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MetaSort untangles metagenome assembly
by reducing microbial community complexity
Peifeng Ji1,*, Yanming Zhang1,*, Jinfeng Wang1 & Fangqing Zhao1

Most current approaches to analyse metagenomic data rely on reference genomes. Novel

microbial communities extend far beyond the coverage of reference databases and de novo

metagenome assembly from complex microbial communities remains a great challenge. Here

we present a novel experimental and bioinformatic framework, metaSort, for effective

construction of bacterial genomes from metagenomic samples. MetaSort provides a sorted

mini-metagenome approach based on flow cytometry and single-cell sequencing methodol-

ogies, and employs new computational algorithms to efficiently recover high-quality genomes

from the sorted mini-metagenome by the complementary of the original metagenome.

Through extensive evaluations, we demonstrated that metaSort has an excellent and

unbiased performance on genome recovery and assembly. Furthermore, we applied metaSort

to an unexplored microflora colonized on the surface of marine kelp and successfully

recovered 75 high-quality genomes at one time. This approach will greatly improve access to

microbial genomes from complex or novel communities.
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C
urrently, state-of-the-art metagenomic data analysis
approaches largely rely on comparisons to reference
genomes. However, these methods are of limited applica-

tion because of the small fraction of reference genomes presented.
The uncultured and unsequenced microbial majority, referred to
as ‘dark matter’, constitutes at least 60 major lines of descent
(phyla or divisions) within the bacterial and archaeal domains1.
The situation is even more fundamentally skewed considering the
bias that greater than 88% of all microbial isolates represent only
four bacterial phyla1. Moreover, due to clonal differences,
environmental adaptation or possible artefacts from cultivation
processes, bacterial genomes from different isolates of the same
species typically exhibit considerable genetic heterogeneity when
compared2. Therefore, reference genomes and methods relying
on these genomes place limitations on the discovery of previous
unknown species. In particular, these practices limit our ability to
understand the taxonomic composition and functional potential
of novel microbial communities.

De novo metagenomic assembly has proven difficult due to the
inherent complexities of microbial communities, including repeat
sequences, uneven coverage and intra-species divergence3–5.
A reasonable solution involves clustering these fragmented
contigs into discrete units, referred to as ‘binning’. When
closely related reference genomes are lacking, binning must be
performed in an unsupervised fashion. Numerous unsupervised
binning methods that employ sequence compositions have been
developed, but these methods only work well with extreme base
compositions and fail to clearly separate taxonomically related
organisms6,7. An alternative approach involves the use coverage
patterns across multiple samples, allowing binning at the species
level and occasionally the strain level6,8,9. These methods hold
great promise for improving binning performance, but they
require a large number of samples. Moreover, most binning
methods only consider large contigs (typically Z2 Kbp
(refs 6,8,10)), which may not be applicable to most moderate-
or low-abundance species in various microbial communities.

As a complement to classical metagenomics, single-cell
sequencing, typically employing multiple displacement amplifica-
tion (MDA) to amplify genomic DNA, has emerged as a powerful
approach to target coherent biological entities1,11. In particular,
compared with metagenomics, single-cell sequencing is more
assessable to the genomic heterogeneity of target populations.
However, single-cell sequencing demands a highly specialized
laboratory facility, and whole-genome amplifications performed
one at a time yield highly uneven sequencing depth and elevated
levels of chimeric reads12–14. For example, Marcy et al. found that
82% of single-cell MDA reads were assembled into contigs, but
less than 39% of the reference genome could be covered15. In
addition, there is a high failure rate associated with this
methodology. Rinke et al. sequenced 9,600 single cells and
yielded 3,300 (34%) successful amplifications, among which
only 201 (2%) draft genomes were recovered1. It is evident
that sequencing single cells at a large scale is prohibitively
time consuming, labour intensive and expensive.

To overcome this issue, McLean et al.16 developed a new
approach that involves forming random pools of single flow-
sorted cells and sequencing all the cells (called a mini-
metagenome) simultaneously. The mini-metagenome has higher
throughput than the single-cell genome and lower complexity
than the original metagenome. Moreover, an assembly tool,
SPAdes17, was designed for coping with wide variations in
coverage and chimeric reads from MDA samples, and also
it should be noted that these drawbacks of MDA could be
resolved using newly developed low input DNA library
preparation methods18. This strategy effectively increases
the likelihood of capturing and assembling the genomes of

low-abundance microorganisms. However, the mini-metagenome
approach still faces two inherent challenges. (1) Without an
efficient method to control the number and type of separated
cells, different mini-metagenomes may share a large proportion
of microorganisms, for example, 61.9% of species were shared by
the two samples in their study. Such taxonomic overlap
unavoidably results in some species being captured repetitively
and thereby reduces the throughput and efficiency of the
approach. (2) In each mini-metagenomic sample, only a few
dominant species can be easily assembled. For low-abundance
species, the problem of recovering complete genomes remains
unresolved. This situation is even worse when considering the
amplification bias of MDA.

To address these challenges and increase the utility of the mini-
metagenome approach, we present metaSort, an efficient and
high-throughput method that combines the advantages of
traditional metagenomics and single-cell genomics to recover
nearly complete genomes from metagenomic samples. Compared
with previous approaches, metaSort can segregate small subsets of
cells with minimum overlaps from the original metagenomic
sample by sorting and gating the cells by size or other physical
and chemical properties using flow cytometry (FCM).
In addition, we propose two novel algorithms, Binning and
Fishing (BAF) and Machine Learning and Graph-based Algo-
rithm (MGA), which can assemble genomes based on the
combination of the sorted mini-metagenome and the original
metagenome. BAF is designed to generate merged genome bins
from mini-metagenomic sequences and their connected contigs
from the original metagenome. The resulting bins are employed
by MGA to recover whole target genome sequences from the
original metagenomic contig connection graph. Furthermore,
MGA assembles the recovered target genome sequences into
longer scaffolds and identifies variations. By testing on synthetic
and real data sets, we demonstrated that metaSort can
significantly improve metagenome assembly and recover strain-
level variation profiles from complex microbial communities.

Results
The metaSort approach. First, metagenomic DNA is extracted
and sequenced, and the resulting reads are assembled into
contigs using SOAPdenovo2 (ref. 19), which are called meta-O
because they represent the original metagenomic sample. These
contigs have a high genome coverage rate but are often
fragmented due to the assembly complexity. Second, FCM is
utilized to reduce the metagenome complexity by sorting the
microbial cells and gating out small subsets including a specific
number of target cells. For each subset, DNA is extracted,
amplified by MDA, sequenced and assembled using SPAdes12.
The assembled contigs of each subset, termed meta-S, are longer
than those of meta-O. However, obtaining complete genome
sequence for a specific taxon remains impossible due to the
unevenness of MDA amplification. Hence, third, we employ a
combination strategy that incorporates the advantages of both
meta-O and meta-S to recover nearly complete genomes and
detect variations using the BAF and MGA algorithms (Fig. 1).
The algorithms are implemented in Python and available online
as a free open-source tool (https://sourceforge.net/projects/
metasort/).

The BAF algorithm is designed to cluster assembled contigs
into bins, with each bin representing one target genome
(Supplementary Fig. 1). The SPAdes-assembled contigs are
first clustered into meta-S bins using the tetra-nucleotide
frequency (TNF) features8,10,20,21. Then, to improve the binning
efficiency, meta-S bins are mapped to the meta-O contig
connection graph, which is built by creating links between
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two overlapping meta-O contigs. For those meta-S bins located
on the meta-O contig connection graph, paths linking two
bins are identified. Subsequently, the meta-S bins and the paths
linking meta-S bins are extracted to form a new graph. Finally,
this graph is partitioned into components based on graph
connectivity and the meta-S bins in the same component are
clustered into merged bins. The merged bins and the remainder
of the meta-S bins that do not participate in the process of
merging constitute the target genome bins.

Next, the MGA algorithm is performed to recover the
remaining contigs of the target genome that are missed by
BAF and to assemble the target contigs into larger scaffolds
(Supplementary Fig. 2). This algorithm is a three-step process
that includes increase, decrease and connection steps. Due to the
low genome coverage rate of the target genome bins derived from
the meta-S assembly, the increase step is performed to recover
the remaining target contigs from meta-O. This step is achieved
using a supervised support vector machine (SVM (ref. 22)), which
requires positive, negative and test datasets for classification.
MGA takes the sequences in the target genome bin as a positive
data set, and the other two data sets are obtained using a distance-
based method. After obtaining these data sets, SVM trains
a classification model by taking the codon usage of contigs
as feature vectors to predict target contigs. Due to the high false-
positive rate of SVM, the decrease step is employed to remove
contamination from the candidate target contigs using
sequencing depth. In the connection step, both the remainder
of candidate target contigs and seed contigs, referred as to
landmarks, are used for traversing the meta-O contig connection
graph. MGA starts at each landmark and searches against the
meta-O contig connection graph to obtain the paths connecting

two landmarks. Once all the landmarks are visited on the meta-O
contig connection graph, the landmarks along the searched paths
are extracted to form a target genome contig graph. Algorithms
are then applied to remove tips, merge bubbles and assemble
the remaining contigs into scaffolds. Based on the bubble
structure and component information in the connection step,
MGA performs de novo variation detection. MGA first extracts
the bubbles that are mainly caused by genetic variants by filtering
the bubbles based on sequence divergence and sequencing depth.
After calling variations using these filtered bubbles, we have
proposed two metrics, bubble density and bubble identity, to
assess the polymorphic sites in each component of the target
genome contig graph. Then, both metrics are used as feature
vectors of a logistic regression model to predict the strain-level
variation in the target genome.

MGA can recover nearly whole genome based on partial sequences.
To validate our computational algorithm, we constructed a
simulated metagenomic data set consisting of 100 genomes with
different sequencing depths ranging from 5� to 128�
(Supplementary Fig. 3 and Supplementary Table 1). Ten species
containing 2B4 different strains or subspecies were designed to
test the capability of MGA to recognize strain-level genomic
variation. Reads were assembled, and the sources of contigs were
then identified by mapping them back to the reference genomes.
For each genome, 40% of the assembled contigs were randomly
selected as ‘seeds’, and the sum length of these seed contigs
represented 30-59% of the total genome coverage. We ran MGA
to recover the remaining genome sequences based on these seeds
and compared the results with their original reference genomes.

FCM
sorting

Separation
& MDA 

Contig connection
graph construction

Target genome bins

meta-S

Sample

Graph decomposition
& reconstruction

Recovered contigs based on composition 

Shared contigs by target genome and other genomes

Seed contigs 

Contigs of other genomes

Recovered contigs based on path extension 

WGS

WGS and
de novo assembly 

meta-O contig
connection graph 

MGA: a machine learning and
graph-based assembly

BAF: binning
& fishing

Target genome

meta-O contig
connection graph 

4000 kbp

3500 kbp
500 kbp

1000 kbp

3000 kbp

2500 kbp
1500 kbp

2000 kbp

Figure 1 | Overview of the metaSort approach. First, metagenomic DNA is extracted and sequenced, and the resulting reads are assembled into contigs.

Subsequently, these contigs, termed as meta-O, are used for constructing a contig connection graph, where nodes represent contigs and edges are created

between two overlapped contigs. Second, the FCM is utilized to segregate small subsets of cells by gating microbial cells by size or other properties.

For each subset, DNA is extracted, amplified by MDA and then sequenced. The resulting reads are assembled using SPAdes assembler. The assembled

contigs of each subset, termed meta-S, are clustered into target genome bins using the BAF algorithm. Third, the MGA algorithm is performed to recover

the remaining target contigs that missed by BAF based on meta-O contig connection graph and to assemble the target contigs into scaffolds.
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As shown in Supplementary Fig. 4, MGA successfully recovered
most of the remaining sequences with an average genome cov-
erage of 88.7% and a low contamination rate (an average of 0.6%).
Among the assemblies, only two had a final genome coverage
under 70%. Whereas both of these genomes contained an initial
genome coverage o30%, we set the recommended initial genome
coverage to 30% in the downstream analyses. We further com-
pared recovered genome quality with three binning methods,
CONCOCT (ref. 8), metaBAT (ref. 10) and MaxBin (ref. 23). As
shown in Supplementary Fig. 5a, metaSort exhibited a substantial
improved genome coverage over the other three binning methods
(Po1� 1� 10, t-test). We further compared their performance on
the assembled contig length. As shown in Supplementary Fig. 5b,
metaSort showed considerably improved N50 length compared
with the other three binning methods. The average N50 length
were 37-, 45- and 51-fold longer than that of MaxBin, metaBAT
and CONCOCT, respectively. The performance of the
BAF algorithm was also validated using the meta-O assembly.
After binning, the average contamination rate was estimated to be
0.61% across 99% of the recovered genomes (Supplementary
Fig. 6). Next, the efficiency of the increase and decrease steps in
MGA were explored. As shown in Supplementary Fig. 4b, the
increase step based on SVM exhibited high sensitivity (an average
of 79.2%) but low precision (an average of 14.4%). After the
decrease step, however, the precision was almost perfect at an
average of 99.2% and was accompanied by a slight decrease in
sensitivity (an average of 75.0%).

We further tested whether MGA could identify the species that
contain strain-level variation. For each genome, the target
genome contig graph was first partitioned into components
based on graphic connectivity, and then both bubble density
and bubble identity were calculated. As shown in Suppleme-
ntary Figs 4c,7 of ten subspecies- or strain-containing
genomes exhibited distinct patterns on both bubble density and
bubble identity plots compared with other species. The most
remarkable feature was that the species containing multiple
strains had a significantly larger number of components than
other species (P¼ 2.2� 10� 12, Wilcoxon rank-sum test),
and both the bubble density and bubble identity metrics exhibited
increased variation compared with the others. It should be
noted that Sulfolobus acidocaldarius, Listeria monocytogenes and
Alteromonas macleodii did not exhibit any obvious patterns on
either bubble density or bubble identity because the strains in
these three species exhibited a considerably increased level
of average nucleotide identity (ANI) (499.9%) compared with
all other genomes (maximum of 99.52%). This finding indicated
a threshold of similarity of 99.5% for ANI, above which genomes
containing strain-level variations may not be identified. Similar
results were also reported by Luo et al.24 who found that related
genomes with greater than 99.5% ANI could not be separated
but were clustered into a single group.

Segregating meta-O into low-complex subsets. To examine
whether metaSort provides an effective method to decrease
the complexity of the original metagenome, we applied metaSort
to well-characterized human salivary microbiota. Using different
sized polystyrene beads as a size control (Supplementary Fig.
7a–d), four sets of meta-S, named S1 to S4, were isolated; the
number of cells was 5.9� 104, 2.8� 104, 3.7� 104 and 1.0� 105,
respectively (Supplementary Fig. 7d). Genomic DNA was
extracted for each subset and then amplified by MDA. The
amplified DNA was used to construct DNA libraries and then
sequenced. The resulting reads of each meta-S were aligned with
the NR database using BLASTX. Subsequently, the taxonomic
profiles of each meta-S were annotated using MEGAN (ref. 25)

(Fig. 2a). As expected, the four sets of mini-metagenomes
exhibited distinct taxonomic profiles, with Pseudomonas and
Enterobacter, Neisseria and Prevotella, Veillonella, Actinomyces
and Rothia as the most abundant genera in S1, S2, S3 and
S4, respectively. Notably, low-abundance species in the original
sample (meta-O) could be captured by our approach.
For example, Enterobacter cloacae and Enterobacter hormaechei
were enriched in S1 but were represented at low abundance in
meta-O. Moreover, we observed that several species were shared
by S1 and S2 but showed different relative abundances in the
two mini-metagenomes, which was likely caused by the adjacent
location of these two subsets during the FCM analysis.
This finding highlights a more general sense that different regions
were dominated by distinct bacteria after sorting by FCM.

MGA recovers genomes by combining meta-S and meta-O. The
four mini-metagenome data sets of meta-S were assembled using
the SPAdes assembler12, yielding 50,325 scaffolds (N50 length
of 6,877 bp). Moreover, the original salivary sample was
sequenced using the Illumina HiSeq2000 PE 100-bp platform,
and 142 million paired-end reads were generated with a median
insert size of 180 bp. This meta-O data set was assembled
using SOAPdenovo2 and generated 2,836,169 contigs, with
N50 contig length of 250. The N50 length of the meta-S
assembly was 27.5� larger than that of the meta-O assembly,
indicating that the improved assembly largely benefited from
the reduced complexity of meta-S. Then, the meta-S contigs
were mapped back to the reference genomes to determine the
coverage of genomes and the efficiency of MDA amplification.
As expected, in contrast to the metagenomic sequencing of
meta-O, the MDA-amplified meta-S samples exhibited highly
uneven sequencing depth and thus led to low genome coverage
(3.5-88.2%) (Fig. 2a). Neisseria flavescens and Pseudomonas
aeruginosa serve as examples (Supplementary Fig. 8a,b). When
mapping MDA-amplified reads to the reference genomes,
extremely non-uniform sequencing depths through the
chromosome were observed. Similar observations were noted in
Veillonella atypical, Streptococcus parasanguinis, Actinomyces
graevenitzii and Neisseria mucosa (Fig. 2a). Because most of the
enriched species exhibited poor genome coverage, meta-S reads
alone were not sufficient for reconstructing the complete
genomes.

The assembled sequences of meta-S were clustered into target
genome bins using BAF and the performance of this approach
was evaluated by estimating the accuracy of resulting bins,
which was referred from mapping these bins to their references.
In all, 71.4% of the target genomes bins presented a contamina-
tion rate of zero and all other genomes have a contamination rate
no more than 1.75%, except one was 53.37%, indicating the
high accuracy of the BAF algorithm. For each bins that had at
least 30% of total genome coverage in meta-S, we applied the
MGA algorithm to recover the remaining genome sequences
from meta-O and to make a combined assembly. Seven genomes
were successfully recovered and assembled, where the genome
coverage reached 82.0-97.6%, and the assembly quality was
significantly improved with a 2.3- to 500.6-fold increase in
NGA75 contig length (Supplementary Table 2), which is defined
as the value N such that 75% of the finished sequence is contained
in contigs whose alignments to the finished sequence are of size
N or larger. Furthermore, the bins had genome coverage below
30% in meta-S also evaluated to validate the performance of
MGA on low coverage genomes. As shown in Supplementary
Table 3, both the contig length and genome coverage exhibited
considerable enhancement (Supplementary Table 3). Specifically,
the average genome coverage increased from 24.6 to 79.0%.
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But this improvement was obtained at the sacrifice of purity
(an average contamination rate of 14.6%), indicating that
low initial genome coverage could not provide sufficient
information and may introduce contamination. For additional
evaluation, we first compared the coverage of these genomes with
CONCOCT and metaBAT (ref. 10) using all meta-O and meta-S
contigs. As shown in Supplementary Table 2, MGA exhibited
much improved performance on capturing highly fragmented
genomes compared to CONCOCT and metaBAT. We further
compared MGA assembly results with those by metaSPAdes
(ref. 26) and IDBA-UD (ref. 27) (Supplementary Table 4).
Compared with metaSAPdes, MGA exhibited considerably
increased continuity and decreased number of ambiguous
bases on six out of the seven genomes. In addition,
MGA maintained noticeable increase of assembly continuity

across all genomes compared with IDBA-UD. Similarly,
MGA based on metaSPAdes achieved the highest continuity
among all the assemblies, indicating an excellent assembly
performance of MGA. In metagenomic assembly, contigs
of closely related species are tangled together by common
genomic region; thus, the assembler tends to misassemble
sequences from different species into chimeric contigs3,5. To
assess the purity of MGA assembly, three assembled species
of Prevotella were compared with the genomes in the same genus
in the oral reference database, and the ANI values were
calculated. All of the three genomes showed a high ANI value
(497%) within the same species but a low value (o77%)
compared with other species (Supplementary Table 5), indicating
a high specificity of the MGA algorithm for untangling contigs
from different organisms.
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Figure 2 | Application of metaSort on an oral microbiome. (a) MGA assembly of the genomes enriched in meta-S. Heatmap shows the normalized

sequencing depth of the genomes in four mini-metagneomes data sets of meta-S (S1-S4) and meta-O. Bar-plot represents the genome coverage in the

meta-O, meta-S and MGA assemblies. The increased NGA75 after MGA assembly is shown in the right panel. (b) Sensitivity and specificity of target

contig recovery in the three key steps of MGA. ‘I’, ‘d’ and ‘c’ represents the increase, decrease and connections step, respectively. (c) Target contig recovery

and contaminated contig filtering during the increase, decrease and connection steps, as illustrated by using a component of Pseudomonas aeruginosa contig

connection graph. (d) A component of Prevotella salivae contig connection graph is extracted to illustrate the increasing process of target contig recovery.

Green nodes represent the seed contigs, which have matches to target genome bins in meta-S. The contigs recovered in the increase and decrease steps

are shown in orange nodes. Moreover, in the connection step, target contigs are recovered based on path extension, which are also shown in orange nodes.

Blue nodes are the target contigs that cannot be recovered by MGA. (e) The contig connection graph of Prevotella salivae. Each node denotes a contig, and it

shares the same scheme as that in Fig. 1d.
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To investigate the performance of the three key steps
(increase, decrease and connection) in MGA, we examined both
the sensitivity and specificity rates for each step. As shown in
Fig. 2b,c, the increase step achieved relatively high sensitivity
(approximately 66.4%) but low precision (approximately 4.2%)
at recovering targeted contigs from meta-O using SVM. This
result was primarily attributed to the fact that the minimum
length for predicting target contigs was set to 300 bp, which did
not contain sufficient composition signals for discrimination.
However, after the decrease step, the precision increased
sharply (approximately 60.2%), with a slight drop of sensitivity.
The precision and sensitivity remarkably increased in the
connection step to 92.5% and 90.8%, respectively. To obtain
a more intuitive and comprehensive understanding of the
MGA algorithm, we visualized these steps by extracting
a component (Fig. 2d) from the contig connection graph of
Prevotella salivae (Fig. 2e). The meta-S contigs belonging to the
target genome were mapped to the meta-O contig connection
graph and used as ‘seeds’ for recovering the remaining contigs.
After the increase and decrease steps, more target contigs were
recognized and taken as landmarks on the meta-O contig
connection graph to supervise the path-searching algorithm.
Through the connection step, target contigs located on the paths
between two landmarks were recovered, the layouts of target
contigs on the meta-O contig connection graph were determined,
and scaffolds were thus assembled. The target contigs
(blue nodes) were neglected because they failed to be detected.
A similar visualization was also performed in P. aeruginosa
(Supplementary Fig. 9).

De novo identification of strain-level variation. To explore the
ability of our approach to reveal strain dynamics, we applied
metaSort to a human fecal sample and separated one meta-S
subset using FCM (Supplementary Fig. 10). Using the Illumina
HiSeq2000, we generated 203 and 118 million paired-end reads
for the meta-O and the meta-S samples, respectively. To facilitate
the de novo variation detection after target genome assembly,
SOAPdenovo2 rather than metaSPAdes or IDBA-UD, which
merged the variation into consensus sequences, was chosen
to assemble the meta-O reads without merging the bubble
structures. As a result, the meta-O assembly produced 865,280
contigs with an N50 contig length of 403 bp, and the meta-S
assembly contained 261,858 contigs with an N50 length of
2,739 bp. By applying BAF and MGA, we successfully recovered
12 genomes, with genome coverage rates ranging from 83 to
99% and a 2.8- to 29.7-fold NGA75 increase (Supplementary
Table 6 and Supplementary Fig. 10). Five out of the 12 species
contained an extremely short (o500 bp) NGA75 length in the
meta-O assembly (Fig. 3a), implying that these species could
not be clustered by existing binning methods. However, metaSort
successfully recovered their genome sequences in meta-O
(average of 90.0%) and remarkably increased the NGA75 length
(average of 10.5-fold), exhibiting a substantial advantage over the
binning methods (Supplementary Table 6). We also found that
the primary factor responsible for these highly fragmented
assemblies was the large number of bubbles (Fig. 3b, number of
points), which were mainly caused by sequencing errors, repeti-
tive sequences or genetic variants from closely related genomes.
The successful recovery and assembly of these species demon-
strated the advantages of MGA in not only genome assembly
but also de novo variation detection by introducing contig
connection graphs.

Previous reports have demonstrated the importance of strain-
level variation, which may reflect an adaptive dynamic response
to environmental changes28. With this goal in mind, we extracted

bubbles that were attributed to genetic variants using sequence
divergence and sequencing depth. Finally, simple bubbles with
at most three walks were utilized to perform strain-level variation
detection. Among the 12 recovered species, at least four of
them exhibited strain-level variation (Fig. 3b). For example,
taxonomic analysis indicated that there were at least two strains
in Bifidobacterium breve. Moreover, we employed the marker
gene-based method MetaPhlAn to identify microbial
compositions from metagenomes. Among the nine species
detected by MetaPhlAn, only Eubacterium rectale contained
more than one strain (Supplementary Fig. 11). Such a difference
indicates that traditional marker gene-based methods may
not be applicable to recognize strain- or subspecies-level
variation from metagenomic reads, whereas dissecting the
assembly graph in this study provides a novel and efficient
means of de novo and high-resolution intraspecific diversity
detection.

To compare the levels of intraspecific variation among different
species, we calculated the alpha diversity of all the bubbles
and bubble distances in the assembly graph. The first metric
was obtained using the sequencing depth of the walks in a bubble
structure. The second metric, bubble distance, utilized the
distance between two adjacent bubbles to represent the density
of variations. Among the four multi-strain-containing species,
both metrics exhibited strong signatures of intraspecific genomic
diversity (Fig. 3c). Interestingly, for Ruminococcus lactaris,
Bifidobacterium longum and Veillonella sp., the distribution of
bubble alpha diversities revealed a tendency towards enhance-
ment. On the contrary, the bubble distances exhibited a trend of
reduction, implying that alpha diversity and bubble distance
may explain intraspecific diversity in different aspects. We
further employed these two metrics to compare the intraspecific
diversity of the shared species between oral and gut samples.
As shown in Fig. 3d, compared with the oral sample,
Streptococcus parasanguinis exhibited reduced diversity
(P¼ 0, Wilcoxon rank-sum test), but Veillonella sp. repre-
sented significantly increased diversity in the gut sample
(P¼ 4.1� 10� 5, Wilcoxon rank-sum test), implying that these
bacteria may have undergone different selective pressures in
human oral cavity and gut environments.

MetaSort unveils a novel epibiont community on marine kelp.
We next conducted shotgun metagenomic sequencing on
a kelp metagenomic sample to further explore the ability of
metaSort to recover species from novel microbial communities
with limited reference genomes. Overall, 59 million read pairs
were generated and assembled, yielding 218 Mbp across 150,059
contigs (N50 length of 20,201 bp). The application of FCM to this
sample produced three subsets of cells, named P2, P3, P5 and the
number of cells was 2.4� 104, 3.0� 104 and 7.4� 104, respec-
tively (Supplementary Fig. 12a). Taxonomic annotation results
revealed that these subsets were dominated by distinct genera but
exhibited reduced taxonomic diversity compared with the original
sample (Supplementary Fig. 12b), indicating the high efficiency of
FCM in reducing microbial complexity. Assembly of the meta-S
data sets yielded 42,055 scaffolds with an N50 length of 5,737 bp.
By applying the BAF and MGA algorithms, we successfully
reconstructed 75 genomes that were enriched in meta-S and
meta-O, with N50 lengths varying from 1.9 Kbp to 2.3 Mbp
(Fig. 4a). Phylogenetic analysis demonstrated that these
reconstructed genomes belonged to the phyla Proteobacteria,
Planctomycetes, Actinobacteria, Bacteroidetes and Cyanobacteria.
It is worth noting that although the genome sequence is the
foundation for metabolic and evolutionary studies of an organ-
ism, only 35 genomes belonging to the phylum Planctomycetes
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are currently available in the NCBI database. In this study,
we successfully assembled 16 new genomes in this phylum
using three mini-metagenomes from one FCM separation,
which strongly demonstrates the ability of metaSort to
reconstruct novel genomes from less-explored microbial
communities.

To evaluate the completeness and possible contaminations
in the assembled genomes, we applied CheckM (ref. 29) to
these assembled genomes (Supplementary Table 7). Based on
this method, the genome completeness was estimated to be an
average of 78%. Among them, five bacterial genomes were
estimated to be 100% complete. In contrast, recent single-cell
sequencing-based studies of free-living aquatic bacteria obtained
an average completeness of 40 to 55% (refs 30,31). In addition,
both sequencing depth and nucleotide composition analyses
revealed a high level of homogeneity of these assemblies,
further demonstrating that there should be no large-scale
contaminations or chimeras. For example, a sequencing depth
analysis of the top five largest scaffolds in HD560 showed that
the depth of most bases fluctuated over a small range and
followed a normal distribution (P¼ 8.92, Kolmogorov-Smirnov
test) (Supplementary Fig. 13a,b). A pairwise comparison of these
scaffolds using the tetra-nucleotide Z-statistic correction coeffi-
cients32 also indicated that the sequencing composition among
these scaffolds were highly related (Supplementary Fig. 13c).
The contamination of the assemblies was estimated to be
approximately 3.4% on average based on the CheckM analysis.
To better assess metaSort, we further applied metaBAT and
CONCOCT on the assemblies from both meta-O and meta-S for

comparison. As shown in Supplementary Fig. 14, metaBAT
recovered 32 genomes, with contamination rate varying
from 0 to 599% (an average of 35%). By using CONCOCT,
we obtained 35 genomes with contamination rate varying
from 0.1 to 200% (an average of 17%). Moreover, metaBAT
and CONCOCT exhibited considerably decreased contig
N50 length compared with that of metaSort, indicating
that MGA algorithm greatly improves genome recovery and
assembly.

We further validated the accuracy of the assembled genomes
using long PacBio reads33. Filtering the reads that had low
nucleotide identity and short mapping lengths, 106,005 reads
remained and were further aligned to the 75 assembled genomes
using BLASR (ref. 34). As shown in Fig. 4b, 90% of PacBio reads
continuously located to one scaffold with high nucleotide identity,
whereas only a very small proportion of them (4%) were mapped
to multiple genomes. Furthermore, 5% of PacBio reads located to
more than one scaffold that belonged to the same genome.
Regarding the 4% multiple mapped reads, the average alignment
length was approximately 2 Kbp, and most of them could be
mapped to more than three genomes (Fig. 4d,e), suggesting these
reads were likely to be repetitive sequences shared by different
genomes. These results collectively suggested the high accuracy of
the MGA assembly algorithm.

Assembled genomes shed light on kelp-bacteria interactions.
To determine how the functional specificity of the kelp micro-
biome developed in an epiphytic manner, we compared the
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Figure 3 | Strain-level variation in the gut metagenomic sample. (a) The NGA75 length (bar plot) and increased genome coverage (point plot) of the top

five species (Bifidobacterium breve, Eubacterium rectale, Ruminococcus lactaris, Veillonella. sp. HPA 0037 and Veillonella. sp. 6_1_27) in the gut metagenome,

which contain the largest number of components after MGA assembly. (b) Bubble density and similarity of each component in the contig connection graph

of each species. The four species containing stain-level variations are coloured in green, blue, red and purple, respectively. (c) Comparison of the levels of

intraspecific variation among the four species using the alpha diversity and bubble distance. The distribution of bubble distance is illustrated by box plot and

the alpha diversity is shown by bar plot. (d) Comparison of bubble distance of S. parasanguinis and V. sp. HPA0037 in oral and gut sample, respectively.

Significant differences are observed between these two samples (**Po0.01, Wilcoxon rank-sum test).
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KEGG pathways of the recovered genomes with two other typical
ecosystems, the human gut and the ocean. Significant differences
in enriched functional categories were identified among the
three ecosystems (Supplementary Table 8). Most notably,
those for energy metabolism, key nutrient supplements, attach-
ment mechanisms and surface competition were considerably
enriched (Po1� 1� 10, Fisher’s exact test, Bonferroni corrected)
in the kelp microbiome (Fig. 5a). This result demonstrated
a complementary and mutualistic relationship between kelp and
its epiphytic bacteria, where bacteria may benefit from the ready
availability of polysaccharides produced by the host alga. The
epiphytic bacteria subsequently enhance the growth and nutrient
uptake of the host alga by producing bioactive substances,
including vitamins35 and hormones.

Because horizontal gene transfer (HGT) events typically
involve changes that may endow bacteria with new functions
and thus give rise to adaptation to the environment36, we
identified HGTs in the recovered genomes in the kelp

microbiome using both GC content deviation and phylogenetic
analyses (Supplementary Table 9) and further assigned functions
by scanning the EGGNOG (ref. 37) database. As expected,
the enriched gene functions (Po0.01, hypergeometric test,
Bonferroni corrected) of HGT events were mainly symbiosis-
associated, such as polysaccharide degradation, succinoglycan
biosynthesis38 (a symbiotically important exopolysaccharide)
and nitrogen fixation (Fig. 5b and Supplementary Table 10).
This finding may indicate that strong selective pressure may
shape these microorganisms to sustain their host and benefit
from the symbiotic relationship.

Polysaccharide degradation is essential for various bacterial
communities, which take up these biopolymers as key nutrient
source39,40. To assess the potential of polysaccharide degradation
in the kelp microbiome, we annotated the carbohydrate active
enzyme (CAZyme) spectrum by searching against the CAZy
database41. This analysis identified 12,054 (3.4% of total proteins)
putative CAZymes belonging to 208 CAZY families, suggesting
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the vast diversity and potential of polysaccharide degradation
in these epiphytic bacteria. Among them, GTs (29.4%) and
GHs (24.6%) were the most abundant classes, followed by
CEs, CBMs, AAs, PLs, dockerin and cohesin. In particular,
seven alginate lyase families (PL6, PL7, PL9, PL10, PL14,
PL17 and PL18) for degrading alginate, which is the main
component of the cell wall in brown algae35, and four
laminarinase families (GH16, GH17, GH64 and GH128) for
degrading laminarin, which is a unique storage polysaccharide in
kelp35, were observed. Notably, the kelp microbiome possessed
many more CAZymes (38 per 1,000 genes) than the other two

ecosystems (Fig. 5c) (7 and 22 in ocean and human gut,
respectively). In addition, a large number of exocellular
carbohydrate-degrading complexes called cellulosomes42 that
consist of cohesins, dockerins and surface layer homology
modules were detected (Supplementary Fig. 15a). By playing
a major role in carbon turnover, cellulosomes enable bacteria
to degrade plant cell walls and to convert polysaccharide
compounds in a highly efficient manner42. An analysis of kelp
microbial proteins with hits to cellulosome-associated modules
revealed that 1.1% of the total CAZymes were dockerins.
Compared with the other two microbiomes, the kelp
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Figure 5 | Functional insights into the assembled kelp bacterial genomes. (a) Comparison of the KEGG pathways of the assembled kelp bacterial

genomes with the ocean and human gut microbiomes. Heat map shows the enrichment score between kelp and gut (left), kelp and ocean (right).

Po1� 1� 10, Fisher’s exact test and Bonferroni corrected. Red colour represents enriched functions in the assembled kelp bacterial genomes and blue
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CAZyme genes in each genome is shown in bar plot.
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microbiome exhibited prominent enrichment in cohesin and
dockerin modules.

As an evolutionarily deep-branching phylum in the domain
Bacteria, Planctomycetes exhibit unusual properties, including
non-typical peptidoglycan cell walls and the appearance
of internal compartments43–45. In this study, we successfully
discovered 16 nearly complete Planctomycetes genomes from the
kelp epiphytic community, which provide invaluable new
resources for understanding the metabolic potential and
genome evolution of this phylum. As shown in Fig. 5d,
comparative numbers of CAZyme genes were detected in the
genomes of Rhodopirellula baltica SH1 and Rhodopirellula.
sp SWK7, which live on the surface of macroalgae and use
polysaccharides as their main energy source46. However,
the number of dockerins in kelp bacteria was considerably
increased compared with other related organisms in this phylum,
and a phylogenetic analysis revealed that the dockerin
genes in HD041 and its close relatives (HD112 and HD029) are
likely derived from gene duplication (Supplementary Fig. 16).
Algal cell walls contain plentiful sulfated carbohydrates, such as
ulvan and fucoidan35,40,47. An important feature of species in
genus Rhodopirellula is that they possess a large number of
sulfatase genes, which are essential in the degradation of sulfated
polysaccharides46. The closely related kelp bacterial genomes,
however, contain many fewer sulfatase genes than Rhodopirellula
(Supplementary Fig. 15b), which may be partly because their host
Saccharina contains fewer sulfated polysaccharides. Interestingly,
the three new species identified in this study had the smallest
genome size (approximately 4.9 Mb) in the Planctomycetaceae
family, representing a genome reduction compared with other
related organisms (6.2–10.1 Mb). A functional enrichment
analysis revealed that the lost genes compared with
Rhodopirellula spp. were mainly involved in the biosynthesis of
amino acids and carbon metabolism (Supplementary Fig. 17).

Discussion
This study presents a novel experimental and bioinformatic
framework, metaSort, for the effective construction of bacterial
genomes from metagenomic samples. The main advantage of
metaSort is that it provides a sorted mini-metagenomic approach
based on FCM and single-cell methodologies. To combine
the sorted mini-metagenome (meta-S) and the original metagen-
ome (meta-O), we developed two new computational algorithms,
BAF and MGA, with the aim of reconstructing genomes from
small subsets of cells and variation calling. In addition, to
improve the applicability of metaSort, these two algorithms
are designed as stand-alone software packages and can serve as
a hot-plug scaffolder for current de Bruijn graph based
metagenomic assemblers, such as metaSPAdes and IDBA-UD.
This approach greatly accelerates our ability to capture and
assemble high-quality genomes from various environmental
samples, which will undoubtedly benefit the field of
metagenomics.

With the development of new sequencing technologies, high-
quality genomes can be obtained using PacBio and Illumina
TruSeq Synthetic (Moleculo) long reads48, which makes
metagenome assembly considerably easier. However, the high
error rate of PacBio long reads makes it difficult to distinguish
authentic variations from sequencing errors in metagenomes.
For example, Kuleshov et al. showed that the assembly of
PacBio reads had a five-fold higher indel rate and only 88% of
single nucleotide variant calls could be confirmed by Illumina
short reads48. Although Moleculo overcomes this drawback
and has been applied to assemble bacterial genomes and to
identify substrains in microbiomes48,49, both long-read-based

technologies are greatly influenced by the unevenness of
species richness in the microbial community. High-abundance
bacteria have increased probability to be sequenced compared
with moderate- or low-abundance species, thus resulting in
an overwhelming volume of ‘useless’ data or preventing the
sub-assembly of the Moleculo long reads. Howe et al. surveyed
the HGMC data set and found that 60% of the total reads
represent only 2% of captured bacteria, which could be discarded
with no effect on assembly50. Kuleshov et al. applied both
Moleculo long-read and short-read sequencing technologies to
a gut metagenome and identified 178 species, among which
only 51 (28.7%) with abundance o5% were uncovered by
Moleculo long reads48. In contrast, metaSort uses FCM to
generate meta-S, which can effectively avoid the interference of
highly abundant bacteria by sorting cells by size. In addition,
users can control the number of cells in each meta-S using
FCM. For example, if only one cell is separated, it is a typical
application of single-cell sequencing. In contrast, the taxonomic
profile of meta-S will be similar to that of meta-O if a large
fraction of cells are selected. Therefore, metaSort provides
a manageable and dynamic means of generating meta-S and
can reduce the complexity of metagenomic by controlling the
number of separated cells. Moreover, compared with traditional
single-cell sequencing, these subsets of cells with few overlaps can
significantly improve the throughput and thereby provide a more
economical means of capturing diverse genomes. Moreover,
other sorting methods, such as specific nucleotide acid probes
and magnetically labelled antibodies, can be applied to separate
target bacteria, which will greatly expand the application of this
method.

A crucial feature of metaSort is the binning and reconstruction
of sequences of the target genome based on the combination
of meta-S and meta-O. Recently developed unsupervised binning
methods face challenges either in the large number of samples or
the short length of the assembled contigs. These challenges greatly
limit the application of such methods to complex metagenomic
samples for the following reasons: (i) for co-occurrence-based
binning methods, assembling a large number of metagenomes
may cause a computational bottleneck in most computers51, and
(ii) genomes that have intra-species variations but low abundance
are generally assembled into small fragments, which are not
applicable to most binning methods. MetaSort, however,
outperforms these methods based on the following: (i) it does
not require a large number of samples for constructing
co-occurrence profiles and thus will significantly reduce the
burden of computing; (ii) it employs meta-S to reduce the
complexity of assembly and to recover low-abundance species;
and (iii) it takes advantage of the meta-O contig connection graph
to recover short target contigs, which are overlooked by most
current binning approaches. Moreover, by traversing the target
genome contig connection graph, the order of target contigs can
be easily determined, and the sequences of these ordered contigs
can be merged into long scaffolds. An improved metagenome
assembly will greatly benefit downstream analyses, for example,
gene prediction and horizontally transferred gene detection.
It should be noted that FCM-based cell separation is not
a prerequisite for the utility of metaSort. Users can use closely
related genomes to replace meta-S and then run BAF and
MGA to recover target contigs from meta-O. Furthermore, if no
meta-S data set is provided, the computational tools implemented
in metaSort will perform de novo binning of the assembled
contigs in meta-O, and the results will then be processed
by MGA.

Existing variation detection algorithms often depend on
the availability of reference genomes24,52. When reference
genomes are lacking, variation detection is typically performed
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in a post-assembly manner. However, traditional metagenome
assemblers often produce highly fragmented contigs or merge
different variants into consensus sequences3. Therefore, most
genomic variants in the metagenomic assembly cannot be
detected. A recent effort to use variation-aware contig graphs to
detect variation relied heavily on manual inspection, and it is
not applicable to detect strain-level variations53. In contrast,
metaSort can recognize variation from the contig connection
graph during the assembly process, which provides a high-
resolution map of genetic variation in metagenomes.

It is becoming clear that microbes colonizing the surface
of macroalgae are essential for the growth and development of
the host40. To comprehensively understand the genetic basis
of macroalgae-bacteria interactions, obtaining genomes of
representative bacteria is a crucial step. However, few reference
genomes are available, which is partly due to the difficulty in
cultivating these genomes. Our assembly of 75 bacterial genomes
using metaSort remarkably illuminates kelp-bacteria interactions.
Compared with ocean and gut microbiomes, the kelp microbiome
is rich in energy metabolism, key nutrient supplements, atta-
chment mechanisms and surface competition. In the assembled
genomes, we identified 12,054 putative CAZymes belonging
to 208 CAZY families, indicating a vast diversity and potential
for polysaccharide degradation in these epiphytic bacteria.
Notably, the kelp microbiome possesses many more CAZymes
(38 per 1,000 genes) than the other two ecosystems (7 and 22 per
1,000 genes, respectively), indicating that these epiphytic bacteria
have adapted to their host environment. Interestingly, HGTs may
contribute to the expansion of CAZyme-related genes in these
bacteria. The high-quality genomes generated in this study
will provide an opportunity to study the roles of epiphytic
bacteria in the morphological development, growth, defense
and nutrient uptake of their algal hosts.

Methods
Meta-O contig connection graph construction. SOAPdenovo v2.04 was used to
assemble metagenomic reads with following parameters: all -K 41 –m 71 –u –R.
The resulting contigs were used to construct the meta-O contig connection
graph. First, we refer a directed string graph as contig connection graph
G¼ (V, E) that has a set of nodes V ¼ v1; v2; . . . ; vnf g and a set of edges
E ¼ v1; v5ð Þ; v1; v3ð Þ; . . . ; vm; vkð Þ vm; vk 2 Vjf g that are formed by pairs of
overlapping contigs54. The set of nodes is created by assigning each contig
c 2 C to a unique node. The graph G1¼ (V1, E1) is a subgraph of G¼ (V, E)
if (i) V1 D V and (ii) every edge of G1 is also an edge of G. The subgraph
G1¼ (V1, E1) is a component of G¼ (V, E) if G1 satisfies three conditions:
(i) V1DV; (ii) every edge of G1 is also an edge of G; and (iii) any two nodes in
G1 are connected to each other by a path, and no paths can be found to connect
the nodes between V1 and (V–V1). The meta-O contig connection graph was
bi-directed because both contigs were derived from the forward strand and the
reverse strand of DNA sequences. Then, paired-end read-mapped links (Plinks),
which are defined as distant connections between two different contigs that are
supported by a number of paired-end reads, are created. To feasibly represent the
distance between two contigs that are supported by Plinks for scaffolding, the insert
length of the sequencing library is estimated using normally mapped paired-end
reads based on a mixed Gaussian distribution and EM algorithm.

Meta-O CCG partition. The meta-O contig connection graph is partitioned into
many small subgraphs such that each subgraph represents a partial sequence
of a species. This partition is based on the assumption that genomes from different
species seldom contain a common sequence, as previously described by Peng et al.
This partitioning is achieved by a greedy algorithm, which repeatedly checks
all outward edges of each node with out-degrees larger than 2. If all the paths
with length rw (for example, 400 bp) that start from the outward edges of
a node u cannot converge into another node v, all the outward edges of vertex u are
removed from the meta-O contig connection graph.

Meta-S contig binning. Mini-metagenomic reads were assembled using SPAdes
v3.15 (with SC and careful mode). To improve the binning efficiency, a new
algorithm (binning and fishing, BAF) was developed to bin the meta-S contigs by
introducing connected contigs from meta-O (Supplementary Fig. 1). BAF starts by
clustering the meta-S contigs into bins based on TNF. Meta-S bins are then

mapped to meta-O contigs using NUCMER (ref. 55) to locate meta-S bins on
the meta-O contig connection graph. Links are created if two meta-S bins on the
meta-O contig connection graph satisfy one of two criteria: (1) both meta-S
bins have an end-to-end overlap (at least 40 bp) with a node; or (2) there is only
one path between these two meta-S bins, and the nodes on the path cannot be
aligned to any other meta-S bins except themselves. Subsequently, the meta-S bins
and the paths linking the meta-S bins are extracted to form a small graph. Finally,
the small graph is partitioned into many components based on graph connectivity,
and the meta-S bins in the same component are clustered together into merged
bins. The merged bins and the remainder of the meta-S bins that do not participate
in the process of merging constitute the target genome bins.

Machine learning and graph-based algorithm (MGA). After BAF is performed,
a set of target genome bins are generated. Each bin represents a partial genome
assembly, which may cover 10-90% of the complete genome (see Fig. 2). The MGA
algorithm was developed to recover the remaining contigs of the target genome and
then create a combined assembly. MGA can be divided into the three steps
described below.

(1) The increase step. Similar to the method used in PhyloPythia21, for each
target genome bin, a supervised SVM-based algorithm is used to recover the
remaining target genome contigs from meta-O based on the positive, negative and
test data sets. MGA takes the sequences in the target genome bins as the positive
data set. Subsequently, negative and candidate data sets are prepared using the
Spearman Footrule distance metric20, which can quantify the difference between
two TNF distributions from their fragments. The intra-species distance distribution
is obtained by calculating all the pairwise distances of the sequences in the target
genome bins. The distances of all the meta-O contigs are recorded by comparing
these values with the sequences in the target genome bins, and those meta-O
contigs with distances twice as large as the standard deviation of inter-species
distance are classified into the negative data set. Otherwise, the sequences will be
classified into test data set. Finally, SVM trains the classification model based on
the positive and negative data sets using codon usage as a feature vector and
subsequently candidate target genome contigs are predicted.

(2) The decrease step. With candidate target genome contigs predicted by SVM,
the sequencing depth of target genome and the partitioned subgraphs of the meta-
O contig connection graph are employed to filter false-positive contigs. Because the
sequences in the target genome bins are generated by MDA technology, their
sequencing depth is highly uneven and does not represent the true sequencing
depth of the target genome. MGA first maps the meta-O contigs to the sequences
in the target genome bin to obtain seed contigs, which can feasibly represent the
target genome. Next, MGA utilizes a Gaussian mixture model fit with an
expectation-maximization algorithm to estimate the sequencing depth distribution
of the seed contigs. Candidate target genome contigs with sequencing depths
outside the range of two standard deviations of the depth distribution are
discarded. After filtration, the remaining target genome contigs and seed contigs,
referred to as landmarks, will be used for traversing the meta-O contig connection
graph in the next step.

(3) The connection step. Rather than traversing the entire meta-O contig
connection graph, MGA uses a breadth-first searching algorithm, which starts at
each landmark and searches against the contig connection graph using a given step
size to identify the path that can connect two landmarks. Once all landmarks have
been visited, the landmarks along the search path are extracted to build a target
genome contig graph. Prior to generating the final scaffold, MGA executes two
functions, ‘trimming tips’ and ‘merging bubbles’, to simplify the target genome
contig graph. A ‘tip’, which is defined as a chain of nodes disconnected on one end,
is removed. A bubble structure is defined as several similar paths with the same
start node and end node in the contig graph. We further defined nodes that are
shared by at least two paths in a bubble structure as uniform nodes; otherwise,
nodes are termed divergent nodes. Let v be a node in the target genome contig
graph with branches (the out degree of v41). Following each branch, we search
outward from v for a set of walks, W, that satisfies the following two conditions:
(i) all walks end at a common node u, and (ii) no node included in any walk
between v and u can connect a node that does not belong to W. Once a set of walks
that fulfils these criteria has been found, the sequences of the divergent nodes
among the walks are compared using a Dynamic Programming algorithm to
discard the bubbles caused by repetitive elements. If the sequence identity is higher
than a predefined threshold (by default, 95%) in all cases, one walk containing the
smallest depth variation with target genome is retained, and the others are recorded
and removed from the graph. Finally, the simplified target genome contig graph is
assembled into scaffolds. Information on the removed walks is retained for
downstream analyses.

Two new metrics to evaluate metagenomic variation. In the contig connection
graph of a metagenome, bubbles may represent sequencing errors, repetitive
sequences or genetic variants from closely related genomes. In the connection
step of MGA, we filter the bubbles caused by repetitive sequences using sequence
identity. Because sequencing errors may cause errors in the detected variations, we
further filter the bubbles by removing walks with a sequencing depth o2-fold from
the bubble structure. Moreover, we propose the following two metrics to qualify the

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14306 ARTICLE

NATURE COMMUNICATIONS | 8:14306 | DOI: 10.1038/ncomms14306 | www.nature.com/naturecommunications 11

http://www.nature.com/naturecommunications


variations:

bubble density ¼
Pm

i¼1 LDi

2�
Pm

i¼1 LDi þ
Pn

i¼1 LUi
� �

bubble identity ¼ 1�
Pm

i¼1 Misi

ð
Pm

i¼1 LDiÞ
�

2þ
Pn

i¼1 LUi

where LD is the length of a divergent node, LU is the length of a uniform node,
n is the number of uniform nodes on the component, and Mis is the number
of mismatches among the divergent nodes. The bubble distance, which is defined as
the sequence length between the two nearest divergent bubbles, is calculated
using an algorithm that iteratively deletes the bubble nodes in a component and
calculates the accumulated contig length between two pendant ends (nodes with in-
degree¼ 1 and out-degree¼ 0).

Strain-level variation identification. We identified strain-level variation-
containing species using a logistic regression model. The probability of a species
containing strain-level variation is defined as: svp xð Þ ¼ 1=ð1� ey

T XÞ, where
X is a feature vector containing two values, m and k. m is the average component
identity where the outliers (±3 s.d.) have been removed, and k is log(m/n), where
n is the component number of the target genome contig graph. y is the weight of
every feature in X. To obtain the y value, we used the 100 genomes in the mock
data set. Then, we defined a regression model as follows:

�
X100

i¼1

yi log svp xið Þð Þþ 1� yið Þlog 1� svp xið Þð Þ

where y equals 1 if the genome contains strain-level variation; otherwise, y equals 0.
We applied the gradient descent algorithm to tune the parameters and to obtain
the y value.

To calculate the abundance of each variant in the bubbles, we first mapped
the metagenomic reads to the target genome contig graph to obtain the contig
depth. Then, we identified the contributions of individual strains when contigs
were shared by multiple strains and solved a weighted non-negative least squares
problem for each bubble structure. Due to the depth bias of short contigs, we
defined the weight function to represent the confidence level of depth with respect
to contig length as follows: w¼ 1� e� x� 0.5/100, where x is the length of the contig.

We further introduced alpha diversity, a metric of the number of strains and the
proportion at which each strain is represented in the species, to compare the levels
of intraspecific variation among different species. The alpha diversity in each
bubble was calculated as follows:

H ¼ �
Xn

i¼1

Pi � ln Pið Þ

where Pi is the abundance ratio of each variant in the bubble, and n is the variant
number.

Microbial sample collection and preparation. Approximately 10 ml of saliva was
collected from a healthy human volunteer who was free of systemic diseases and
other oral diseases, without prosthetic dental appliances, had never received
periodontal therapy and had not taken any antibiotics in the past three
months56–58. The sample was centrifuged at 2,500g for 30 s at room temperature
to remove large particles. The supernatant was stored in sterile plastic tubes
and frozen at � 80 �C for further processing. Approximately 5 g of a fecal
sample from a newborn was collected in a 50-ml sterile tube, suspended in sterile
1� phosphate-buffered saline and vortexed for 5 min. Then, the sample was
centrifuged at 2,500� g for 30 s at room temperature to remove large particles.
The supernatant was transferred to sterile plastic tubes and frozen at � 80 �C for
storage.

Female gametophytes of kelp59 (Saccharina japonica, SJ) were cultured at
10±1 �C and 5 mmol photons m� 2 s� 1 with a 12:12 h light/dark photoperiod.
Microorganisms colonizing the surface of SJ were harvested using a shaker
(Thermo Fisher Scientific, Waltham, MA, USA). Then, bacterial cells were
collected in sterile plastic tubes and stored at � 80 �C for further processing.

Cell sorting. Fresh cells from the above samples were centrifuged at 16,000g
(15 min) and re-suspended in sterile 1� phosphate-buffered saline at 106 to
107 cells ml� 1. The cell suspensions were filtered through BD Falcon Cell-Strainer
Caps (352340) and then sorted on a BD Influx flow cytometer (BD Biosciences,
USA) using a 488-nm argon laser for excitation and 70 mM nozzle orifice filter
cartridges with a sheath pressure below 40 psi. For optimal sorting performance,
the cell sorting accuracy was tested prior to library sorting using a mixture of
polystyrene fluorescent beads (530 nm, 950 nm, 1.6 mm, 2.0 mm and 3.2 mm,
respectively), which was purchased from Nano-Micro Co., Ltd (Suzhou, China).
Then, the sorted beads were analysed by FCM for purity of which greater than
98% was acceptable using a high purity sorting mode. Subsequently, sort gates were
specified according to bacterial cells of different sizes in the library, which were
characterized by analysing their forward scatter (FSC) and side scatter (SSC) and
the number of cells in each gating window on the FSC and SSC plot were

determined. Finally, the sorting gates containing target cells were segregated
in 5-ml round-bottom tubes (BD Biosciences, USA) and stored at � 80 �C until
further processing.

DNA extraction and whole-genome amplification. Cells of specimens sorted by
flow cytometry were transferred to 1.5-ml sterile tubes (Eppendorf Ltd., Germany)
and centrifuged at 16,000g (15 min) for enrichment. Then, these cells were
resuspended in 5 ml of lysis buffer (0.13 M KOH, 3.3 mM EDTA pH 8.0, and
27.7 mM DTT) and incubated at 65 �C for 30 min, after which 5 ml of neutralization
buffer (0.13 M HCl, 0.42 M Tris-HCl pH 7.0, and 0.18 M Tris-HCl pH 8.0) was
added to stop the reaction. To obtain sufficient DNA for next-generation
sequencing library preparation, genomic DNA released from the lysed cells was
amplified with the Phi29 DNA polymerase supplied in the REPLI-g Mini Kit
(Qiagen, Hilden, Germany). All the components were added on ice (in the order
listed in the REPLI-g Mini Kit protocol), mixed and centrifuged gently. After
8-h amplification at 30 �C, the Phi29 DNA polymerase was denatured at 65 �C for
5 min. Then, the DNA solution was cooled on ice for 3 min and purified with the
QIAGEN Genomic DNA Kit (Qiagen, Hilden, Germany). The quantity of purified
DNA was measured using a NanoDrop 2000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA) and the quality was checked by agarose gel
electrophoresis. The DNA solution was stored at � 20 �C for further processing.

High throughput sequencing. The purified metagenomic DNA was amplified
from the sorted cells using a whole-genome amplification kit, and the original
metagenomic DNA was fragmented into approximately 180-bp fragments by
sonication using Covaris s220 (Covaris). Next-generation sequencing libraries
were constructed according to the manufacturer’s protocol (Illumina, Inc.),
quantified using a Stratagene Mx3000P Real-time PCR Cycler (Agilent, Santa
Clara, CA, USA), subjected to cluster generation in a c-Bot automated sequencing
system (Illumina, Inc.), and finally sequenced with 2� 100 bp paired-end reads on
an Illumina HiSeq 2000 instrument at the Beijing Institutes of Life Science,
Chinese Academy of Sciences (CAS). For the PacBio library construction, genomic
DNA was sheared to 8 kb using an ultrasonicator and was converted to the
proprietary SMRTbell library format using an RS DNA Template Preparation Kit.
SMRTbell templates were subjected to standard SMRT sequencing on the PacBio
RS system according to the manufacturer’s protocol. The raw sequencing reads
were trimmed using Trimmomatic60.

Synthetic data set. A data set containing 100 bacterial genomes was simulated
with abundance following a power law; the sequencing depth ranged from 5- to
128-fold. Simulated sequencing errors were randomly distributed. The error rate
was set at 2%, and the average insert length was 200 bp. The data set was designed
to test the ability of MGA to resolve different levels of taxonomic resolution,
including strains of the same species. These genomes were divided into three major
testing categories according to different taxonomic levels: (i) species: bacterial
genomes from the same species but different strains; (ii) genus: bacterial genomes
from the same genus but different species; and (iii) Zfamily (see SI Appendix,
Fig. 3 for details). Calculations of ANI values between two genomes according
to BLAST (ANIb) were performed using JSpecies61.

Evaluation of the assemblies. We evaluated the performance of the assembled
genomes in oral and gut microbiomes using QUAST because most human oral and
gut bacteria have been previously sequenced. For the analysis, we considered the
following quality metrics: total assembly length, average scaffold length, maximum
scaffold length and NGA75 size.

Computational and experimental validation of assembled genomes. The
completeness and contamination of the assembled kelp bacterial genomes were
evaluated using CheckM. PacBio long reads were mapped to the assembled
scaffolds using BLASR to validate the assembly. We first calculated the error rate of
the PacBio reads using 100% mapped PacBio reads with a minimum read length of
5 Kbp and the ANI value (97%) between two strains from same species. To address
the problem of genomic regions shared by different genomes, we first built feasible
mapping regions (FMRs) using PacBio reads larger than 1 Kbp with a minimum
read coverage of 80%. Then, the reads that were mapped on the scaffolds were
analysed. If the reads were partially mapped to the FMRs, they were considered
false mapping and were thus abandoned. If the reads were mapped outside the
FMRs, they were accepted if the following two criteria were satisfied: (i) a mini-
mum mapping length of 2 Kbp and (ii) no mapping hits to other scaffolds. Reads
mapping to different genomes were required to have the following: (i) at least
1 Kbp mapped length on each scaffold; (ii) an accumulated read coverage greater
than 50%; and (iii) a mapping region located outside the FMRs of the target
scaffold. After the mapped PacBio reads were classified, the number of PacBio
reads in each catalogue was calculated and normalized to the total number of
mapped PacBio reads. In addition, the nucleotide identity of continuously mapped
PacBio reads was classified into five levels (80–100%), and the number of mapped
PacBio reads in each level was counted. For PacBio reads that were mapped to
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multiple genomes, the alignment length and number of the mapped genomes were
also calculated.

Functional annotation. We performed gene prediction using PROKKA (ref. 62)
v1.11 for the assembled genomes, and the predicted proteins were input into
PhyloPhlAn (ref. 63) v0.99 to assign microbial phylogeny and putative taxonomy to
each genome. Proteins were assigned to the KO using the KEGG Automatic
Annotation Server64. To identify CAZymes in the recovered kelp bacterial genomes,
we performed CAZyme screening in these assembled genomes and the gene
catalogues of the gut and ocean microbiomes (http://www.genome.jp/mgenes).
All of the putative proteins were searched against entries in the CAZy database
using the dbCAN Web server65, in which HMMer (ref. 66) was used to query
a collection of custom-made hidden Markov model profiles that were constructed
for each CAZy family.

Enrichment analysis. We counted the numbers of KEGG Orthologs (KOs) in the
assembled kelp bacterial genomes and the gut and ocean reference gene catalogues.
Functional enrichment was determined using Fisher’s exact test and was adjusted
for the FDR. KOs with a q-value less than 0.01 were considered enriched; these
KOs were mapped to KEGG metabolic pathways using publicly available data for
each KO in the KEGG website to calculate the pathway enrichment. An enrichment
score was proposed for this study and was calculated for pathways that contained
enriched KOs. The enrichment score was defined as follows:

ES ¼ T�
PT

i¼1 � log10 Pð Þð Þ
N

;

where ES is the pathway enrichment score, T is the number of KOs that participate
in the pathway and are found to be enriched in the assembled kelp bacterial
genomes, P is the hypergeometric P value for each enriched KO, and N is the total
number of KOs in the specific KEGG pathway.

Phylogenetic analysis of the assembled genomes. We used all of the
assembled genomes from the kelp microbiome to construct a phylogeny based on
36 phylogenetic marker proteins67. For each genome, proteins were aligned to
individual COG proteins using BLASTP. The best hit to the protein that had at
least 50% identity and covered more than 50% of the COG sequence was selected.
For each COG, the selected proteins were aligned using MUSCLE (ref. 68) v3.8.31,
and the individual alignments were concatenated into a single alignment.
A phylogenetic tree was constructed with FastTree (ref. 69) v2.1.8 and visualized
using ITOL (ref. 70).

Data availability. The metagenomic data generated in this study have been
deposited in the BioProject database of Genbank under the accession number
PRJNA357324. The MetaSort software and its source code have been deposited
to Sourceforge (https://sourceforge.net/projects/metasort) and Github
(https://github.com/jipeifeng/metasort). The authors declare that all other data
supporting the findings of this study are available within the article and its
Supplementary Information files.
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