF18 has 
important influence on molecular causes.10–13

Although studies have identified important pathogenic genes in the development of OA, the underlying molecular 
mechanism remains unclear.14 Lots of genes has effects on OA progress rather than one or two major genes with large 
effects.15 Network and pathway analysis reveals crosstalk between genes. So, a comprehensive analysis of potentially 
causal genes can provide many important insights finding.16 We used a comprehensive analysis of genes associated with 
OA. Then, functional enrichment analyzes explore the significant biological themes within these genetic factors. We 
intended to analyze the topological characteristics of related genes in the context of a human protein-protein interaction 
network. To accomplish this, we first inferred the specific molecular network using the Steiner minimal tree algorithm. 
By isolating the network specific to Osteoarthritis from the larger human interaction group network, we gained insights 
into the potential pathological molecular network associated with the Osteoarthritis gene set. Additionally, we compared 
the significant RNA findings with previous results obtained from single-cell RNA-seq analysis.17 This comprehensive 
analysis provides systematic insights into the mechanisms underlying OA.

Materials and Methods
Identification of OA-Related Genes
Candidate genes associated with OA were curated by retrieving the human genetic association studies deposited in 
MEDLINE (http://www.ncbi.nlm.nih.gov/pubmed/). We searched OA with the term (osteoarthritis [MeSH]) and (poly-
morphism [MeSH] or genotype [MeSH] or alleles [MeSH]) not (neoplasms [MeSH]). Non-English articles studies were 
excluded. Two authors screened the titles and abstracts of the articles, and the full text of all eligible studies was reviewed 
for inclusion and exclusion criteria. Any discrepancies in literature screening were resolved by the third author. By 2020– 
12-01, we found 1203 publications for OA. Then, we collected the association studies after reviewing the abstracts, and 
narrowed the selection publication by focusing on OA. We only included publication that results support the conclusions. 
The negative or insignificant associations reports were excluded. The genes significantly associated with OA in these 
studies were selected for this study.

Functional Enrichment Analysis of OA-Related Genes
The functional features of the OA-related genes were examined by ClusterProfiler based on Gene Ontology (GO), BioCarta 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. GO terms of biological processes with a p-adjust value 
smaller than 0.01 were kept as the significantly enriched ones. All the pathways with one or more genes overlapping the 
candidate genes were extracted. A p-value was assigned to each pathway by Fisher’s test to indicate the significant overlap 
between the pathway and the input gene. The pathways were significantly enriched with a p-adjust < 0.01.

Pathway Crosstalk Analysis
We further performed pathway crosstalk following the former way.18 To describe the overlap between any given pair of 
pathways, two measurements were computed. The Jaccard Coefficient (JC) \ (JC=|\frac {A\cap B {A\cup B} |\) and the 
Overlap Coefficient (OC) \ (OC=\frac {|A\cap B|} {min (|A|, |B|)} \). Where A and B are the lists of genes included in the 
two tested pathways. To construct the pathway crosstalk, we implemented the following procedure:

Select a set of pathways for crosstalk analysis. Only the pathways with a p-adjust < 0.01 were used. Meanwhile, the 
pathways containing less than six candidate genes were removed.

Count the number of shared candidate genes between any pair of pathways. Pathway pairs with less than seven 
overlapped genes were removed.

Calculate the overlap of all pathway pairs. All the pathway pairs were ranked according to their JC and OC values. 
The overlapping level between the two pathways was measured by the JC and OC average scores. The pathways could be 
grouped into one major module by their crosstalk analysis results.

Visualize the selected pathway crosstalk with the packages cytoscape.18
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Construction of the Human Interactome
We constructed a comprehensive and reliable human interactome to investigate the correlation between the genes. First, 
we downloaded the human protein-protein interaction (PPI) data from the Protein Interaction Network Analysis (PINA) 
platform (release version: 21 May 2014). The database pooled and curated non-redundant physical interaction data from 
six databases: IntAct, BioGRID, DIP, HPRD, MINT, and MIPS/MPact. After excluding the redundant and self- 
interacting pairs and using org.Hs.ens.db R packages to map these interactome data onto gene SYMBOL, we constructed 
a comprehensive human physical interactome by merging the two data sets, which contained 17,457 nodes and 233,333 
edges.

Construction of OA-Specific Network
We intended to explore the disease subnetwork extraction. We used the Steiner Net to extract specific potential 
pathological networks and take the collected OA genes as input seeds. Then, we generated 1000 random networks 
with the same number of interactions as the OA-specific network using the Erdos-Renyi model in the R igraph package to 
assess the non-randomness. Next, we calculated the average values of the shortest-path distance and clustering 
coefficient. The significance level of non-randomness needs two requirements; 1) the number of random networks 
with average shortest-path distance (ND) was smaller than the OA-specific networks, 2) the number of random networks 
with an average clustering coefficient (NC) was higher than the observed clustering coefficient. Finally, the empirical 
p-value was calculated by using ND/1000 and NC/1000.

Single-Cell RNA-Seq Analysis Results Identify
The important RNA was compared with former single-cell RNA-seq analysis results.17 Quanbo Ji has identified seven 
molecularly defined populations of chondrocytes in the human OA cartilage, including ECs, effector chondrocytes 
(RegCs), regulatory chondrocytes (ProCs), proliferative chondrocytes (preHTCs), pre-hypertrophic chondrocytes (FCs), 
fibrocartilage chondrocytes (HTCs), hypertrophic chondrocytes (HomCs) and homeostatic chondrocytes. They also 
presented gene expression profiles at different OA stages at single-cell resolution. We identified our crosstalk results 
from these expression profiles.

Results
Identification of Genes Associated with OA
(Supplementary Table 1) provided all genes related to OA. Altogether, a gene set with 177 members significantly 
associated with OA was collected from 187 studies.

Significant Enrichment Pathways for OA
Biological Functions and Pathway Enrichment Analysis Enriched in Gene Set Some GO terms significantly enriched in 
the candidate genes (Supplementary Table 2), including those associated with skeletal system development, cytokine- 
mediated signaling pathway, inflammatory response, cartilage development, extracellular matrix organization, negative 
regulation of cell population proliferation, ossification, positive regulation of tyrosine phosphorylation of STAT protein 
and positive regulation of epithelial to mesenchymal transition. We found 72 significant enrichment pathways for OA 
(Supplementary Table 3) through.

Crosstalk Among Significantly Enriched Pathways
To understand how these 72 pathways interact with each other, we performed a pathway crosstalk analysis. A total of 66 
pathways were containing six or more members in the OA gene set. A number of 44 pathways met the criterion for 
crosstalk analysis. Each pathway shared at least seven genes with one or more other pathways (Figure 1).
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Gene Set Network Topological Characteristics
PPI analyzed the topological properties of nodes and interactions. The degree of the constructed network was analyzed in 
the context of the constructed human interactome. We intended to analyze the two other gene sets network features 
including the osteoporosis list with 323 members and the cancer genes with 506 genes (Supplementary Table 4). The 
nodes with specific degrees were scattered in a range from 1 to 836. The nodes were measured by the number of genes 
connecting with a given gene. The 151 of 177 genes mapped onto the human interactome network with the 52.51 mean 
degree, which each gene connected with 52.51 other genes on average. The 300 of 323 genes could be mapped onto the 
human interactome in osteoporosis, with 54.05 average degree. The 485 out of 506 had the corresponding nodes in the 
cancer genes with the 74.97 average degree. Further, 52.98% (80/151) and 51% (153/300) genes fell in the degree 
interval of 1–20, respectively for OA and Osteoporosis, while the cancer genes only 30.31%.

OA-Specific Molecular Network Inference
Steiner minimal tree algorithm linked the maximal and minimal members of genes nodes. The OA network contained 
182 nodes and 181 edges (Figure 2). For these random subnetworks, the mean shortest-path distance was 6.51, 
significantly larger than that of the OA-related network (shortest-path distance, 4.06; empirical p=0). The average 
clustering coefficient of the random networks was 0.01, statistically significantly less than the OA distinctive network 
(clustering coefficient, 0; empirical p=0.72). As specified, 151 of the 177 genes in the OA gene set were included in the 
extracted OA-specific network. A total of 85.31% of the genes in the OA gene set and 82.96% of 182 genes in the OA- 

Figure 1 Pathway crosstalk among significantly enriched pathways Nodes represent pathways and edges represent crosstalk between pathways. To understand how these 72 
pathways interact with each other, we performed a pathway crosstalk analysis. A total of 66 pathways were containing six or more members in the OA gene set. A number 
of 44 pathways met the criterion for crosstalk analysis. Each pathway shared at least seven genes with one or more other pathways.
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specific network, indicating a high coverage of the OA gene set in the subnetwork. The remaining 31 genes in the OA- 
specific network were not excluded, as they were non-input genes screened from the Steiner minimum network. These 31 
genes are not part of the Osteoarthritis gene concentration, but they are involved in the biological process and have close 
interactions with each other. These genes provide potential candidate genes for further exploration in the OA biological 
processes. In addition, the expression of CLU, ENO1, SRRM1, UBC, HMGB1, NR3C1, NOTCH2NL, and CBX5 were 
significantly increased in seven molecularly defined populations of OA cartilage, which is consistent with the results of 
former single-cell RNA-seq analysis, making the consistency more convincing. Figure 3 presents violin plots depicting 
the expression levels of specific marker genes across seven different populations in human OA cartilage. These 
populations include effector chondrocytes, regulatory chondrocytes, proliferative chondrocytes, prehypertrophic chon-
drocytes, fibrocartilage chondrocytes, hypertrophic chondrocytes, and homeostatic chondrocytes.

Discussion
OA is characterized by cartilage degeneration, synovial and infrapatellar fat pad inflammation, and subchondral bone 
remodeling.19,20 In this study, we aimed to conduct a comprehensive collection of pathogenic associated with OA by 
including three databases. We found the intersection of all the signaling pathways through the GO and the KEGG 
functional enrichment analyses. Then, we further analyzed these novel genes in the context of the human OA protein- 
protein interaction network. Next, the Steiner minimal tree algorithm was used in OA-specific molecular network 
analysis.

Figure 2 We utilized the Steiner minimal tree algorithm to construct a specific network for osteoarthritis (OA) from the human interactome network. This algorithm 
effectively connected the maximal and minimal members of gene nodes. The resulting OA network consisted of 182 nodes and 181 edges.
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Former research17 has identified seven molecularly defined populations of chondrocytes in the human OA cartilage, 
including three novel phenotypes with distinct functions. It presented gene expression profiles at different OA stages at 
single-cell resolution. These genes had close interaction with genes known to be related to the biological processes 
involved in OA.21 Thus, these genes provided a list of potential candidates for further exploration. After reviewing all 
these genes, we finally identified 31 important genes. Notably, CLU, ENO1, SRRM1, UBC, HMGB1, NR3C1, 
NOTCH2NL, and CBX5 showed significantly increased expression in OA chondrocytes.

Clusterin (CLU) has been found as a ubiquitous glycoprotein and its upregulation has been found in OA cartilage.22 Also 
known as apolipoprotein J, CLU acts as an ATP-independent holdase chaperone, preventing protein aggregation and 
proteotoxicity.23 It is a disulfide-linked heterodimeric protein of approximately 60 kDa, involved in the clearance of cellular 
debris and the regulation of apoptosis. Recent studies suggest that the intracellular form of CLU may suppress stress-induced 

Figure 3 Violin plots displaying the expression levels of candidate marker genes for the seven distinct molecularly defined populations within human OA cartilage are 
presented. The genes showcased in each figure are as follows: (a) CBX5 gene, (b) CLU gene, (c) CTNNB1 gene, (d) ENO1 gene, (e) HMGB1 gene, (f) NOTCH2NL gene, 
(g) NR3C1 gene, (h) SRRM1 gene, (i) UBC gene.
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apoptosis and the secreted form of CLU functions as an extracellular chaperone that prevents protein aggregation.24 Increased 
levels of CLU mRNA and protein in the joint environments of knee OA may reflect the severity of the condition. Csaba Matta’s 
findings demonstrate that the secretion of clusterin can be regulated by interleukin-1β and tumor necrosis factor-α, influencing 
cartilage degradation.25 Furthermore, three neopeptides associated with Clusterin show potential as markers for OA disease.26

Enolase 1(ENO1) has been implicated in autoimmune and inflammatory diseases.27 ENO1 has been identified as 
a novel stimulatory receptor on monocytes.27 ENO1 is a multifunctional glycolytic enzyme expressed in the cell-surface 
and has been found to be increased rapidly in response to inflammatory loops in rheumatoid arthritis.28 Weijuan Ma 
investigated the protein changes in Kashin-Beck disease cartilage and founded the candidate proteins α-enolase.29 

Additionally, proteomic analysis of human osteoarthritic chondrocytes reveals protein changes, and Western blotting 
and immunohistochemistry in tissue cartilage were used to identify a decrease in ENO1.30

Evidence supports increased expression of high mobility group box 1 (HMGB1) in OA cartilage.31 HMGB1 protein is 
associated with chemoattractant properties.32 Chondrocytes release HMGB1, which has migratory effects on chondrogenic 
progenitor cells.33 Additionally, increased expression of HMGB1 has been observed in the synovium of rat models with anterior 
cruciate ligament transection-induced KOA.34 HMGB1 is a downstream product of pyroptosis and may have potential inflam-
matory regulating effects. Chromobox 4 (CBX4), a component of polycomb repressive complex 1, is involved in maintaining cell 
identity and organ development through gene silencing. The expression of CBX4 has been shown to attenuate the development of 
OA in mice.35

Ubiquitin C(UBC) is a gene encoding ubiquitin precursor in mammals.32 Conjugation of ubiquitin monomers or 
polymers can lead to diverse effects within a cell, depending on the residues to which ubiquitin is conjugated.36 A study 
suggests that UBC could be a promising therapeutic target for ovarian cancer patients with recurrent ubiquitin B(UBB) 
silencing.37 Hypoxia-inducible factor 1α (HIF-1α) plays a crucial role in preventing apoptosis in chondrocytes. The 
protein UCHL1 can inhibit apoptosis in chondrocytes by increasing the levels of HIF-1α, which in turn promotes 
mitophagy and preserves mitochondrial function.38 Bobin Mi reported one of the top 10 central genes of female patients 
with OA was UBC, and the upregulation of UBC is a therapeutic strategy for maintaining the normal function of cells in 
the synovium.39

Notch is a single-pass transmembrane cell surface receptor, it regulates differentiation and apoptosis during embry-
ogenesis, as well as in various developmental systems such as neurogenesis and hematopoiesis.40 The proliferation and 
differentiation of disc cells are dependent on the Notch signaling pathway.41 In a study, miR-485-3p was found to promote 
proliferation and prevent apoptosis, ECM degradation, inflammation, and oxidative stress in OA chondrocytes by inhibiting 
Notch2 and the NF-jB pathway.42 The inhibition of Notch2 expression resulted in increased proliferation and reduced 
apoptosis rate.42 It has been reported that the activation of Notch2 in specific chondrocytes can stimulate the progression of 
OA.43 Notch2 serves as the receptor for the canonical NF-jB pathway, which is essential for chondrocytes to express MMPs, 
release ECM components, trigger inflammatory responses, and further contribute to cartilage destruction.44

Serine and arginine repetitive matrix 1(SRRM1), also known as Srm160,45 is an SR-related protein.46 SRRM1 was 
initially identified as a nuclear matrix antigen highly concentrated in interphase nuclear “speckle” domains, which are 
enriched in splicing components.47 It functions as a coactivator of both constitutive and exon enhancer-dependent 
splicing by forming cross-intron interactions with multiple splicing factors bound directly to pre-mRNA.46 SRRM1 has 
been found to be correlated with tumor malignancy in patients with poor clinical prognosis.48

We first made these systems biology-based analyses to explore complicated OA phenotypes. Steiner minimal tree 
algorithm results might provide m important insights beyond the conventional single-gene analyses and evaluated. This 
analysis provided important findings to understand OA progress in a systems biological view.

Although no OA genetic study has yet led to a diagnostic tool or treatment, it has been observed that these genes 
show a significant increase in expression in seven distinct molecularly defined populations of OA cartilage. Therefore, 
the current gap between discovery and utility is expected to narrow.

Conclusion
The Steiner tree-based approach identified new biological molecules that are associated with OA genes. Specifically, the 
CLU, ENO1, SRRM1, UBC, HMGB1, NR3C1, NOTCH2NL, and CBX5 genes were found to be associated with the 
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progression of OA cartilage. In this study, it was observed that these genes exhibited significantly increased expression in 
seven distinct molecularly defined populations of OA cartilage.

Abbreviations
OA, osteoarthritis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein 
interaction; PINA, Protein Interaction Network Analysis; EC, effector chondrocyte; RegC, regulatory chondrocyte; ProC, 
proliferative chondrocyte; preHTC, prehypertrophic chondrocyte; FC, fibrocartilage chondrocyte; HTC, hypertrophic 
chondrocyte; HomC, homeostatic chondrocyte. CLU, clusterin; ENO1, enolase 1; HMGB1, high mobility group box 1; 
CBX4, chromobox 4; UBC, ubiquitin C; UBB, ubiquitin B; SRRM1, serine and arginine repetitive matrix 1.
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