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Entanglement classifier in chemical reactions
Junxu Li and Sabre Kais*

The Einstein, Podolsky, and Rosen (EPR) entanglement, which features the essential difference between classical and
quantum physics, has received wide theoretical and experimental attentions. Recently, the desire to understand and
create quantum entanglement between particles such as spins, photons, atoms, and molecules is fueled by the de-
velopment of quantum teleportation, quantum communication, quantum cryptography, and quantum computation.
Although most of the work has focused on showing that entanglement violates the famous Bell’s inequality and its
generalization for discrete measurements, few recent attempts focus on continuous measurement results. Here, we
have developed a general practical inequality to test entanglement for continuous measurement results, particularly
scattering of chemical reactions. After we explain how to implement this inequality to classify entanglement in
scattering experiments, we propose a specific chemical reaction to test the violation of this inequality. The method
is general and could be used to classify entanglement for continuous measurement results.
INTRODUCTION
Entanglement, which is a quantum mechanical property that describes
a correlation between quantummechanical systems that has no classical
analog, was introduced by Shrödinger in 1935 (1). This phenomenon
was the subject of the famous paper by Einstein, Podolsky, and Rosen,
known as the EPR paradox (2), where they considered such behavior to
be impossible and argued that the accepted formulation of quantum
mechanics must therefore be incomplete. The debate lasted for nearly
30 years until the proposal of Bell’s inequality, which is violated by en-
tanglement (3). Entanglement effect was verified experimentally (4) in
tests where the polarization of photons and spins of entangled particles
were measured to be statistically violating Bell’s inequality. Nowadays
entanglement has become an extremely important physical resource for
many applications in quantum communication (5–8) and quantum
computation (9–15).

Two-particle entanglement has long been demonstrated experi-
mentally, and recently, there are notable achievements to generate en-
tanglement between three and more spatially separated particle
systems. For instance, a 10-photon entanglement system was success-
fully generated experimentally in 2016 (16, 17). There are also obser-
vations of entanglement in quantum dots (18), nitrogen-vacancy center
(NV) in diamond (19), trapped ions (20), and even entanglement be-
tween photon and quantum dots (21).

It is very important in all of these experiments to be able to quan-
tify or measure the entanglement. Several methods have been pro-
posed to address this question such as entanglement witnesses
(22), entropic inequalities (23), and quantum state classifier based
on machine learning (24). However, most of these methods are de-
signed for discrete measurement results. Although there are a few
successful theoretical analyses for continuousmeasurement results, they
have focusedmainly on photonic systems (25–27). Themost widely used
method to classify entanglement is quantum tomography, by which one
could obtain the density matrix of the system (28) from experimental
measurements. However, quantum tomography is more time- and
resource-consuming as it scales exponentially with the system size (29).

Here, we propose a general practical method to classify entangle-
ment for continuous measurement results. We introduce auxiliary
functions to simplify the complicatedmeasurement results and develop
a generalized Bell-type inequality for continuous measurements. We
also propose an experimental design to test the method in scattering of
chemical reactions. Here, we designed a practicable experiment based
on the recent scattering experiments of the oriented hydrogen deuteride
(HD) and H2 molecules (30). On the basis of the recent experimental
data of Zare and co-workers (30), we simulate the possible measure-
ment results and demonstrate how to distinguish entangled states from
unentangled ones. Moreover, our work also provides the possibility
to classify entanglement in other chemical reactions as suggested by
Brumer and co-workers for entanglement-assisted coherent control
in chemical reactions (31, 32).
BELL’S INEQUALITY FOR CONTINUOUS MEASUREMENT RESULTS
We start by preparing N-particles in a pure state ∣F〉. If we perform an
r-th measurement on them, then they will collapse on the eigenstate set
f∣f1r 〉;∣f2r 〉;⋯;∣fnr 〉g. Then, we could expand ∣F〉 as

∣Fi ¼ ∑
n

i¼1
air∣f

i
ri ð1Þ

where ∣firi is the i-th eigenstate corresponding to the measurement r,
and ∣F〉 is normalized, ∑n

i ∣a
i
r∣

2 ¼ 1. Performing measurement r, we
can obtain themeasurement results (denoted here by spectrum) S(∣F〉
〈F ∣, r, x), where (∣F〉〈F∣ is the density matrix, r represents the mea-
surement r, and the variable x could be, for instance, the scattering angle
in the scattering experiment.

The distribution of the measurement results (spectrum) can be
written as

S ∣Fð i F∣; r; xh Þ ¼ ∑
n

i
∣air∣

2⋅ S ∣fir
� �

fir∣; r; x
� � ð2Þ

where S ∣fir
� �

fir∣; r; x
� �

is the spectrumof the state∣firiunder the r-th
measurement.

In the case of the spin system to be discussed in the Supplementary
Materials, a quite common example satisfying Eq. 2 is themeasurement
in the Stern-Gerlach (SG) experiment (33) of spin 1

2 particles. If the par-
ticles are prepared in the pure state, then

∣Fi ¼ aþz ∣↑i þ a�z ∣↓i
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Then, providing enough particles to go through that apparatus, the
final spectrum can be written as

S ∣Fð i F∣; r; xh Þ ¼ ∣aþz ∣
2⋅ S ∣↑ð i ↑∣; z; xh Þ þ

∣a�z ∣
2⋅ S ∣↓ð i ↓∣; z; xh Þ

Here, z represents the direction of the magnetic field in the SG ap-
paratus, and S(∣ ↑ 〉〈 ↑ ∣, z, x) and S(∣ ↓ 〉〈 ↓ ∣, z, x) describe the
distribution of particles detected at different locations, x, on the screen
for particles at states ∣ ↑ 〉 and ∣ ↓ 〉, respectively.

If these particles are prepared as a mixed state whose density matrix
is given by

r1 ¼ ∑
m

i¼1
pi∣Fii Fi∣h ð3Þ

where∑m
i¼1pi ¼ 1. The spectrumunder the r-thmeasurement is given by

Sðr1; r; xÞ ¼ ∑
m

i¼1
piS ∣Fið i Fi∣; r; xh Þ ð4Þ

In the following section, we will assume that Eqs. 2 and 4 are always
satisfied, and we will mainly focus on two-particle systems. Generally, if
we use ∣Y〉 to represent a pure state of the two-particle system, then its
density matrix can be written as

r ¼ ∑
m

i¼1
pi∣Yii Yi∣h ð5Þ

with

∣Yii ¼ ∑
j1;j2

ciðk1; k2; j1; j2Þ∣f j1
k1
f j2
k2
i ð6Þ

where∑m
i¼1 pi ¼ 1and ∑j1, j2∣ci(k1, k2, j1, j2)∣

2 = 1. Here,∣f j1
k1
i is the

j1-th eigenstate of a single particle under the k1-th measurement,
and ∣Y〉 is expanded in the basis set f∣f j1

k1
f j2
k2
〉g. In this section, for

simplicity, we only consider the situation that a single particle has just
two eigenstates ∣fþr i and ∣f�r i under the r-th measurement. Positive
partial transpose criterion (or the Peres-Horodecki criterion) (34) offers
us a method to measure entanglement in such a two-particle system: If
the partial transpose of the density matrix rTB has any non-negative
eigenvalue, then r is entangled (34, 35).

Now, we can rewrite Eq. 6 as

∣Yi i ¼ ciðr; t;þþÞ∣fþr fþt i þ ciðr; t;þ�Þ∣fþr f�t i
þ ciðr; t;�þÞ∣f�r fþt i þ ciðr; t;��Þ∣f�r f�t i ð7Þ

Suppose that these particles are divided into two channels, and
the r-th and t-th measurements are carried on for channels I and
II, respectively, one can obtain the spectrum based on Eq. 2 as

Sðr; r; t; x1; x2Þ ¼ ∑
m

i¼1
pi∣ciðr; t;þþÞ∣2⋅S ∣fþr

� �
fþr ∣; r; x1
� �

S ∣fþt
� �

fþt ∣; t; x2
� �þ

∑
m

i¼1
pi∣ciðr; t;þ�Þ∣2⋅S ∣fþr

� �
fþr ∣; r; x1
� �

S ∣f�t
� �

f�t ∣; t; x2
� �þ

∑
m

i¼1
pi∣ciðr; t;�þÞ∣2⋅S ∣f�r

� �
f�r ∣; r; x1
� �

S ∣fþt
� �

fþt ∣; t; x2
� �þ

∑
m

i¼1
pi∣ciðr; t;��Þ∣2⋅S ∣f�r

� �
f�r ∣; r; x1
� �

S ∣f�t
� �

f�t ∣; t; x2
� �

ð8Þ
Li and Kais, Sci. Adv. 2019;5 : eaax5283 2 August 2019
In the standard Bell’s inequality, the experimentally measured
correlation is defined as

Eðr; tÞ ¼ Nðþ;þÞ þ Nð�;�Þ � Nðþ;�Þ � Nð�;þÞ
Nðþ;þÞ þ Nð�;�Þ þ Nðþ;�Þ þ Nð�;þÞ ð9Þ

where N( + , + ) represents number of measurements yielding “+” in
both measurement r and measurement t of channels I and II.

These measurement results are used to form the well-known
Clauser-Horne-Shimony-Holt (CHSH) inequality (36)

∣Eðr; tÞ þ Eðr; sÞ þ Eðq; sÞ � Eðq; tÞ∣≤2 ð10Þ

For continuous measurement results, we construct an auxiliary
function V(r, t, x1, x2) to simplify calculating the correlation function
E(r, t). The functional form of the auxiliary function can be found in
the SupplementaryMaterials. The generalized standard Bell’s inequality
for continuous variables takes the following form

E ¼∣∫Sðr; r; t; x1; x2ÞVðr; t; x1; x2Þdx1dx2 þ

∫Sðr; q; t; x1; x2ÞVðq; t; x1; x2Þdx1dx2 þ
∫Sðr; r; s; x1; x2ÞVðr; s; x1; x2Þdx1dx2 �
∫Sðr; q; s; x1; x2ÞVðq; s; x1; x2Þdx1dx2∣≤2 ð11Þ

If this inequality (Eq. 11) is violated, then the system is entangled.
EXPERIMENT DESIGN
Recently, Zare and co-workers (30) reported the rotationally inelastic
collisions between HD and H2, D2 molecules at very low temperature.
In their scattering experiments, the ∣H〉 (orientation of molecules is
parallel to their propagating direction) and ∣V〉 states (orientation of
molecules is vertical to their propagating direction) lead to very different
scattering results, which offers us here a possible setup to classify entan-
glement between molecules based on the scattering results. In this sec-
tion, we will propose an experimental setting to classify entanglement
with continuous measurement results.

In the following simulations, we consider four measurements with
respect to four different sets of eigenstate basis. The first one is the
scattering measurements corresponding to eigenstates ∣H〉 and ∣V〉,
which we note as measurement Z. The second one corresponds to
the eigenstates ∣þi ¼ 1

2 ð∣H〉þ∣V〉Þ and ∣�i ¼ 1
2 ð∣H〉� ∣V〉Þ ,

which we note as measurement X. The other two measurements are
taken with the ZþXffiffi

2
p and Z�Xffiffi

2
p bases.

Measurement results in the Z basis could be taken from the exper-
imental results of Zare and co-workers (30), which are continuous as a
function of the scattering angles. We assume that the measurements in
the X basis and Z�Xffiffi

2
p are projection measurements, so that their results G

are discrete, which is very common in the experimental setup. To check
the derived inequality (Eq. 11), we assume that there is another
scattering experiment for measurement ZþXffiffi

2
p , whose results satisfy the

Gaussian distribution. In Fig. 1, we show the ideal results (scattering
angle q) of measurement Z (upper part) and ZþXffiffi

2
p (lower part).

For our simulations, we start by preparing the oriented HD mole-
cules∣v = 1, j= 2,m= 0〉 in state∣H〉, whose orientation is parallel to its
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propagation direction (y axis in Fig. 2A), and state ∣V〉, whose orienta-
tion is vertical (z axis in Fig. 2A). One molecule in group I and another
in group II are combined together and then prepared at different states
(Werner state, superposition state, or mixed state), as shown in Fig. 2B.
For each pair, HDmolecules are divided for two channels. In channel I,
theywill scatterwithH2 clusters. IfHDcollideswithH2, then the orange
sensors will measure the scattering particles, and the scattering results
will be performed by measurement Z. If the HD does not collide with
H2 molecules, then the gray sensor will carry on an X measurement
(Fig. 2C). In channel II, the scattering process will go through mea-
surement ZþXffiffi

2
p , and HD that are not scattered are measured by Z�Xffiffi

2
p .
SIMULATION RESULTS
To perform the simulations, we are going to assume that one can pre-
pare the states from the two oriented molecular beams into the combi-
nations ∣H〉 ∣H〉; ∣V〉 ∣ V〉 and ∣ + 〉 ∣ + 〉, ∣ − 〉 ∣ − 〉 and, finally, the
Werner state

rwðpÞ ¼
p
2
ð ∣HV〉þ ∣VH〉 Þð 〈HV∣þ 〈VH∣ Þ þ 1� p

4
I ð12Þ
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The free parameter p describes entanglement of theWerner state.
p = 0 indicates separability, entanglement for p≤ 1/3, and Bell states
of maximum entanglement at p = 1 (37).

If enoughHDmolecule pairs are prepared asmentioned above, then
the predicted spectra for different initial states are shown in Fig. 3. The
simulation is based on data of scattering experiment between HD and
H2 clusters taken from (30) (scattering spectrum; Fig. 4, A and B).

We can calculate the densitymatrix rw for differentmeasurements.
For example, if both particles in channels I and II are scattered, then
the measurement in the bases ∣H〉 and ∣V〉 gives

rw ¼
∣HH i
∣HV i

∣HH i∣HV i∣VH i∣VV i
1� p
4
0

0
1þ p
4
p

0
p
2

1þ p

0
0
0

0
BBBB

1
CCCC ð13Þ
∣VH i

∣VV i
0
0 2

0
4
0

1� p
4

@ A
If we change the basis set, then the density matrix in the bases ∣ + 〉

and ∣ − 〉 gives

rw ¼
∣þþ i
∣þ� i

∣þþ i∣þ� i∣�þ i∣�� i
1þ p
4
0

0
1� p
4

0
0

1� p

� p
2
0

0
BBBB

1
CCCC
∣�þ i

∣�� i
0
� p
2

0
0

4
0

0
1þ p
4

@ A
ð14Þ

We could do the same expansion for different measurements. On
the basis of Eq. 8, we can predict the results of different initial states, as
shown in Fig. 3. The first column represents the simulation results
when molecules in both channels are scattered. The second column
represents simulation results when HD that goes through channel I
is scattered, but not for channel II. The third column represents
simulation results when HD that goes through channel II is scattered,
but not for channel I. The last column represents results when parti-
cles are not scattered.

The state∣HH〉 can be easily classified as its special spectrum in the
first column (Ch I, scattered; Ch II, scattered), and state ∣ + + 〉 shows
significant difference with others in the second (Ch I, scattered; Ch II,
not scattered) and third columns (Ch I, not scattered; Ch II, scattered).
For theWerner state, they share the same spectrum in the second and
third columns, yet their spectrum in the last column (Ch I, not
scattered; Ch II, not scattered) offers us some features: Counts for
S1þS

2
þ and S1�S

2
� will decrease as p increases. Also, the difference in

the first column, where there is a subpeak (around q1 = 30, q2 = 90),
increases when p increases. On the basis of these features, it is possible
to distinguish them from each other. However, if the initial state is a
complexmixed state, then it is impossible for us to derive the initial state
because there are infinite possible results of ∑m

i¼1 pi∣ciðr; t;±±Þ∣2 only
with restriction ∑m

i¼1 pi ¼ 1 and ∑j1,2 = ±∣ci(r, t, j1, j2)∣
2 = 1. However,

with more information of pi, there is a chance to resolve the quantum
state. For example, if we have already known that the pairs are at the
Werner state, then we could obtain the quantum state, as shown in
the simulation work.
Fig. 1. Results of twodifferentmeasurements. Ideal results ofmeasurement Z (top)
and measurement ZþXffiffi

2
p (bottom). The results of measurement Z (top) are calculated
from (30) (Fig. 4, A and B). The blue line fH(q) represents the scattering angle
distribution of particles at state ∣H〉, and the red line fV(q) represents the scattering
angle distribution of particles at state∣V 〉. For measurement ZþXffiffi

2
p , its two eigenstates

are∣Yþ
R iand∣Y�

R i. We assume that the scattering angle distribution f±(q) of∣Yþ
R i

and∣Y�
R i satisfy the Gaussian distribution. f+(q)º exp [ − (q − 30)2/402] (blue line in

the bottom figure); f−(q) º exp [− (q − 150)2/402] (red line in the bottom figure).
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MATERIALS AND METHODS
Here, we show how to obtain the simulation results. As an example,
we will take the first row in Fig. 3 (state ∣HH〉: channel I, scattered;
channel II, scattered). Consider the HD molecule that goes through
channel I. If the molecule HD scatted with a probability Pscatter, then
Li and Kais, Sci. Adv. 2019;5 : eaax5283 2 August 2019
the random number generator (RNG), where we assume that the
RNG produces randomnumbers with uniform distribution, produces
a number a1, 0≤ a1≤ 1. If a1≤ Pscatter, then this HDmolecule with a
specific state will collide with H2 clusters; otherwise, it will be measured
by the gray sensor as shown in Fig. 2. For the scattered HD molecules,
Group I state

Pumps

Pumps

Stokes

Stokes

Propagating

Propagating

Group II state

z

y
x

z

y
x

z

y
x

z

y
x

(one from group I and another
from II)

HD pairs are prepared at
different states

(entangled, Bell state,
Warner state,

superposition state...)

Channel I

Scattering and measurement

Channel II

Scatter with H2 clusters
detect scattering spectrum

Sensor to count scattered particles
(measurement: Z)

Projection measurement
(measurement: X)

Measurement 1 (scattered) : (Z + X)/   2

Measurement 2 (not scattered) : (Z − X)/   2
Another scattering experiment

A

B C

D

Fig. 2. Sketch of the experiment design. (A) HD molecules are prepared in the state ∣v = 1, j = 2, m = 0〉 using Stark-induced adiabatic Raman passage (SARP) (30).
Then, we can divide them into two molecular beams (two groups). If we apply the Pumps and Stokes electric field along the y axis, then HD in group I is set at state ∣H〉
(orientation of HD is along the y axis, parallel to the direction of its propagation). The molecule HD in group II is set at state ∣V〉 (orientation of HD is along the z axis,
norm to the direction of its propagation). One molecule from group I and another from group II are combined together, and then, HD pairs are prepared at different
initial states (if we do nothing, then these pairs will stay on a mixed state ∣H〉 ⊗ ∣ V 〉). (B) The specific prepared state will go through two channels, molecule in channel I
will scatter with H2 clusters, where the bond axis of H2 is distributed isotropically. (C) Sensors (orange) are used to detect scattered particles and count numbers for each
angle (Z measurement). Molecules that are not scattered will go to another sensor (gray), by which they will be measured on the eigenstates ∣ + 〉 and ∣ − 〉 (X mea-
surement). (D) In channel II, we set another experiment, so that scattered prepared HD molecules with isotropically distributed H2 clusters are measured under ZþXffiffi

2
p , while

the others are measured under Z�Xffiffi
2

p .
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the scattering spectrum (measurement distribution) is fH(q), as
shown in Fig. 1, where q represents scattering angles, and we can
get fH(q) by fitting the results in the experimental measurements
of Zare and co-workers (30). If the HD molecule at state ∣H〉 is
scattered, then the following process is used to generate its scatter-
ing angle: A random angle 0≤ q≤ 180 and a random number a2, 0≤
a2 ≤ 1 are produced by RNG. If a2 ≤ fH(q), then we accept q as the
scattering angle; otherwise, this process is repeated. For the molecules
that are not scattered, as∣Hi ¼ 1ffiffi

2
p ð∣þ 〉þ ∣� 〉Þ, the measurement

result has half possibility to be S+ and another half to be S−.We can use
Li and Kais, Sci. Adv. 2019;5 : eaax5283 2 August 2019
one random number to simulate the measurement results of these
unscattered molecules.
DISCUSSION AND CONCLUSION
In the measurement setting of the Werner state, Eq. 11 is violated
when p > 1ffiffi

2
p . Meanwhile, we know that the Werner state will be an

entangled state when p > 1
3. Hence, violation of Eq. 11 guarantees ex-

istence of entanglement, yet the nonviolation of the inequality does
not exclude the possibility of entanglement.
Fig. 3. Simulation results of the scattering experiments. The figure shows histograms of the simulation count results (z axis in the figure) as a function of different
measures in channel I and channel II. Row 1: The spectrum for the separable state ∣HH〉, both HD molecules are in the state ∣H〉. Row 2: The spectrum for separable state
∣VV〉. Row 3: The spectrum for the superposition state ∣ + + 〉, where ∣þi ¼ 1ffiffi

2
p ð∣H〉þ ∣D〉Þ. Row 4: The spectrum for the superposition state ∣ − − 〉, where ∣�i ¼

1ffiffi
2

p ð∣H〉� ∣D〉Þ. Rows 5, 6, and 7: The spectrum for the Werner state rw(p). When p = 1, the prepared pairs are at the Bell state 1ffiffi
2

p ð∣HD〉þ ∣DH〉Þ.
5 of 7
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As shown in Fig. 4, the simulation result (red) E is very close to
the theory result (black). The difference is mostly due to the statis-
tical error (please refer to the Supplementary Materials for method
in simulation). We studied 1 × 106 particles and divided scattering
angles into 18 slots uniformly. We also want to mention that, if we
divide the scattering angle into too many or too few slots (≤10 or
≥50), then the simulation result E will be much further from the
theory prediction.

In summary, we have generalized the standard Bell’s inequality
from discrete to continuous measurement results. We designed an
experiment setting as a potential application of violating the Bell’s
inequality. We performed theoretical simulations to show the valid-
ity of the proposed experiment. The method is general and might be
used to design and classify entanglement in newmolecular scattering
experiments.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/8/eaax5283/DC1
Section SA. Bell’s inequality for continuous measurement results
Section SB. Details of the simulation method
Section SC. An example of spin 1

2 particles
Fig. S1. Sketch of Bell’s experiment of spin 1

2 particles.
Fig. S2. Simulation result (1z2z).
Fig. S3. Simulation result (1z2x).
Fig. S4. Simulation result (1x2z).
Fig. S5. Simulation result (1x2x).
Fig. S6. Simulation result (Werner state, r = 0.6).
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