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Holistic Monte-carlo optical 
modelling of biological imaging
Guillem carles, paul Zammit & Andrew R. Harvey*

the invention and advancement of biological microscopy depends critically on an ability to accurately 
simulate imaging of complex biological structures embedded within complex scattering media. 
Unfortunately no technique exists for rigorous simulation of the complete imaging process, including 
the source, instrument, sample and detector. Monte-carlo modelling is the gold standard for the 
modelling of light propagation in tissue, but is somewhat laborious to implement and does not 
incorporate the rejection of scattered light by the microscope. on the other hand microscopes may be 
rigorously and rapidly modelled using commercial ray-tracing software, but excluding the interaction 
with the biological sample. We report a hybrid Monte-carlo optical ray-tracing technique for modelling 
of complete imaging systems of arbitrary complexity. We make the software available to enable user-
friendly and rigorous virtual prototyping of biological microscopy of arbitrary complexity involving 
light scattering, fluorescence, polarised light propagation, diffraction and coherence. Examples are 
presented for the modelling and optimisation of representative imaging of neural cells using light-sheet 
and micro-endoscopic fluorescence microscopy and imaging of retinal vasculature using confocal and 
non-confocal scanning-laser ophthalmoscopes.

Light scattering in biological tissue is the major barrier to imaging biological structures and processes deep within 
tissue. Techniques such as optical-coherence tomography and confocal, light-sheet or two-photon microscopy 
improve image contrast by rejection of scattered light1, and optimisation of such techniques is critically dependent 
on a rigorous quantitative understanding of how scattered and unscattered light contribute to recorded images. 
Conventional numerical modelling of biological microscopy treats light propagation in the biological sample and 
modelling of the imaging instrument separately and so cannot accurately model their mutual interaction. For 
example, it is not possible to accurately model a routine and fundamental process, such as imaging of a neuron or 
vasculature, using a confocal microscope or multi-photon microscope. This inability to model a complete imag-
ing and sensing process contrasts with the field of nuclear and particle physics, where Monte-Carlo simulation 
tools, such as Geant, are able to model particle transmission and scattering within complex targets and instru-
ments to enable quantitative virtual prototyping of complete radiation detection systems2. Notably, an add-on to 
Geant also enables Monte-Carlo modelling of the diffuse propagation of radiation-induced light in tissue3. We 
describe here holistic Monte-Carlo optical modelling (HMCOM), for system-level virtual prototyping of biolog-
ical optical microscopy. We report the first rigorous and holistic modelling of the complete imaging process in 
scattering media: that is light propagation is modelled in the imaging regime, where polarisation and non-diffuse 
light propagation is important in addition to interaction of all light with the optical instrument. Holistic mod-
elling incorporates the coherent propagation of polarised light through the complete image-formation process: 
from source, through the instrument illumination optics, through the biological sample, through the imaging 
instrument, to the detector. It thus enables rigorous modelling of image formation in turbid media, including the 
combined effects of light scatter by tissue and instrument optics. Such holistic modelling enables accurate predic-
tion, optimisation and construction of accurate forward-imaging models, and also the generation of ground-truth 
data for the training of algorithms.

Monte-Carlo techniques are the gold standard for modelling photon transport in biological tissue since they 
provide high accuracy and can handle realistic and arbitrary 3D structures4–6. On the other hand, optical ray 
tracing is universally used for the design and optimisation of optical instruments. Until now, modelling of image 
formation within biological media has employed a somewhat disconnected approach: light propagation in tissue 
and the imaging performance of the instrument are modelled independently and coupled only through high-level 
characterisations such as tissue and instrument point-spread functions. Light is not propagated coherently 
between instrument and sample and there is therefore no 'memory’ in the modelling of light propagated between 
instrument and sample: that is, there is no tracking of light direction, polarisation and phase propagated from 
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source to detector. The physical principles of Monte-Carlo modelling are, however, essentially equivalent to the 
principles of ray tracing in that both propagate light rays (termed photon packets in the Monte-Carlo literature) 
between interactions with media. For optical ray tracing, ray lengths, amplitudes and directions are deterministic 
and calculated according to the laws of physical optics, whereas for Monte-Carlo modelling they are determined 
stochastically by mean-free paths and angular probability density functions. We exploit this equivalence to inte-
grate ray tracing of optical instruments with Monte-Carlo modelling of light propagation in scattering media 
within a single hybrid framework.

Polarisation has a profound influence on image formation in scattering media, but existing Monte-Carlo mod-
elling software normally neglects the polarisation state of light. Multiple scattering rapidly depolarises light7,8, but 
significant directional, coherence, and polarisation information is retained by scattered light in the near-ballistic 
and snake-like regimes9,10, important to all biological imaging11–16. Accurate modelling of image formation there-
fore requires that polarisation is tracked, particularly imaging using coherent or partially-coherent light, such 
as for optical coherence tomography and emerging techniques based on phase conjugation and speckle17–22. 
A small number of previous works have reported Monte-Carlo software that tracks polarisation23–29; however, 
Monte-Carlo modelling of photon diffusion is implemented almost exclusively by user-customised computer 
code that is not readily customisable to specific biological samples and is therefore, in practice, restricted to 
simple geometrical shapes such as slabs or spheres. Importantly, Monte-Carlo models do not include the optical 
instrument in the overall mathematical model and so cannot model the effects of, for example, optical aberra-
tions, depth of field or pupil-engineered masks in a confocal or light-sheet microscope30–32.

Algorithms for traditional optical design are well established and invariably employ an approach where optical 
elements are defined as an ordered sequence of surfaces with specified properties such as curvature and optical 
properties (first and last surfaces are the light source and image plane respectively). System optimisation involves 
tracing rays sequentially to calculate optical performance at the image plane. In our implementation of HMCOM 
we use a modification to this process, where optical components, including the sample, are based on 3D objects, 
sources and detectors that are freely distributed in space. This defines a framework for Monte-Carlo modelling 
of complete systems that can readily incorporate optical components with exact prescriptions, 3D models for 
biological structures and physical-optics models for scattering and fluorescence within turbid media. Complete 
models can incorporate illumination optics, scattering media, sample and imaging optics (including arbitrary 
optical components, mirrors, apertures, coatings, 3D structures, etc.), to enable the rigorous modelling of arbi-
trary microscopy modalities for imaging arbitrary biological structures. Holistic Monte-Carlo optical model-
ling thus enables system-level, polarimetric and coherent modelling of image formation involving turbid media. 
We have implemented an accurate polarimetric Mie-scattering model that is also able to simulate fluorescence 
(see Section “Methods”, and provide a plugin to the optical design software Zemax-OpticStudio (Supplementary 
Software 1). We also demonstrate modelling of diffraction, essential for modelling high-resolution microscopy, 
using sampling of the angular spectrum of a ray-traced beam to compute its diffracted propagation within an 
HMCOM model (see Section “Methods” and Supplementary Software 2).

Results
Validation of our technique is demonstrated by modelling of two exemplar optical configurations: the calculation 
of the Mueller matrices of optical-backscatter images from an in silico turbid slab, and the polarimetric imaging 
of a complex artificial volume-scattering object which also highlights the importance of polarisation for accurate 
modelling of imaging in turbid media; see Supplementary Material, Sections 2–3.

We present three illustrative HMCOM simulations of imaging of biological structures: fluorescence imaging of 
a neuron, labelled with green-fluorescent protein (GFP), embedded in a scattering medium using a graded-index 
microendoscope; volumetric imaging and reconstruction of the same neuron using a diffraction-limited 
light-sheet fluorescence microscope; and imaging of retinal vasculature using a scanning laser ophthalmoscope 
(SLO).

The simulation of imaging of a GFP-labelled neuron using a miniature microscope based on a GRIN-lens 
microendoscope objective is shown in Fig. 1. Rays are propagated using deterministic ray tracing through the 
microscope optics: from the spatially-extended LED light source, dichroic mirror and the microendoscope into 
the scattering medium where propagation is calculated using Monte-Carlo methods. A neuron, implemented as 
a 3D CAD model filled with a specific concentration of GFP is immersed into the scattering medium, and rays 
entering the neuron stochastically excite fluorescence enabling a quantified calculation of fluorescence radiance. 
A fraction of the emitted fluorescence rays are captured by the microendoscope aperture and propagate back 
through the microscope assembly (reflected at the dichroic, through an emission filter, and focused by a doublet 
tube lens) to form an image at the detector. As can be seen from Fig. 1(b–e), image resolution and contrast is 
degraded as the scattering coefficient of the tissue increases, as expected. The impact of optical aberrations of 
the microscope optics is also apparent, in particular the limited depth of field (that is defocus), which blurs the 
dendritic structures away from the focal plane. Lower levels of other imaging aberrations, such as chromatic aber-
ration, astigmatism, and coma are also present but less apparent in these scattering-degraded images.

The second example is the simulation of 3D imaging of the same neuron using a light-sheet fluorescence 
microscope, as shown in Fig. 2. This traditional system comprises laser excitation, a cylindrical lens and a micro-
scope objective to form a light-sheet at the sample plane, and an orthogonal objective to image fluorescence from 
within the light sheet onto a detector. The illumination light sheet, including absorption and diffraction within the 
embedding medium, is shown in Fig. 2(b). Weak scattering within the embedding medium and sample-induced 
absorption and refraction may also be simulated (see Section “Simulation of scattering in diffracted beams” 
below, and Supplementary Fig. 4). Translation of the fluorescent sample produces a 3D image of the cell; see 
Fig. 2(c) and Supplementary Videos 1 and 2. This example demonstrates the integration of ray tracing through 
the optical system with diffraction (in this case for calculating the light sheet excitation) to model fluorescence 
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within the sample. Newer techniques, using aberration-limited Airy-beam light sheets for example30,33, may thus 
be readily modelled.

For the simulations in both Figs 1 and 2 monochromatic illumination at wavelength λ = 488 nm was used, 
and four wavelengths were defined to sample the broadband fluorescence emission. Weighted summation of the 
images recorded at the sampled wavelengths provides a good approximation to images recorded with broadband 
spectra, including the spectral effects of the sample and, for example, dispersion and spectral selectivity in the 
optics. Selected wavelengths with representative spectra for a dichroic mirror, emission filter and excitation/
emission curves for EGFP are shown in Fig. S1.

Figure 1. Simulation of fluorescence microscopy of a neuron using a GRIN-lens microendoscope objective. 
488 nm illumination rays (in blue) are launched from a LED to approximately uniformly illuminate the sample 
plane through scattering medium. Fluorescence with a peak wavelength of 510 nm is emitted omnidirectionally 
and a fraction of the rays (in green) enter the aperture of the GRIN lens and are imaged by the tube lens onto the 
detector. Images for weak, mild and strong scattering (scattering coefficients μs = 0.5, 5 and 10 respectively) are 
shown in (b–d) for high chromophore absorbance (i.e. fluorescence occurs close to the sample’s surface) and in 
(e) for weak scattering and low chromophore absorbance (fluorescence is uniform over the sample volume).

Figure 2. Simulation of a Light-Sheet Fluorescence Microscope. The optical setup including a cylindrical 
lens and objectives for illumination (12.8x/0.25NA) and imaging (20x/0.4NA) is shown in (a). The light-sheet 
excitation illumination employs monochromatic light at a wavelength of 488 nm (blue rays), and broadband 
fluorescence emission (green rays) is imaged onto the sensor (not shown). A 3D diffraction pattern is computed 
from the illumination rays using propagation of the angular spectrum, and is shown in (b). Fluorescence rays 
are generated in the illuminated parts of the sample volume as it is scanned through the light sheet, generating 
image slices that yield the 3D reconstruction in (c) and Supplementary Video 1. Scattering and absorption in the 
medium and in the sample can be included, see Fig. S4 and Supplementary Video 2.
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The third simulation is of image formation in a scanning laser ophthalmoscope (SLO), as shown in Fig. 3. An 
illumination beam is focused by the eye to a diffraction-limited spot at the retina. Angular scanning sweeps the 
spot across the retina and the light scattered back through the pupil is recorded by the SLO to yield an image. 
Vascular contrast arises from light absorption by haemoglobin and the variation in extinction coefficient with 
wavelength and oxygen saturation yields dissimilar contrast for arteries and veins. Simulated images and oxi-
metry of networks of retinal arteries and veins recorded with this virtual-prototype SLO are shown in Fig. 3. 
Such system-level virtual prototyping enables quantification and understanding of the intricate interactions of 
light with complex retinal structures and pigmentation and how their interaction with the optics of the instru-
ment affect images, to support accurate optimisation of instrument parameters such as confocality and quan-
titative assessment of functions such as vascular oximetry (see Supplementary Figs 5, 6, 9, 10 and Section 5 of 
Supplementary Material).

The eye was simulated within HMCOM using a schematic model of a human eye, to which we added a 3D 
CAD network of vasculature embedded within the retina (Supplementary Material, Section 4). We employed 
Monte-Carlo modelling (within HMCOM) to simulate the scattering of the illumination spot into a 3D volume 
of the retina. A fraction of this scattered light exits from this volume towards the anterior of the eye and a small 
fraction is transmitted through the pupil, undergoing focusing (collimation) by the eye lens and cornea, and is 
then focused by the SLO onto an image of the illuminated volume at a pixelated detector. The summation of the 
detector pixels can be configured to implement various modalities of SLO. Confocal detection is simulated using a 
small pinhole, bucket (that is, non-confocal) detection is simulated by summing a larger disc of pixels and hybrid 
schemes involving arbitrary compound pinholes32,34–36 can also be easily and accurately modelled. While a large 
bucket detector yields the highest signal at the detector, reduction of the detector (pinhole) diameter towards 
confocality provides a useful increase in vascular contrast37, which is also particularly beneficial for vascular 
oximetry32, but with a reduced signal power.

The contrast of blood vessels is dominantly due to the absorption of light by haemoglobin. Sensitivity of 
the haemoglobin absorption spectrum to oxygen saturation enables vascular oximetry using the measured con-
trast of vessels at two or more wavelengths using a simplified optical model for optical absorption based on 
the Beer-Lambert law as described in Section 5 of Supplementary Material. The uncertainty in oximetry due to 
noise-induced uncertainty in measured vascular contrast is lowest when the vascular contrast is close to 46% 
(corresponding to an optical density of log10(1/e)) and improves with increasing signal-to-noise ratio. Inference 
of oxygen saturation requires however knowledge of optical path lengths through the blood, an understanding of 
the effects of scatter and how they interact with the imaging system38,39. Typically a simplified model is employed: 
light detected using confocal imaging is considered to have been transmitted twice through a blood vessel (the 
dominant reflection is normally considered to be scattering by the choroid or the sclera), whereas for imaging 
using a large-area detector, light is considered to be transmitted only once through a vessel. It is then scattered 
into the surrounding retinal-tissue volume, and the light emitted from this volume is imaged by the detector. 
More generally, the relative weightings of single-pass and double-pass light that contribute to recorded images, are 
obtained by fitting approximate models to recorded data and extrapolated from a training set of retinas to images 
recorded of test retinas. Even following careful calibration40,41 this model leads to high uncertainty in oximetry. 

Figure 3. Simulation of retinal imaging and vasculature contrast in a SLO. The setup in (a) comprises a 
coupling mirror that directs illumination rays towards the retina (in blue), where they are scattered and a 
fraction (in green) are transmitted back through the eye pupil and focused by the lens onto a detector. The 
close-up image in (a) shows the retinal layers that include blood vessels with an example of backscattered 
rays (only those transmitted by the pupil are shown). Angular raster scanning of the beam yields the retinal 
images shown in (b,d) for 532 nm and in (c,e) for 633 nm. Vascular contrast is determined by the interaction 
of the pinhole and the multiple light paths due to scattering and light absorption by blood in the vessels. The 
differential contrast of arteries and veins is due to oxygenation-sensitivity of the blood absorption spectrum. 
Computation of absorption from images (d,e) enables application of two-wavelength oximetry shown in (f); see 
Supplementary Figs 9, 10 and Section 5 of Supplementary Material.
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Such approximate models do not provide a route to absolute and reliable assessment of oxygenation or to system 
optimisation. By way of example, we describe here the use of HMCOM for quantitative virtual prototyping of a 
SLO to enable its optimisation for vascular contrast and also for improved oximetry in the presence of additional 
variables, such as local pigmentation and retinal structure.

Using our HMCOM virtual prototype of the SLO we modelled how the precision of oximetry varies with pin-
hole diameter (trading the higher optical throughput of a larger pinhole against the benefit of the higher contrast 
of a smaller pinhole). In our model this yields a minimum standard deviation of repeated oximetry of the larger 
veins (venular oxygenation has greater clinical importance than arterial oxygenation) for a pinhole diameter of 
80–120 μm as summarised in Fig. S12. It should be noted that retinal parameters such as pigmentation, vascular 
caliber, retinal structure, hematocrit, etc., which all affect vascular contrast, vary both between eyes and within 
eyes and so improved system optimisation and oximetric inversion requires modelling of a representative range 
of retinas. Construction of an eye-specific forward HMCOM model of vascular also provides a route to improved 
inversion.

Note that oximetry is just one, albeit prominent, example of a need for quantitative modelling and measure-
ment in the retina: the ability to quantify other chromophores is also important, including macular pigment, 
melanin, lipofuscin and the visual pigments found in the photoreceptors. Virtual prototyping of instruments to 
image and quantify such chromophores is a vital tool for developing future ophthalmic instruments.

Detailed description and further discussion on the examples summarised in Figs 1–3 are presented in 
Supplementart Material, Section 1, and the simulation files with example code are provided in Supplementary 
File 1.

In summary, recognising the equivalence between the ubiquitous Monte-Carlo methods and optical ray trac-
ing we have implemented the first tool that is able to provide system-level holistic modelling of imaging within 
turbid media. The inclusion of full polarisation tracking enables rigorous modelling of modern imaging tech-
niques that employ propagation of polarised and/or coherent light through biological samples. Implementation 
using commercial ray-tracing software enables, for the first time, rapid, rigorous and user-friendly virtual proto-
typing, including realistic optical components (employing exact optical prescriptions, which can be downloaded 
from vendors for example) and biological structures of arbitrary complexity (imported from CAD models for 
example; in this paper we start from the assumption that models are available, nonetheless an example of build-
ing a volumetric model of the vasculature for the simulation in Fig. 3 is described in Supplementary Material, 
Section 4). Importantly, complete and realistic optical models can be rapidly constructed by a non-expert, whereas 
current far less rigorous approaches typically require dedication of highly-skilled experts to implement. It is note-
worthy that HMCOM enables rigorous analysis, system optimisation and construction of realistic forward imag-
ing models, which can aid computational recovery of images from noisy data or system inversion. Importantly, 
it provides a mechanism for generation of image data to fuel the training of data-starved machine-learning tech-
niques for superior image reconstruction and information extraction42. Although our emphasis here is on biolog-
ical imaging, the tool is equally pertinent to optical sensing with a range of turbid media, such as foams, aerosols, 
or atmospheric turbulence.

Methods
Monte-carlo implementation of polarimetric mie scattering. A light beam propagating through a 
turbid media is subject to attenuation and scattering such that transmission is given by μ μ= − +t zexp( ( ) )a s , 
where μa and μs are the absorption and scattering extinction coefficients respectively and z is the distance trav-
elled in the medium. Absorption can be modelled simply as a reduction of photon weight (or ray intensity), 
reducing the total energy of the system. During scattering, energy is conserved and only the direction of ray 
propagation is changed, producing a far-field intensity angular distribution determined by the scattering proper-
ties of the media. To approximate Radiative Transfer in multiple scattering scenarios, a Monte-Carlo (MC) 
approach follows ray optics, and assumes scattering events are mutually independent. Each scattering event con-
sists of elastic scattering defined in three steps: (a) location of the event, (b) change of direction of propagation by 
scattering, (c) change of electromagnetic field (determining polarisation and phase); and possible absorption.

The probability that a photon (or ray) scatters after travelling a distance z follows an exponential probability 
distribution function defined by a mean-free path, μ−

s
1; and this statistically resembles beam extinction due to 

scattering after sufficient photons are included. When a photon is scattered, the new propagation direction is 
calculated with reference to the far-field intensity distribution that a single scatterer would produce from an 
incoming light beam: it has a general dependence on both the scattering and azimuthal angles. The normalised 
far-field intensity is called the phase function and, within a MC framework, it is assigned to be the probability 
distribution function of the scattering direction, such that after launching sufficient photons the far-field intensity 
is reproduced.

The nature of a scattering event is represented in Fig. 4. In the figure, the incident ray propagates in the direc-
tion of the unit vector ê p

i  represented by the blue arrow in the left-most diagram, and is scattered at the location 
represented by the black dot towards the new scattered direction ê p

s  represented by the red arrow. These vectors 
determine the scattering plane (drawn in green in the right-most diagram), defined by the scattering angle θ. The 
plane of polarisation of each ray (represented by the blue and red planes, where the electric field resides, perpen-
dicular to the propagation directions) is defined by two unit vectors in the directions parallel and perpendicular 
to the scattering plane, and therefore 



ˆ ˆ ˆe e e( , , )p
i

r
i i  and 



ˆ ˆ ˆe e e( , , )p
s

r
s s  are the orthonormal vector basis oriented with 

the incident and scattered rays respectively, where the propagation, perpendicular and parallel directions are 
denoted by subindices p, r and  respectively. The electric field of each ray (confined in the polarisation plane) can 
be decomposed into the parallel and perpendicular components, = +

 

ˆ ˆE EE e ei i i
r
i

r
i  and = +

 

ˆ ˆE EE e es s s
r
s

r
s , where 

the mutual phases of the complex electric fields completely define arbitrary states of polarisation.
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When a ray scatters towards the new direction of propagation, its electric field can be calculated as,
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s  are the complex amplitudes of the orthogonal parallel and perpendicular com-

ponents of the electric field of the incident and scattered rays respectively (see Fig. 4), elements S1, S2, S3 and S4 
form the amplitude scattering matrix, and N is a normalisation constant that preserves the intensity of the ray.

Note that the elements of the amplitude scattering matrix are in general complex numbers affecting the 
phase of the electric field components, and hence the state of polarisation of the scattered ray in general changes. 
Symmetry properties simplify this matrix in various ways43. In particular, for spherical particles S3 = S4 = 0, and S1 
and S2 do not have azimuthal dependence. This is the case we consider here. Equation (1) then reduces to,
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Rigorous solution of Maxwell’s equations to provide S1(θ) and S2(θ) for spherical particles is the well-known 
Mie theory43,44. That is, given the refractive indices of the medium and scattering particle, the wavelength of light, 
and particle size, S1 and S2 can be calculated analytically (despite some complexity). Furthermore, Mie theory 
provides the scattering (and absorption if complex index of refraction of the particle is used) efficiency of the 
scatterers, which determine the extinction of the medium given the concentration and geometry of the particles. 
Many implementations of Mie calculations are available, in particular we highlight that of Wiscombe45,46 as has 
been well tested within the community (Mie calculations involve computation of infinite summation series, and 
accuracy and efficiency are important issues).

Importantly, even though the amplitude scattering matrix does not have azimuthal dependence, the phase 
function does if the incident ray has non-zero degree of linear polarisation. Its form can be written as11,

Figure 4. Geometry of a scattering event. Left diagram: incident ray vector ê p
i , and scattered ray vector ê p

s , 
define the scattering plane common to both vectors and θ is the scattering angle. Planes for defining polarisation 
states are represented by the red and blue squares. Centre diagram: the orthonormal co-ordinate systems for ê p

i  
and ê p

s ; the r direction, common to both systems, is orthogonal to the scattering plane; the propagation direction 
p and the orthogonal  direction for the scattered photon are rotated by θ in the scattering plane with respect to 
the incident ray. Right diagram: the electric field Ei of the incident ray (blue) and Es for the scattered ray (red) 
are decomposed into the respective r and  directions, with respect to the azimuthal angle φ; as for the left 
diagram, the polarisation planes are shaded red and blue.
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θ φ φ= + + −F A S S L S S( , ) [ ( )cos(2 )] (3)2
2

1
2

2
2

1
2

where = +L Q U I/2 2  is the degree of linear polarisation of the incident ray, = +
 

⁎ ⁎I E E E Er r , = −
 

⁎Q E E
⁎E Er r  and = +

 

⁎ ⁎U E E E Er r  (* denoting complex conjugation) are the first three Stokes parameters, φ is the azi-
muthal angle defined with reference to the long axis of the incident polarisation ellipse, and A is a normalisation 
constant such that,

∫ θ φ θ θ φ =F d d( , ) sin 1 (4)

The phase function for Mie scattering is bivariate (does not have azimuthal symmetry for L ≠ 0), is polarisa-
tion dependent, and cannot be analytically inverted. The issue of sampling a (θ, φ) doublet with the appropriate 
probability is therefore a key step. Previous approaches employ some form of rejection sampling47 and/or ignore 
the polarisation dependence to allow pre-computation of the phase function23,29, but can be computational ineffi-
cient or accrue important inaccuracies. We employ a customised dynamic look up table algorithm, that provides 
efficient random sampling according to Eq. (3), which is described in Section “Angle sampling from Mie phase 
function”.

Plots of Eq. (3), known as scattering diagrams, are shown in Fig. 5 for different particle sizes (which yield 
different anisotropy values) and degrees of linear polarisation. For the special case of very small particle sizes, the 
Rayleigh scattering regime is reproduced48, which simplifies the amplitude scattering coefficients to S1 = 1 and S2 
= cosθ and the phase function can be written as,

θ φ π θ θ φ= + −−F L( , ) 3(4 ) (cos 1 sin cos2 ) (5)1 2 2

which is in agreement with the first row in Fig. 5. For non-linearly-polarised light (L = 0), this further reduces 
to,

θ π θ= +−F( ) 3(4 ) (cos 1) (6)1 2

which is the commonly known form of the Rayleigh phase function43.

Angle sampling from Mie phase function. Since the phase function for Mie Scattering, Eq. (3), can-
not be analytically inverted (S1 and S2 depend on θ through series expansions, and there is a dependency on 
an a priori unknown L), the issue of sampling a (θ, φ) doublet with the appropriate probability is a key step for 
accurate MC. The heuristic Henyey-Greenstein phase function49 has been widely used because is simple and is 
conveniently invertible to sample the new direction of polarisation of a scattered ray. Importantly, however, the 
Henyey-Greenstein phase function is not capable of tracking the polarisation of the scattered rays and therefore 
can yield highly inaccurate solutions when polarisation is important; namely when the number of scattering 
events is small, such as can be the case for imaging with a confocal microscope, laser scanning ophthalmoscope, 
optical coherence tomography, polarimetric imaging in general and modelling of speckle phenomena. The char-
acteristic quadrifolium intensity patterns that are observed in practice from backscattering (see characteristic 

Figure 5. Scattering diagrams. Plots of scattering diagrams depicting the phase functions for Mie scattering, for 
various particle size parameters, α = πdn/λ (d is the particle size, n the index of refraction of the medium, and 
λ the wavelength of the light) and degrees of linear polarisation. The incident ray propagates along z axis and 
scatters at the origin of the axes. The polarised component of the partially polarised incident light is oriented 
with the major axis in the y direction. The surfaces correspond to the phase function and coloured lines are 
contours of constant θ.
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Mueller matrices in Supplementary Fig. 7) and underpin observed speckle patterns, are polarisation-dependent 
and cannot be modelled using a Henyey-Greenstein phase function.

We propose and employ an approach based on the separation of the phase function in Eq. (3) into two terms, 
F1 and F2,

= +F S S (7)1 2
2

1
2

φ= −F S S( )cos(2 ) (8)2 2
2

1
2

such that

θ φ ∝ + ⋅F F L F( , ) (9)1 2

We then sample θ and φ yielding two ordered sets of the scattering and azimuthal angles,

θ =




−
−

−


 = …

i
m

i marccos 2( 1)
1

1 for 1, ,
(10)i

φ π
=

−
= …

j
n

j n2 ( 1) for 1, ,
(11)j

ω θ φ= = + −

= …

k i m j
mn

( , ) for ( 1)
1, , (12)

k i j

where cos (θ) and φ are uniformly sampled within [−1, 1] and [0, 2π) ranges with m and n samples respec-
tively, and the set of doublets {ωk} = {φj} × {θi} is the Cartesian product of the two sets and comprises mn samples 
in lexicographical order.

We denote by F1[k] and F2[k] the values of the functions sampled at ωk, and compute their numerical integrals 
G1[k] and G2[k] using the trapezoidal rule. Note that these integrals correspond to the unnormalised cumulative 
probability of the joint distribution, and can be pre-computed.

To sample (θ, φ) at each scattering event given L (which is readily calculated from the incident ray) we calcu-
late a boundary number rmax = G1[mn] + L · G2[mn], generate a random number r in the range 0 ≤ r ≤ rmax and 
find k such that G1[k] + LG2[k] ≤ r < G1[k + 1] + LG2[k + 1], using binary search. Actual values of (θ, φ) are 
finally interpolated by calculating θ = θi + rθ(θi+1 − θi) and φ = φj + rφ(φj+1 − φj), where (θi, φj) is the doublet cor-
responding to k and rθ and rφ are random numbers in the range [0,1]. The implementation included in the pro-
vided software employs the Mersenne-Twister algorithm50 to generate random numbers as it provides satisfactory 
accuracy and periodicity.

Three alternative commonly-used approaches to sample (θ, φ) doublets from the phase function are (i) using 
rejection sampling47, (ii) uniformly sampling (θ, φ) and a posteriori adjusting the photon weight to match the 
phase function or (iii) ignoring the polarisation dependence of the phase function followed by calculation and 
inversion using a look up table. However, the first two options are computationally inefficient (especially for 
longer particle sizes that yield high anisotropy scattering) whilst the latter can be inaccurate when polarisation is 
important, as discussed above.

The approach described here can be regarded as a dynamic look-up table, as it effectively builds a look-up table 
from two pre-calculated tables and the value L. This makes the MC simulation efficient since at each scattering 
event only the binary search and a single Mie calculation are required (the Mie calculation is used to find actual 
values of S1 and S2 for the interpolated (θ, φ) doublet, but can be avoided if the pre-computed values from the table 
are used instead), and yet the polarisation-dependent bivariate phase function is accurately reproduced without 
requiring rejection sampling.

Simulation of fluorescence. We propose and employ two different approaches to simulate fluorescence. In 
this section we describe the first method, which is based on a probabilistic occurrence of wavelength shift from 
excitation to emission wavelengths for each ray that propagates within the fluorescent media. In the next section 
we describe the second method, which enables simulation of fluorescence excited from diffracted beams.

In the probabilistic method described in this section, a probability is assigned to each scattering event cor-
responding to fluorescence shift in wavelength from excitation to emission. For the fluorescent media we define 
a scattering mean-free path, a fluorescence mean-free path and a probability of fluorescence. When a ray enters 
the medium, a propagation distance is computed from an exponential probability distribution defined by the 
fluorescence mean-free path. The ray is propagated by this distance; then a new distance is calculated and the ray 
is propagated again preserving the direction of propagation, and so on. At each of this propagation segments, 
however, the ray may experience fluorescence with the given probability. Thus, the fluorescence mean-free path 
and the fluorescence probability determine a penetration depth (if beam extinction from fluorescence is not sig-
nificant, the probability of fluorescence should be set low such that the penetration depth is larger than the sample 
dimensions). If fluorescence occurs, the ray undergoes a wavelength shift, a change in direction of propagation, 
and polarisation. The direction of propagation is selected isotropically, the polarisation is set to be linear with a 
random orientation and the phase is randomised. These properties simulate incoherent fluorescence emission.

Additionally, the ray may experience elastic scattering defined by the scattering mean-free path. To achieve 
this, a scattering probability is calculated, defined by the ratio of fluorescence to scattering mean-free paths. If 
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the ray is scattered, then the new direction of propagation is calculated based on the medium properties and the 
phase function for Mie scattering as described in Section “Angle sampling from Mie phase function”, and polari-
sation is updated according to Mie theory as described in Section “Monte-Carlo implementation of polarimetric 
Mie scattering”. If the ray is not scattered (nor induced fluorescence), the direction of propagation is unchanged 
and the ray continues propagating. Through this framework, scattering and fluorescence are simulated simultane-
ously, and can be used to model fluorescent samples as well as simulation of imaging through a scattering medium 
that expresses auto-fluorescence.

Simulation of broadband fluorescence is possible by defining a set of probabilities and wavelengths that sample 
the required spectrum.

We provide a DLL that includes these functionalities and can be used in Zemax-OpticStudio through a graphi-
cal interface. This bulk-scattering DLL, installation instructions, and user manual are included in Supplementary 
Software 1.

Fluorescence from diffracted beams. We propose and employ here a second method for simulation of 
fluorescence. It employs two subsequent Monte-Carlo runs: one to calculate the illumination or excitation 3D 
intensity pattern, and a second run to generate and propagate fluorescence rays. The method enables calculation 
of 3D diffraction patterns and use them as the excitation light. Two additional DLLs and software to implement 
this approach are included in Supplementary Software 2.

The first DLL is implemented as a surface within Zemax-OpticStudio and calculates the Angular Spectrum 
representation of an incoming light beam over a specified region and saves the measurement to disk. In this DLL 
an area on a plane is defined, and upon performing the optical ray trace, rays that hit the area are used to calculate 
the Angular Spectrum of the beam sampled by such rays. For this, a plane wave is assigned to each ray with the 
amplitude and phase accrued through the ray tracing from the light source (thus accounting for all optics, possi-
ble aberrations, apertures and other elements included in the system); and coherent interference of all recorded 
plane waves is used to compute the electric field at the plane.

We then use the beam propagation method to calculate the electric field (and therefore the illumination inten-
sity pattern) in a voxelised volume of interest. A CAD-defined model of the sample to be imaged is then loaded 
(for example as an STL-formatted 3D meshed volume) and used to populate a table with 3D spatial locations and 
associated weights. The entries of the table represent voxels within the volume of interest, and the weights are the 
relative illumination intensities of each voxel. Only voxels that fall inside the sample’s volume and that are illumi-
nated (and optionally with a weight above a defined threshold to avoid unnecessary computation of low-intensity 
contributions) are included in the table before it is saved to disk.

The second Monte-Carlo run uses the second DLL to load the table and generate rays with the defined emis-
sion wavelength(s). Simulation of broadband fluorescence is achieved through the definition of several wave-
lengths associated with the light-source DLL within Zemax-OpticStudio. The light-source DLL places the origin of 
the rays at random locations but spatially proportional to the weights defined in the table. Therefore, by launching 
many rays, fluorescence generated from the initial illumination is simulated.

The angular-spectrum DLL, the light-source DLL, user manuals, installation instructions, and Matlab code to 
generate the table are all included in Supplementary Software 2.

Simulation of scattering in diffracted beams. One of the advantages of the angular-spectrum approach 
to simulate fluorescence described in the previous section is that it enables the use of more sophisticated models 
of the medium for calculation of the light-sheet propagation. In particular, weak scattering may be simulated 
through irregular fluctuations of the refractive index of the medium, which have been reported to model a variety 
of turbid media including biological tissue51–53. These fractal models can be incorporated into the beam propaga-
tion method to simulate the scattering of beams in their propagation through biological tissue54,55. This approach 
is implemented in Supplementary Software 2 and enables simulation of scattering of focused beams in biological 
media. A further important advantage is that it readily enables inclusion of a distinct scattering, absorption and 
refraction due to the sample. Scattering and absorption in both the medium and within the neuron volume were 
included in the example shown in Supplementary Fig. 4, where it can be appreciated how the variations of the 
index of refraction of the medium cause the beam to scatter. An illustration of the scanning sequence including 
scattering and absorption with the superimposed model of the neuron can be seen in Supplementary Video 2, 
where the effect of the scattering in the medium and absorption in the neuron are particularly evident.
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