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As with many processes in nature, appropriate timing in biological systems is of paramount

importance. In the neuroendocrine system, the efficacy of hormonal influence on major bodily

functions, such as reproduction, metabolism and growth, relies on timely communication within

and across many of the brain’s homeostatic systems. The activity of these circuits is tightly

orchestrated with the animal’s internal physiological demands and external solar cycle by a mas-

ter circadian clock. In mammals, this master clock is located in the hypothalamic suprachiasmat-

ic nucleus (SCN), where the ensemble activity of thousands of clock neurones generates and

communicates circadian time cues to the rest of the brain and body. Many regions of the brain,

including areas with neuroendocrine function, also contain local daily clocks that can provide

feedback signals to the SCN. Although much is known about the molecular processes underpin-

ning endogenous circadian rhythm generation in SCN neurones and, to a lesser extent, extra-

SCN cells, the electrical membrane clock that acts in partnership with the molecular clockwork

to communicate circadian timing across the brain is poorly understood. The present review

focuses on some circadian aspects of reproductive neuroendocrinology and processes involved

in circadian rhythm communication in the SCN, aiming to identify key gaps in our knowledge of

cross-talk between our daily master clock and neuroendocrine function. The intention is to high-

light our surprisingly limited understanding of their interaction in the hope that this will stimu-

late future work in these areas.
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The developmental onset of some fundamental neuroendocrine pro-

cesses of the body, such as those involved in reproductive maturity,

ranges from months to years depending on the species in question,

and relies on constellations of tightly regulated hormonal signalling

processes within the brain and body. Once established, this timely

coordinated balance in hormonal activity and reproduction is tem-

porally regulated by our master circadian clock in the suprachias-

matic nuclei (SCN). Indeed, work spanning over 50 years is

unravelling the important and intimate link between SCN activity

and appropriate timing in neuroendocrine function.

Circadian rhythms are daily timing in behaviour and physiology

that persist (free run) in the absence of external time cues, such as

light. In mammals, the master circadian clock resides in the SCN,

where the activity of thousands of cell-autonomous clock neurones

is synchronised each day to output ensemble circadian time cues to

the rest of the brain and body. At its most basic level, the circadian

clockwork is conceptualised as an intrinsic intracellular process

involving a dynamic interplay between the protein products of core

clock genes such as Period1/2 (Per1/2), Cryptochrome 1/2 (Cry 1/2),

Clock and Bmal1. In the past three decades, significant progress

has been made to dissect and understand the intricate inner work-

ings of this molecular timing machine that operates as a near 24-h

transcription–translation molecular feedback loop (TTFL) (1,2).

Our current understanding of circadian rhythm generation in the

SCN is that the TTFL activity within single SCN neurones drives daily

changes in membrane excitability (3,4) (although see also the later

section on the membrane clock). Indeed, neurones of the central

nervous system can alter their intrinsic excitability by modulating

the activity of their ion channels that provide excitatory or inhibi-

tory drive to the membrane (5). How the TTFL achieves this,
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however, is largely unknown. Broadly speaking, activation of sodium

and some calcium channels and/or reduction in potassium channel

activity depolarise the resting membrane potential (RMP) of the

neurones, causing action potential (AP) discharge. By contrast, acti-

vation of potassium and/or chloride channels provides hyperpolaris-

ing forces that suppress electrical activity. In SCN neurones, both

the conductivity and transcript activity of several ion channels are

under circadian control (3,4). This allows SCN neurones to generate

daily rhythms in electrical outputs, a hallmark feature of SCN cells

that is paramount to the functioning of the circadian timing sys-

tem. Measurements of AP firing rate in unidentified SCN neurones

both in vivo and in vitro SCN brain slice preparations show that, at

the population level, SCN neurones are significantly more active

during the day (an up state: discharging APs at 4–6 Hz) than at

night (a down state: generating APs at 0.1–2 Hz) (Fig. 1). Even

when isolated from the SCN tissue, single SCN neurones retain the

intrinsic ability to generate daily rhythm in AP activity (6,7) that

can be maintained for days. It is considered that this day–night

alteration in electrical states synchronises the activity of SCN neu-

rones and communicates circadian information to the brain and

body (3). Evidence from imaging and electrophysiological studies,

however, suggests that the manner through which SCN neurones

encode and communicate circadian information is more complex

than first assumed and may not solely rely on day–night variation

in AP firing rate.

Under natural conditions, SCN clock neurones are entrained/syn-

chronised to the light and dark cycle by responding to the daily

glutamatergic activity of the retino-hypothalamic tract (Fig. 2). This

excitatory drive is conveyed to the SCN by specialised melanopsin-

containing retinal ganglion cells that communicate ambient light

levels directly to SCN neurones (8), causing Per1 gene activation in

these cells (9). This allows environmental light cues to reset SCN

clock neurones and coordinate their activity to generate a stable

internal representation of solar time.

Several internal physiological signals also feedback and fine tune

timing precision in the SCN. Such intrinsic feedback cues [referred

to as Zeitnehmer (‘time-taker’), a term applied to input pathways

that are rhythmically regulated by feedback from an oscillator]

(10,11) emerge mainly from the body’s homeostatic systems and

are communicated to the SCN using a variety of signalling neuro-

peptides to mainly suppress Per1/2 gene expression and electrical

activity. These feedback signals include neuropeptide Y (NPY) neuro-

nes of the thalamic intergeniculate leaflet, which send monosynap-

tic projections to the SCN via the geniculo-hypothalamic tract (12),

as well as arousal-promoting orexinergic neurones of the lateral

hypothalamus (13), which also send axonal contacts to SCN
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Fig. 1. A schematic view of the daily electrical profiles of suprachiasmatic nucleus (SCN) neurones. (A) Over the day–night cycle, SCN neurones show overt

changes in their resting membrane potential (RMP), and traverse through several points of neutral rest state (indicated by where the solid line crosses the

dashed line). During the day, the RMP of SCN neurones is depolarised. In some cells, reduced activity of L-type calcium and calcium activated potassium (KCa)

channels partly underpins this up state (128). At night, increased conductivity of multiple potassium channels hyperpolarises the neurones, placing them into

a down state (3,4). (B) In some SCN neurones, this daytime up state causes action potential (AP) discharge (b1). In others, however, the RMP becomes too

positive (~ �30 mV) to sustain AP production (b2). Instead, these neurones display depolarised low-amplitude membrane oscillation (b2). At night, during the

RMP down state, SCN neurones generate action potentials at a significantly reduced rate (b3). This shows the complexity, richness and diversity of electrical

communication in SCN neurones. The light area indicates the day, whereas the shaded region shows the night. The increase or decrease underlying ion channel

activity is indicated by upward- and downward-pointing blue arrows, respectively.
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neurones (14). In the SCN, these neuropeptidergic signals can con-

verge onto single clock neurones to modulate electrical activity and

circadian timing in this brain structure (14,15). As such, SCN neuro-

nes integrate both intrinsic and extrinsic signals and send collective

circadian time cues by neural and paracrine pathways to the rest

of the brain, including many neuroendocrine hypothalamic struc-

tures (Fig. 2). Thus, the physiology and behaviour of the organism

are tuned to anticipate and adapt to the solar day–night cycle, a

key physiological prerequisite for survival and reproductive success.

The SCN therefore represents a good example of localised autono-

mous function in the brain, and provides a unique opportunity in

neuroscience to link highly organised behaviours (e.g. sleep–wake

cycle, daily feeding drive and neuroendocrine functions) to the

activities of a known population of neurones in the brain.

Circadian regulation of neuroendocrine functions

The realisation of the importance of circadian timing in hormone

function started with the work of Everett and Sawyer in the 1950s.

In a pioneering study, it was discovered that, in nocturnal rodents,

a stimulatory drive occurring at a narrow temporal window in the

pro-oestrus afternoon is necessary for the induction of ovulation

later at night (16). Subsequently, a number of studies both in

primates (including humans) and rodents have reported circadian

rhythms in gonadotrophin-releasing hormone (GnRH) gene expres-

sion (17) and in the levels of many of the body’s endocrine hor-

mones, such as luteinising hormone (LH), testosterone, prolactin

(PRL), cortisol and gonadotrophins after the onset of puberty (18–

22). A more in-depth description of hormonal secretion profiles is

provided elsewhere (23).

Indeed, when placed in constant conditions, the oestrus cycle in

rodents free-runs (24,25); a description of circadian terms is provided

in Liu et al. (26). This supports its reliance on a master timing process

governing daily cycles in mammalian endocrine physiology. Further-

more, ablation of the SCN or its output pathways abolishes the

night-time LH surge and circadian rhythms in the release of a number

of endocrine hormones, such as PRL and gonadotrophin (27–29).

Perhaps the most direct evidence of an SCN-dependent driven

rhythm in hormonal secretion comes from elegant studies in female

hamsters. Under normal conditions, both halves of the bilateral

SCN in hamsters operate in synchrony. When these animals are

housed in constant light, however, the SCN activity and behavioural

rhythms ‘split’ in some hamsters, giving rise to two activity bouts

in a 24-h period (30). Remarkably, these ‘split’ females display two

daily LH surges, each in anti-phase and of half the concentration

seen in ‘nonsplit’ controls (31). More recently, work in rodents has

definitively linked circadian clock gene activity in the SCN with cir-

cadian timing in hormone synthesis and secretion (32).

Taken together, these studies demonstrate that important aspects

of neuroendocrine physiology exhibit circadian variation, and that
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Fig. 2. Cross-talk between the suprachiasmatic nucleus (SCN) and neuroendocrine cells. (A) Cross-section of the mouse brain at the anatomical level of the

SCN (in red). (B) Bidirectional communication between the molecular clock (transcription–translation molecular feedback loop; TTFL) and electrical/membrane

clock. In this model, the TTFL clock drives day–night rhythms in the electrical activity of SCN neurones, and electrical activity feedback onto the TTFL clock

through unknown mechanisms (light blue arrows). This may underlie how the TTFL outputs signals to neuroendocrine cells (C) and how neuroendocrine pro-

cesses feedback to adjust circadian timing in the SCN (grey arrows). This drawing is superimposed on top of a modified image taken at the SCN mid-coronal

section showing Per1-EGFP neurones (red arrows). Darker blue arrows represent inputs to the SCN, with their sizes denoting feedback magnitude. Solid arrows

indicate an established link, whereas broken arrows show tentative interactions. (b1) Stylised waveform showing daily variation in SCN Per1 and electrical

activity. White and black bars underneath represent day and night, respectively. RHT, retino-hypothalamic tract; LHI, lateral hypothalamic input; GHT, geniculo-

hypothalamic tract; OX, optic chiasm; 3V, third ventricle; NPY, neuropeptide Y; VIP, vasoactive intestinal polypeptide; AVP, arginine vasopressin.
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the master circadian clock is central to the timing of endocrine

processes. This provides an excellent model system in which to

investigate circadian and endocrine interactions.

Circadian signalling to neuroendocrine targets

Neurones of the SCN are neurochemically and functionally hetero-

geneous and form distinct anatomical clusters within this brain

structure. Ventral SCN neurones synthesise vasoactive intestinal

polypeptide (VIP), whereas the dorsal neurones contain arginine

vasopressin (AVP) (33), two neuropeptides that are rhythmically

produced in the SCN and are critically involved in appropriate circa-

dian function (6,34–36). Although the VPAC2 receptor, the preferred

receptor for VIP in the SCN, is expressed throughout this nucleus

(37), VIP neurones generally project dorsally to the vicinity of AVP

cells (33). Here, they form an ensemble bundle with AVP-axons that

project away from the SCN.

In addition to forming conventional cell-to-cell synaptic contacts,

SCN neurones can also signal circadian timing to the body in a

paracrine fashion. Indeed, the timing of behavioural rhythms in

rodents, such as locomotor activity, drinking and gnawing, are

under the control of the SCN paracrine tone (38–41). An ingenious

in vitro study has also recently shown that some intrinsic SCN

clock function relies on paracrine communication amongst its neu-

rones (mainly through diffusible neuropeptides such as VIP) (42),

although further in vivo studies are needed to establish the role of

paracrine signalling in SCN function. When sending circadian sig-

nals to the neuroendocrine system, however, the SCN does so via

direct synaptic contacts onto endocrine cells or through popula-

tions of neurones that contact endocrine cells. This suggests that,

unlike daily timing in behaviour (neuromodulation) (43), SCN com-

munication to neuroendocrine cells requires the precision and speed

of discrete synaptic transmission.

In the hypothalamic preoptic area (POA) of many species, VIP

terminals originating from the SCN form direct contacts onto GnRH

neurones, and indirectly connect to oestrodiol-concentrating inter-

neurones that communicate to GnRH cells (30,44–47). The VPAC2
receptor is expressed by a subset of GnRH neurones (48,49) and

VIP can directly modulate the activity of GnRH cells in a time-of-

day related manner, therefore controlling the timing of LH release

(50–53). Alteration of VIP signalling both in vivo and in vitro causes

marked changes in GnRH, LH and gonadotrophin release (54–56),

as well as in the magnitude and timing of the LH surge (55,57).

Evidence also suggests that SCN VIP signalling to neuroendocrine

dopaminergic neurones is involved in modulating pituitary PRL

release (58). Indeed, paraventricular nucleus (PVN) dopaminergic

neurones express the VPAC2 receptor, hypothalamic VIP expression

is in phase with PRL release, and work in rodents indicates that the

activity of PVN dopaminergic cells suppresses pituitary PRL secre-

tion (59–61).

There is also strong evidence in rodents suggesting that AVP sig-

nalling in the POA modulates the activity of GnRH neurones and is

involved in PRL and LH secretion. AVP fibres contact GnRH neuro-

nes, and AVP secretion occurs in phase with GnRH release (45,62).

Furthermore, work in female rats shows that mRNA for the AVP

receptor (V1aR) is expressed by a small population of POA GnRH

neurones (63) and blockade of AVP receptors attenuates LH and

PRL release (64). In SCN-lesioned animals, time-of-day-dependent

AVP administration in the medial preoptic area rescues the LH

surge (65–67). In the CLOCK-D19 mutant mouse, where the activity

of the circadian clock is severely disrupted, and the LH surge is

dampened, the expression of AVP and V1aR in the SCN is also sig-

nificantly reduced (68). Administration of AVP into the POA of these

animals rescues the LH surge (68).

In the past few decades, it has also become increasingly clear

that electrical and TTFL activity of SCN neurones contributes to the

regulation of seasonal rhythms (69). Day-length encoding by the

SCN relies strongly on the plasticity of its neuronal network (70),

which allows this brain structure to shorten and lengthen the

phase relationship among its neurones, coding for the short winter

and long summer days, respectively. This regulates the activity of

key regions of the body that are important for seasonal changes in

reproductive function, such as the seasonal release profile of the

pineal gland neurohormone melatonin (69).

Taken together, these observations link the activity of the SCN,

the plasticity of its neural circuits and the rhythmic release of some

of its neuropeptides with the fundamental control of neurohor-

mone secretion.

Extra-SCN endocrine circadian clocks

The discovery and understanding of the inner workings of the TTFL

come with the realisation that, although the SCN harbours the princi-

pal daily clock, many areas of the brain and body also have local cir-

cadian clockworks (71,72). These act in concert with the SCN to give

rise to the extended circadian system. Indeed, core circadian clock

genes are active in several neuroendocrine regions of the brain, pitui-

tary and pineal glands (73–76), as well as in a number of peripheral

endocrine tissues, such as the adrenal gland, testis and ovary (77,78).

At the single cell level, clock gene expression is detected in GnRH and

neuroendocrine dopaminergic neurones (79,80).

Furthermore, the daily expression profile of key clock genes, such

as Per1, reveals rhythmic activity in several neuroendocrine brain

regions and individual neurones, such as in dopaminergic cells that

control PRL secretion (79,81–83). Studies using pituitary explants

from transgenic animals bearing bioluminescent reporters of circa-

dian clock activity have conclusively shown that pituicytes can sus-

tain intrinsic circadian rhythms in clock gene expression persisting

over several days (84,85). Rhythmic expression of core clock genes

is also reported in the pineal gland (86), in hypothalamic GnRH

neurones (87–89) and in immortalised GnRH cell lines (80,87),

where they serve to regulate GnRH cell activity and gate the sensi-

tivity of these cells to daily hormonal signals (90,91). Disruption of

clock gene activity in GnRH cell lines interrupts daily GnRH release

in these cells (91) and, in preoptic-explants from Bmal1 knockout

mice, the stimulating drive in GnRH release is significantly compro-

mised (88). Clock gene mutant rodent models are now confirming

that disruption of appropriate circadian timing signals impairs

hypothalamic and peripheral hormone secretion and interferes with

reproductive success (92,93).

© 2015 The Author. Journal of Neuroendocrinology published by
John Wiley & Sons Ltd on behalf of The British Society for Neuroendocrinology

Journal of Neuroendocrinology, 2015, 27, 567–576

570 M. D. C. Belle



Taken together, these observations demonstrate that the function-

ing of local circadian clocks in neuroendocrine tissues and at the level

of the SCN is important for normal neuroendocrine function. These

neuroendocrine clock circuits may not only serve as gating mecha-

nisms that determine whether and how neuroendocrine cells respond

to periodic SCN time cues, but also provide tissue-specific local circa-

dian time signals. This may influence output feedback signals from

these tissues to the SCN (94). As such, the extended circadian system

interacts to maintain optimal daily temporal alignment in physiology

across the many tissues and organ systems of the body, although

how SCN output molecules affect circadian gene expression (e.g.

Per1) in neuroendocrine cells remains unknown.

Neuroendocrine feedback to the SCN: neuroendocrine
neurones talking back

Although there is limited evidence of direct neuroendocrine cell

projections to the SCN (95–98), several rhythmic hormonal output

signals originating from neuroendocrine cell populations are known

to act in the SCN. For example, in all animal species studied thus

far, including humans, high-affinity receptors for melatonin, oestro-

gen, androgen and progesterone are present in the SCN (99–104).

These hormones can act to modulate the electrical activity of SCN

neurones and adjust the phase of the SCN clockworks (105–109).

Furthermore, enzymatic conversion of these hormones, such as the

aromatisation of testosterone to oestrogen, provides additional

complexity to hormonal signals conveyed to the SCN (110). How-

ever, unlike the well-studied actions of feedback signals (e.g. NPY,

serotonin and melatonin) on SCN clock functions, it remains

unknown whether the phase of the molecular clockwork and the

resulting electrical state of SCN neurones determines whether and

how sex hormones act in the SCN. Moreover, how neuroendocrine

feedback signals affect SCN circadian gene expression is also not

known. Thus, more work is needed before the effects of these hor-

mones on the SCN clockwork can be fully determined.

Although significant recent progress in circadian neuroendocrine

studies now places the activity of the newly-identified kisspeptin

and RFamide-related peptide at the core of the communication

conduits interfacing SCN signals with neuroendocrine activity

(111,112), many key questions still remain. For example, how does

circadian information encoded by the hands of the clock (TTFL)

translate into meaningful outputs that can be processed by the rest

of the brain, including neuroendocrine cells, and how does the

brain talk back to sculpt circadian timing in SCN clock neurones?

Furthermore, retinal melanopsin neurones that project to the SCN

via the RHT also form functional connectivity with a number of

neuroendocrine hypothalamic regions (113,114). Therefore, can

environmental light directly modulate the activity of hypothalamic

neuroendocrine clock neurones and influence circadian and sea-

sonal timing in these cells? To achieve such communication, signals

travelling to and from the TTFL both in the SCN and neuroendo-

crine clock neurones must flow through the cell membrane (Fig. 3).

However, the mechanistic nature of these signals that interweave

the molecular clockwork and membrane activity to produce physio-

logical circadian rhythms is largely unknown. This is a dilemma that

is now hampering major progress in circadian biology research,

although some progress has been made in the SCN. Below, refer-

ence is made to the membrane clock as a model for addressing the

mechanisms of information flow between the membrane and TTFLs:

the all-important electrical–genetic interplay.

The membrane clock

Over the past 10 years, pioneering studies have revealed that the

membrane properties, activity and excitability of SCN neurones are

not only the proximal target of the TTFL, but also act to transmit

information from the external world and body to the circadian

molecular clockwork (Figs 2 and 3). Indeed, work on mammalian

and Drosophila clock neurones strongly supports the concept that

the electrical activity of clock neurones is integral to the function-

ing of the intracellular molecular clockwork (115–119). Indeed, the

electrical state of clock neurones can impose time-of-day stamps

onto its transcriptional programmes, thereby acting as an intrinsic

zeitgeber (time-giver) (120). Studies performed in cultured neonatal

SCN slices have also established a tight link between the TTFL activ-

ity, as measured by bioluminescence imaging, and membrane excit-

ability in clock neurones. Here, abolishing AP discharge by

tetrodotoxin (TTX) blockade of sodium channel activity, which also

stops AP-dependent neurone-to-neurone communication, desyn-

chronised the SCN clock and dampened TTFL rhythm amplitude

within individual SCN neurones (121,122). Interestingly, however,

Environment and/or
homeostatic systems

TTFL

SCN
neurone

Neuroendocrine
cell

TTFL

Fig. 3. A schematic view of communication between the transcription–

translation molecular feedback loop (TTFL) in the suprachiasmatic nucleus

(SCN) and neuroendocrine cells through the membrane clock. In this model,

signals travelling to and from the TTFL both in the SCN and neuroendocrine

clock neurones must flow through the cell membrane (bidirectional arrows)

by unknown mechanisms. This process may underlie how the SCN TTFL out-

puts circadian signals to neuroendocrine cells (blue solid axon and arrow)

and how neuroendocrine TTFL feedback to adjust circadian timing in SCN

neurones (orange dotted axon and arrow). Through similar unknown pro-

cesses, environmental and/or homeostatic cues can sculpt the activity of the

TTFL in SCN and endocrine neurones (grey solid and dotted axon terminals,

and arrows). Solid and broken axons/arrows show known and tentative links,

respectively.
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similar analysis using SCN brain slices from young adults showed

that TTX administration had much less dramatic effects ((123); A. T.

Hughes and H. D. Piggins, unpublished observations). In support,

in vivo chronic TTX infusion in adult animals also failed to interfere

with SCN function (124). This highlights the complex relationship

between the TTFL and membrane clock and/or suggests develop-

mental issues within the SCN neuronal network that require careful

consideration (125). Therefore, from the paracrine influence to the

electrical–genetic interplay in single SCN neurones, the SCN neural

network plays a critical role in adult SCN function (70).

Nevertheless, growing evidence supports the idea that informa-

tion flow between the membrane and TTFL may well underlie the

processes by which neurotransmitters that are released from retinal

cells and the body’s homeostatic systems sculpt the timing preci-

sion in the SCN. TTFL–membrane communication might also under-

pin how the SCN network organises excitability of its neurones to

accommodate extrinsic cues to communicate circadian and seasonal

signals to extra-SCN TTFLs in the body (Fig. 3). Our limited mecha-

nistic understanding of how this is achieved, however, may be

inherently linked with the way we measure and report excitability

in clock neurones, primarily in the SCN.

Further considerations: measuring electrical excitability
in SCN neurones

Although the rate at which SCN neurones discharge APs is rou-

tinely used to report clock phase and functionality, measurement of

AP firing frequency alone is not providing us with the complete

picture. This is because SCN neurones also show overt day–night

differences in their RMP and input resistance (Fig. 1) (126), which

are other important modes of excitability in SCN neurones. Relying

on AP firing rate measurements alone means that excitability in

SCN neurones cannot be assessed when they are not producing

APs; even in the up state during the day, single SCN neurones gen-

erate APs for 4–6 h only and not for the duration of the light

phase. Further complexity arises when considering that not all SCN

neurones contain a functional molecular clock (70).

Indeed, targeted recording of fluorescence tagged SCN neurones

[from mice in which enhanced green fluorescent protein (EGFP)

indicates Per1 promoter activity (Per1-EGFP+ve cells)] (127) demon-

strates that the electrical activity of SCN neurones is more complex

and richer than was first assumed (128). It was revealed that the

well-described day–night difference in AP generation in the SCN

mostly comprises the activity of neurones in which the EGFP con-

struct cannot be detected (EGFP-ve cells: presumed nonclock neuro-

nes). Per1-EGFP+ve SCN neurones stop discharging APs in the

middle of the day as their RMP becomes too positive (~ �30 mV)

to sustain AP generation. Instead, through reducing the activity of

their calcium-activated potassium channels, these neurones enter a

state of intrinsic depolarisation silencing (depolarisation blockade),

producing L-type calcium channel dependent depolarised low-

amplitude membrane oscillations (DLAMOs) instead of APs (128)

(Fig. 1B). These modes of excitability may be important for the nor-

mal functioning of the circadian clock, and may be necessary to

modulate intracellular calcium levels in SCN neurones, a key signal-

ling molecule in SCN circadian rhythm generation processes (3,4).

Indeed, the relative inability of TTX to suppress TTFL rhythms in

young adult SCN neurones (123) suggests that continuous AP pro-

duction may not be the sole mechanism for intercellular communi-

cation and calcium signalling in this brain structure.

In recent years, several studies using genetically encoded calcium

sensors (e.g. GCaMP3) or synthetic fluorescent probes (e.g. Fura-2)

have documented the steady-state intracellular calcium [Ca2+]i con-

centration in SCN neurones. Most (129–132), but not all (133),

reported higher [Ca2+]i levels during the day than at night. Further-

more, the concentration of [Ca2+]i reported by these studies across

the day and at night is not consistent. This ranges from 191 to

440 nM during the day and from 50 to 119 nM at night. Moreover,

although, under some experimental conditions, TTX abolished the

day–night difference in [Ca2+]i levels (134), in others, TTX had no

effect (131). Although, across experiments, animal age (neonate

versus young adult tissues), species differences (rat versus mouse)

and [Ca2+]i detection methods (variety of genetically encoded cal-

cium sensors used and Fura-2) may account for some of these dis-

crepancies, there is no doubt that heterogeneity in SCN neurones

and as yet unconfirmed excitability states of SCN cells (AP versus

TTX insensitive depolarised DLAMOs) contribute significantly to

these apparent inconsistencies. In support, from a single study by

Hong et al. (135), TTX suppression of day–night [Ca2+]i rhythms

was seen in only half of SCN neurones, leaving daily cycles of this

neuronal excitability measure unaffected in others.

Although the steady-state [Ca2+]i concentration induced by DLA-

MOs is yet to be described, this electrical state may be crucial for

optimal daytime calcium signalling and circadian rhythm generation

by clock genes (115,119). Indeed, the predicted [Ca2+]i concentration

during DLAMOs (115) is consistent with the higher [Ca2+]i concen-

tration and calcium channel conductance values [440 nM (131) and

> 40 pA (136), respectively] measured experimentally in SCN neuro-

nes. An extreme DLAMO-like depolarised state (~ �30 mV) is

observed in cerebellar and habenular neurones (137–139) and can

be induced in central amygdala neurones (140). Although we have

yet to determine whether single neurones in these brain areas are

cell-autonomous circadian oscillators, clock genes are expressed in

these brain regions (71,81,141).

Taken together, these observations show that electrical signalling

in the SCN is complex and that extreme depolarisation in central

neurones extends beyond the borders of the SCN. This raises the

possibility that these severe depolarised electrical states are more

widespread than previously assumed and may be necessary for nor-

mal brain function. Studying these electrical states may reconcile

some of the apparent inconsistencies seen in SCN neurophysiology

and may extend our understanding of the all-important electrical–

genetic interactions in this brain structure, which may also high-

light functionality in other brain circuits containing circadian clock

genes. Indeed, to date, we have no records of day–night electrical

excitability and [Ca2+]i levels in neuroendocrine neurones. We also

have little understanding of whether and how neuroendocrine cells

change their excitability to SCN and other hormonal cues over the

circadian day, and whether changes in excitability of these cells can

influence their genetic programmes (Fig. 3).
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Conclusions and perspectives

Despite our growing understanding of the cell-autonomous pro-

cesses that drive circadian rhythms in clock gene expression, our

knowledge of how the molecular clockwork interacts with the mem-

brane to drive daily changes in excitability of SCN neurones is limited.

Furthermore, the nature of membrane feedback signals that convey

external information to the SCN molecular clockwork is also

unknown. Clock genes are found in many of the body’s tissue and

organ systems, and these extra-SCN clocks are considered to be vital

in providing local circadian timing in a tissue-specific manner (142).

Understanding the nature of the signals responsible for reciprocal

connectivity between the molecular clockwork and membrane activity

will unravel how circadian rhythms are generated and communicated

in SCN and endocrine neurones. Furthermore, this will also reveal

how circadian gene activity in neuroendocrine cells gates excitability

in these cells to hormones, SCN signals and other physiological

demands. This is important if we are to understand how circadian

signals influence reproductive neuroendocrinology.

The observation that SCN neurones can convey circadian time

cues to each other and to the body both by neural and paracrine

signals demonstrates the diversity and richness of communication

‘modes’ in the SCN. Targeted recording of SCN neurones is also

adding to our understanding that the electrical repertoire of SCN

neurones is much broader than first appreciated. This highlights the

challenges facing chronobiologists, physiologists, endocrinologists

and neuroscientists in understanding circadian rhythm generation

and communication in both the SCN and its targets. It is therefore

prudent that, in addition to AP frequency measurements, multiple

parameters of membrane excitability are assessed, preferably simul-

taneously, when interrogating the electrical state of SCN and extra-

SCN neurones. This will greatly increase our understanding of the

processes governing cross-talk between the master circadian clock

and the neuroendocrine system, and how these signalling conduits

are influenced by external cues.
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