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Abstract

Motivation: The computational modeling of peptide display by class I major histocompatibility

complexes (MHCs) is essential for peptide-based therapeutics design. Existing computational

methods for peptide-display focus on modeling the peptide-MHC-binding affinity. However, such

models are not able to characterize the sequence features for the other cellular processes in the

peptide display pathway that determines MHC ligand selection.

Results: We introduce a semi-supervised model, DeepLigand that outperforms the state-of-the-art

models in MHC Class I ligand prediction. DeepLigand combines a peptide language model and

peptide binding affinity prediction to score MHC class I peptide presentation. The peptide language

model characterizes sequence features that correspond to secondary factors in MHC ligand selec-

tion other than binding affinity. The peptide embedding is learned by pre-training on natural

ligands, and can discriminate between ligands and non-ligands in the absence of binding affinity

prediction. Although conventional affinity-based models fail to classify peptides with moderate

affinities, DeepLigand discriminates ligands from non-ligands with consistently high accuracy.

Availability and implementation: We make DeepLigand available at https://github.com/gifford-lab/

DeepLigand.

Contact: gifford@mit.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The major histocompatibility complex (MHC) Class I molecules

play a central role in the acquired immune system of vertebrates by

presenting intracellular peptides on the cell surface for recognition

by T cells (Castellino et al., 1997; Janeway Jr et al., 2001). The

choice of which peptides are displayed is in part controlled by an

individual’s MHC genotype. MHC genes are highly polymorphic

and thus peptide presentation varies from individual to individual

(Jin and Wang, 2003; Williams, 2001). Modeling the individual-

specific preference of peptide presentation by the MHC is important

for designing efficient peptide-based immuno-therapeutics for indi-

viduals (Kreiter et al., 2015; Ott et al., 2017; Verdegaal et al.,

2016).

Class I MHCs present peptides derived from cytosolic proteins

that are degraded by a proteasome. The degraded peptides are inter-

nalized by the transporter associated with antigen processing (TAP)

channel in the endoplasmic reticulum to be potentially associated

with class I MHC molecules. The formation of a MHC-peptide

complex thus depends on multiple factors, including the proteasome

cleavage preference of a peptide (Nielsen et al., 2005), TAP

transport efficiency (Peters et al., 2003) and the MHC-peptide bind-

ing affinity (Nielsen and Andreatta, 2016).

Most existing computational methods (Bhattacharya et al.,

2017; Han and Kim, 2017; Lundegaard et al., 2008; Nielsen and

Andreatta, 2016) for peptide presentation focus on modeling MHC-

peptide binding affinity based on curated affinity datasets from the

immunology epitope database (IEDB). Although binding affinity is

essential for the formation of peptide-MHC complex, models

trained only on peptide-MHC affinity are unable to characterize

other factors that determine peptide display. Recent advances in

mass spectrometry technology have enabled the high-throughput ex-

perimental identification of displayed peptides. Two recent compu-

tational models incorporate natural ligand datasets from mass

spectrometry data in their models. MHCflurry (O’Donnell et al.,

2018) only considers the natural ligands as peptides that also have

high binding affinity to the MHCs, and thus it remains an affinity

model that doesn’t consider other peptide features that influence

peptide presentation. NetMHCpan4.0 (Jurtz et al., 2017) is a modi-

fied affinity model that includes an additional output node for train-

ing on natural ligand observations from mass spectrometry data.
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However, it assumes that affinity and uncorrelated display selection

processes share the same sequence features.

Here we introduce DeepLigand, a semi-supervised approach to

predicting natural MHC ligands with improved accuracy. We expli-

citly frame the identity of displayed ligands as a function of (i)

MHC-peptide binding affinity and (ii) a vector embedding of the

peptide that characterizes sequence patterns potentially associated

with footprints of proteasome cleavage, TAP transport efficiency,

and motifs relevant to other processes. For model element (i) we

model MHC-binding affinity by a deep residual network that pre-

dicts affinity from the amino acid sequence of the MHC and pep-

tide. For model element (ii) we learn an embedding of peptide

sequences by performing unsupervised learning on the natural

ligands of all MHCs. We show that DeepLigand improves the per-

formance in natural MHC ligand prediction comparing to existing

published methods as well as similar models that don’t use the con-

textualized embedding of peptides. DeepLigand can identify MHC

ligands from candidate peptides with moderate MHC-binding affin-

ities, a challenging task where conventional affinity-based models

struggle. Moreover, we demonstrate that the peptide embedding

alone is highly predictive of natural ligands, indicating that mean-

ingful patterns associated with ligand selection are captured in the

embedding.

2 Materials and methods

2.1 Datasets
We used the MHC class I dataset curated by O’Donnell et al.

(2018). This dataset consists of 525 672 binding affinity and mass

spectrometry measurements collected from IEDB, Abelin et al.

(2017) and Kim et al. (2014). This dataset also contains 2 541 370

non-ligand sequences (decoys) sampled from the protein-coding

transcripts that also contained the mass spectrometry-identified pep-

tides (hits) based on protein sequences in the UCSC hg19 proteome

and transcript quantification from RNA sequencing of the relevant

cell line (B721.221). As described in Abelin et al., for an allele with

n hits, 100n decoys of length 8–15 were sampled, weighting tran-

scripts by the number of hits.

Every peptide training example is labeled by binding affinity and

presence/absence in mass spectrometry data. Some of the examples

in the binding affinity and mass spectrometry datasets have only

qualitative affinity measurements, represented as positive, positive-

high, positive-intermediate, positive-low or negative. For such

examples, O’Donnell et al. assigned a quantitative value and a rela-

tion of ‘>’ or ‘<’ for each class of qualitative labels to denote the

corresponding range of affinity. Examples with quantitative affinity

were assigned a relation of ‘¼’. We further assigned an ‘unknown’

affinity to the non-ligand peptides. As is standard practice in the

peptide-display literature (Jurtz et al., 2017; Nielsen and Andreatta,

2016; O’Donnell et al., 2018), we normalized the original affinity

measurements in nano-molar (nM) by capping them between 1 and

50 000 nM and transforming with 1� logðnMÞ= logð50 000Þ such

that the resulting normalized affinities fall between zero and one.

Aside from binding affinity, we also created a ligand label for each

example. We labeled the ligands identified by mass spectrometry as

positive, the non-ligand peptides as negative, and the other peptides

as ‘unknown’. We further removed MHC alleles for which the

pseudo-sequence of MHC amino acids in contact with the peptide is

not available from the literature (Jurtz et al., 2017). The final data-

set consists of 3 052 388 examples covering 219 MHC Class I alleles

(Supplementary Fig. S1, Supplementary Table S2).

Consistent with previous work (Jensen et al., 2018; Nielsen and

Andreatta, 2016) we constructed a 5-fold cross-validation (CV)

benchmark to avoid over-estimation of model performance. The

benchmark minimizes the 8-mer overlap between different folds

using a Hobohm et al. (1992) inspired algorithm described in

Nielsen et al. (2007). The performance on a data point was eval-

uated by the prediction made from a model trained on the four CV-

folds that don’t contain the data point.

2.2 Model structure
DeepLigand consists of two modules, a binding affinity prediction

module and a peptide embedding module (Fig. 1). The peptide

embedding module embeds each peptide into a vector representa-

tion. Given a pair of MHC and peptide, we make the assumption

that the measured binding affinity is the sum of the true affinity and

a Gaussian noise with zero mean, and thus the measured affinity fol-

lows a Gaussian distribution with a mean at the true affinity. The af-

finity prediction module predicts the mean and variance of the

Gaussian distribution which respectively characterizes the strength

of affinity and the estimated level of observational noise associated

with the input. Similar techniques have been used to characterize the

observational noise in various types of data (aleatoric uncertainty)

(Kendall and Gal, 2017; Lakshminarayanan et al., 2017). Using the

predicted affinity mean and variance as well as the peptide embed-

ding as input features, we used one fully connected layer with sig-

moid activation to predict whether the input peptide is a natural

ligand of the input MHC. The peptide embedding module was

trained on the natural ligands in the training set before it was used

to generate peptide embedding for all training examples. Then the

affinity module and the combining layer were jointly trained with

the training loss calculated as the sum of the cross-entropy loss from

ligand prediction and the log probability of the observed affinity

under the predicted Gaussian affinity distribution. For both types of

loss, examples with a ‘unknown’ label were not included in the cal-

culation. As was adopted in O’Donnell et al., for examples with an

inequality relation for their affinity measurement, the loss was only

included when the inequality is violated.

2.2.1 Binding affinity prediction module

The binding affinity prediction module is a deep residual network

that takes as input the amino sequence of a peptide and the pseudo-

sequence of a MHC molecule. As defined in the previous literature

(Jurtz et al., 2017), the pseudo-sequence of a MHC allele is the

amino acid residues in 34 polymorphic positions where the residues

are within 4.0 Å of the peptide in the structure of one or more of

major MHC alleles. We represent each amino acid sequence by a

40-dimension feature vector concatenated from two encodings: a

20-dimension one-hot encoding and the 20-dimension BLOSUM50

(Nielsen et al., 2003) matrix scores vector that depicts the evolution-

ary similarities between amino acids. All peptides are padded to 40

amino acids. For the padding amino acid, an all-zero vector was

used for the one-hot encoding and a vector full of the lowest sub-

station score was used for the evolutional encoding. This featuriza-

tion leads to a 40 � 34 feature matrix for each MHC and a 40 � 40

feature matrix for each peptide. The MHC feature matrix (40 � 34)

was then reshaped into a 1360 � 1 vector and appended to the pep-

tide matrix (40 � 40) along its first dimension, resulting in a final

feature matrix of 1400 � 40 for each MHC-peptide pair.

The binding affinity residual network consists of one initial convo-

lutional block, five residual blocks and two branches of fully con-

nected layers. Each residual block has two convolutional layers that
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fit the residual between the input and the output. Each convolutional

layers in the network has 256 convolutional kernels with a stride of 1

and a kernel size of 3. Batch normalization was used after each con-

volutional layer. The output of the last residual block was flattened

and concatenated with the sigmoid-transformed peptide length L and

1� L as the input to the last two branches of fully connected layers,

respectively to predict a Gaussian mean and variance of the binding

affinity between the input MHC and peptide. Each branch consists of

one layer of 64 neurons and one layer of 1 neuron. ReLU was used

throughout the network as non-linearity and Adam (Kingma and Ba,

2014) was used as the optimizer. For each CV split, a random 1/9 of

the training set was held out as the validation set. All hyper-

parameters, including training epochs and optimizer parameters,

were chosen according to the performance on the validation set.

Using the peptide sequence, MHC pseudo-sequence, and the peptide

embedding produced by the pre-trained peptide embedding module

as input, this module was jointly trained with the last layer of

DeepLigand for 50 epochs with early stopping when no improvement

on the validation loss was observed for 10 epochs.

2.2.2 Peptide embedding module

In the peptide embedding module, we used ELMo (Peters et al.,

2018) to learn a context-dependent embedding of amino acids.

Considering each peptide sequence as a sentence and each amino

acid as a word, ELMo trains a deep bi-directional language model

on the corpus (all natural ligand sequences). The ELMo embedding

of each word in a sentence is the average of the hidden states of all

layers in the language model for that word, which takes into account

both the word and the semantic context. The language model used

in this work is reduced in size compared with Peters et al. to accom-

modate the smaller corpus in this study. The details of the model

structure can be found in Supplementary Table S1. For a given CV

split, a ELMo model was trained on all the natural ligands in the

training set. The resulting model was then used to embed each pep-

tide into a 64 � 40 matrix where 64 is the embedding dimension

and 40 is the maximum length of the peptides in our dataset. The

embedding matrix was then reshaped into an embedding vector of

size 2560 as the final output of this module for a given peptide.

2.3 Implementation of alternative learning strategies
We implemented the two alternative learning strategies Affinity-

Only and Two-Task (Section 3) by modifying the model structure of

DeepLigand. Affinity-Only was implemented as the same structure

as the affinity prediction module in DeepLigand. For Two-Task, we

changed DeepLigand’s affinity prediction module structure by add-

ing an additional set of two fully connected layers with a sigmoid

output to predict whether the input peptide is a ligand of the input

MHC. This new branch has the same structure as the original two

fully connected layers that predicts affinity, and also shares the same

input features produced by the previous residual blocks.

Embedding-Only was implemented as the last layer of DeepLigand

with only the peptide embedding as input features.

2.4 Comparison with NetMHCpan4.0 and MHCflurry
The standalone version of NetMHCpan4.0 was downloaded from

http://www.cbs.dtu.dk/services/NetMHCpan/. MHCflurry version

1.2.2 was installed as instructed on https://github.com/openvax/

mhcflurry and the pre-trained ‘models_class1_trained_with_mass_s-

pec’ model (https://github.com/openvax/mhcflurry/releases/down

load/pre-1.2.1/models _class1_trained_with_mass_spec.20180228.

tar.bz2) was downloaded by ‘mhcflurry-downloads fetch model-

s_class1_rained_with_mass_spec’. Both methods only support certain

MHC alleles. Only test set examples for which both methods can pro-

cess were used in the model evaluation.

2.5 Sufficient Input Subsets analysis
The Sufficient Input Subset (SIS) software was downloaded from

https://github.com/google-research/google-research/tree/master/suffi

cient_input_subsets. To accommodate the computation efficiency of

SIS, we randomly sampled 10 000 MHC ligands with 9 amino acids

and performed SIS on each ligand sequence to identify the minimal

subset of residuals for the Embedding-Only model to predict the in-

put sequence as ligand with >95% probability. The first layer of the

language model in Embedding-Only represents each amino acid as a

vector. As suggested by Carter et al., we used the average of the

vector representations for all 20 amino acids to represent the ‘mask’

residual that SIS uses to iteratively replace the original residuals

in search for the minimally sufficient subset. The resulting

SISs were clustered into six non-noise groups using DBSCAN in

Scikit-Learn (Pedregosa et al., 2011) with pre-computed

Levenshtein distance as metric and hyper-parameters eps ¼ 1 and

min_samples ¼ 50. WebLogo (Crooks et al., 2004; http://weblogo.

threeplusone.com) was used to aggregate the SISs in each cluster

into a sequence logo.

3 Results

3.1 DeepLigand improves the state-of-the-art accuracy

in MHC ligand prediction
We trained and evaluated DeepLigand on a curated dataset of pep-

tide-MHC-binding affinity measurements, mass spectrometry meas-

urements, and non-ligand peptides collected by O’Donnell et al.

(Section 2). As is standard practice in the peptide-display literature

Fig. 1. Schematics of DeepLigand. DeepLigand consists of a binding affinity

prediction module and a peptide embedding module. The affinity prediction

module takes as input a pair of MHC and peptide sequence and predicts the

mean and variance their binding affinity using a deep residual network. The

peptide embedding module is a deep language model (ELMo) that embeds

each peptide into a vector representation. The outputs from the two modules

are concatenated and provided as input to one fully connected (FC) layer with

sigmoid activation to predict whether the input peptide is a natural ligand of

the input MHC. As a pre-training step, the embedding module is trained on

the natural ligands in the training set for a given CV split. Then the affinity

prediction module and the combining layer is jointly trained on all training

examples taking as input the MHC and peptide sequences as well as the pep-

tide embeddings produced by the pre-trained embedding module
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(Jensen et al., 2018; Nielsen and Andreatta, 2016; Nielsen et al., 2007),

we constructed a 5-fold CV benchmark while minimizing the 8-mer

overlap between different folds (Section 2).

We evaluated DeepLigand against NetMHCpan4.0 and

MHCflurry. These two alternative models can only make predic-

tions for select MHC alleles. We limited our test set samples to

examples that all methods could process. We note that, while the

test set is completely held out from DeepLigand, MHCflurry’s train-

ing set contains all the ligands in our test set, making the benchmark

biased towards MHCflurry. NetMHCpan4.0 was trained on unre-

leased datasets and we do not know the overlap with our test set.

We found that DeepLigand outperforms previous state-of-the-

art models at the task of predicting peptide presentation, despite the

potential train-test set overlap advantages of previous methods

(Fig. 2A). DeepLigand accurately predicts MHC ligands with an

area under receiver operating characteristic curve (auROC) of 0.979

and an area under precision recall curve (auPRC) of 0.887, com-

pared with an auROC of 0.937 (MHCflurry) and auPRC of 0.821

(NetMHCpan4.0) for the best previous state-of-the-art models. In

therapeutic design, a high true positive rate at a low false positive

rate and high recall with high precision are often more important

metrics. DeepLigand outperforms the competing methods with a

true positive rate of 91.0% at a false positive rate of 5% and 83.5%

recall at 80% precision (Fig. 2B). The best alternative method

(NetMHCpan4.0) produces a true positive rate of 83.7% at a false

positive rate of 5%, and 78.2% recall at 80% precision.

3.2 DeepLigand outperforms alternative learning

strategies for MHC ligand prediction
We next compared DeepLigand and alternative formulations of

MHC ligand models with a controlled training set. MHCflurry only

treats natural ligands identified by mass spectrometry as additional

peptides with high binding affinity, and we refer to this strategy as

Affinity-Only. NetMHCpan4.0 treats binding affinity and ligand

presentation as two separate tasks that share all intermediate fea-

tures, and we refer to this strategy as Two-Task. We implemented

Affinity-Only and Two-Task by modifying the affinity prediction

module in DeepLigand (Section 2). We trained and tested these

models on the same datasets as DeepLigand, and thus excluded

confounding factors such as training dataset mismatch to more pre-

cisely examine the power of different strategies for modeling MHC

ligand. Note that unlike the comparison with published methods,

here we were able to use the whole test set for evaluation.

We found that DeepLigand outperforms the alternative model

formulations with an auROC of 0.984, an auPRC of 0.912, a true

positive rate of 93.2% at a false positive rate of 5%, and 87.6%

recall at 80% precision (Fig. 3). The best alternative model

(Affinity-Only) achieved an auROC of 0.924, an auPRC of 0.637, a

true positive rate of 69.5% at a false positive rate of 5% and 31.4%

recall at 80% precision. Interestingly, our Two-Task implementa-

tion showed inferior performance compared with NetMHCpan4.0

which uses the same modeling strategy. Aside from the difference in

the training set, this could arise from the fact that the non-ligand to

ligand ratio in our benchmark dataset (100�) is much higher than

the dataset that NetMHCpan4.0 was trained on (10�), which

makes joint learning of both tasks more challenging.

Affinity-Only represents the modeling strategy of most peptide-

display models used in therapeutic vaccine design to select for

MHC-binding peptides [predicted affinity �500 nM; Ott et al.

(2017); Łuksza et al. (2017)]. Therefore, we examined the perform-

ance of Affinity-Only and DeepLigand for MHC ligand prediction.

We observed that the two formulations agree on low-affinity pepti-

des. However, the predictions are much less consistent on peptides

with medium to high predicted affinities (Fig. 4A). Evaluated on dif-

ferent subsets of peptides predicted to bind to the corresponding

MHC, the predictive performance of Affinity-Only model degener-

ates fast towards random as we focused more on medium binders,

while DeepLigand accurately discriminates ligands from non-ligands

with consistently high auROCs and auPRCs above 0.9 (Fig. 4B).

3.3 Peptide embedding encapsulates sequences

patterns predictive of natural ligands
We further examined the relative importance of DeepLigand’s pep-

tide embedding in its MHC ligand prediction task. We removed the

affinity prediction module in DeepLigand such that ligand predic-

tion is made by a one-layer neural network using solely the peptide

embedding as its features (Section 2). We refer to this strategy as

Embedding-Only. We observed that the Embedding-Only model

A

B

Fig. 2. Performance comparison with published state-of-the-art methods for

peptide display. The evaluation was performed on test set examples that all

three methods can process. (A) DeepLigand achieved higher auROC (left) and

auPRC (right). (B) DeepLigand achieved a higher true positive rate at 5% false

positive rate (left) and higher recall at 80% precision (right)

A

B

Fig. 3. Performance comparison with alternative learning strategies trained

on the same dataset as DeepLigand. The evaluation was performed on all test

set examples. (A) DeepLigand achieved higher auROC (left) and auPRC

(right). (B) DeepLigand achieved a higher true positive rate at 5% false posi-

tive rate (left) and higher recall at 80% precision (right)
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achieved high accuracy in MHC Class I ligand prediction (Fig. 3).

As Embedding-Only takes no MHC information as input, the high

predictive performance suggests that the embedding that

DeepLigand learned from natural MHC ligands in an unsupervised

fashion captures important sequence features shared across the

ligands of different MHCs. These sequence features, which have

been largely ignored by existing models, are highly discriminative of

ligands and non-ligands even without knowledge about the affinity

to the MHC molecule.

We applied Sufficient Input Subset (SIS) analysis (Carter et al.,

2018) to interpret the sequence features the Embedding-Only

model has learned to identify MHC ligands. On 10 000 random

samples of all MHC ligands of 9 amino acids in our dataset, we per-

formed SIS to locate the minimal subset of residuals for the

Embedding-Only model to predict a peptide as MHC ligand with a

probability >95% (Section 2). Using DBSCAN as suggested by

Carter et al., the resulting SISs can be clustered into six groups. The

sequence logos of these six groups suggest that the residuals at posi-

tions 1, 2, 4 and 9 of a peptide are most essential for the discrimin-

ation of ligands from non-ligands (Fig. 5A). Moreover, the motifs

manifested by the SISs clusters characterize similar amino acid pref-

erences as the known proteasome cleavage motif (Fig. 1 in Keşmir

et al., 2002; the upside down letters mean depletion), such as R/K/

A at position 1, R/L/A/I/P at position 2, D/P/E at position 4 and L/

Y/F/V at position 9.

4 Discussion

Existing computational efforts to model peptide presentation by

MHC class I molecules have been focused on predicting the binding

affinity between MHC molecules and peptides. However, additional

factors determine which peptides in the proteome become natural

MHC ligands, including the abundance of their transcripts, their pro-

teasome cleavage motifs, and TAP-mediated peptide transport effi-

ciency. Without considering these auxiliary factors, affinity-based

models could lead to false positives when designing MHC-

presenting peptides in therapeutic design.

We presented a new semi-supervised model for the presentation

of peptides by MHC Class I molecules. Our method DeepLigand ex-

plicitly frames the identity of MHC ligand as a function of binding

affinity prediction and a sequence representation that characterizes

auxiliary factors in ligand determination. We show that by employ-

ing a contextual word embedding algorithm trained on ligands in an

unsupervised manner, we can embed peptides in a predictive vector

representation. Even though only positive ligands were used during

training, the resulting embedding alone is highly discriminative of

natural ligands and non-ligands. Leveraging a published method for

model interpretation, we find that the sequence patterns for which

the embedding is highly indicative of ligands recapitulate the known

proteasome cleavage motif, suggesting the sequence determinants of

important factors in MHC ligand selection other than binding affin-

ity have been learned. Combining the peptide embedding with bind-

ing affinity predicted from the MHC and peptide sequence,

DeepLigand improved the accuracy in natural MHC ligand predic-

tion compared previously published state-of-the-art.

We observe that widely used affinity-based models have a high

false positive rate when prioritizing natural ligands from peptides

that have medium binding affinities. By point of comparison, the lig-

and prediction from DeepLigand, which uses the peptide embedding

obtained from unsupervised learning on natural ligands, can still ac-

curately discriminate held-out ligands from non-ligands.

With DeepLigand’s improved false positive rate, we envision

DeepLigand can be used to design effective neo-antigen vaccine for-

mulations. In neo-antigen vaccine design, cancer-specific peptides

are prioritized for MHC presentation. Most of the cancer-specific

peptides have low to medium binding affinity to the MHC mole-

cules in the patient, and the number of administered peptides to be

designed is highly limited (Ott et al., 2017). Thus reducing the false

positive rate will reduce the number of administered peptides that

are not disease related.

Mass spectrometry is currently the most direct measure of nat-

ural MHC ligand presentation, and in this work we equate the read

out from mass spectrometry with the collection of natural ligands.

We note that certain biases (Klont et al., 2018; Mahoney et al.,

2011) are known to exist in the sequences identified from mass spec-

trometry, which could limit the power of computational models

trained on such datasets. With the future advance of biotechnology,

we envision our approach can be further improved to deliver more

accurate natural MHC ligand predictions.
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