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Leukotrienes (LT) comprise a group of biologically highly 
potent lipid mediators synthesized by 5-lipoxygenase from 
20-carbon polyunsaturated fatty acids, predominantly arachi- 
donate (1-3). They include the cysteinyl LT, LTC,, LTD,, 
LTE,, representing biologically active constituents of the long- 
known "slow-reacting substance of anaphylaxis" and the dihy- 
droxyeicosatetraenoate, LTB,. LT act at nanomolar concentra- 
tions in intercellular communication, signal transduction and 
on host defense. Extensive studies during the last years have 
demonstrated that LT are not only locally acting mediators but 
also systemically acting substances. 

Recent progress in LT research has led to a more detailed 
understanding of their biosynthesis, degradation, and inactiva- 
tion. Moreover, the pathogenetic role of LT in various human 
diseases has become recognized, and inhibitors of biosynthesis 
as well as receptor antagonists interfering with signal trans- 
duction were developed. 

The aims of the review are 1) to update the current knowl- 
edge of the synthesis, metabolism, and principal role of LT as 
mediators under physiologic and pathologic conditions; 2) to 
give a brief overview about the development, state of the art, 
and limitations of analytical techniques; 3) to discuss clinical 
conditions with particular emphasis on pediatric diseases in 
which LT are assumed to play a pathobiologic role; 4) to 
illustrate how present knowledge has influenced current patho- 
physiologic concepts; and 5)  to briefly present future aspects of 
biochemical and clinical research on LT. 

BIOSYNTHESIS, METABOLISM, AND 
INACTIVATION 

ca2+-dependent activation of 5-lipoxygenase induces con- 
version of arachidonate via 5-HPETE (5s-hydroperoxy-6,8, 
11,14-eicosatetraenoate) to the labile 5,6-epoxide LTA, (4) 
(Fig. 1). 

By enzymatic action of LTA, hydrolase, LTB, (5S, 12R- 
dihydroxy-6,8,10,14-eicosatetraenoate) is formed (5). Alterna- 
tively, enzymatic conjugation of LTA, with glutathione at 
carbon 6 catalyzed by LTC, synthase results in the formation 
of LTC,, the primary cysteinyl LT (6). Stepwise cleavage of 
glutamate and glycine from LTC, by y-glutamyltransferase 
and dipeptidase followed by enzymatic action of N- 
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acetyltransferase yields LTD,, LTE,, and N-acetyl-LTE,, re- 
spectively (2). LTD, represents the biologically most potent 
cysteinyl LT. 

LT are predominantly produced by macrophages, mono- 
cytes, neutrophils, eosinophils, mast cells, and basophils (7-9). 
Additionally, transcellular synthesis of LTB, and LTC, from 
the 5,6-epoxide LTA, occurs in endothelial cells, platelets, 
mast cells, lymphocytes, and erythrocytes (10-13). Table 1 
summarizes the biologic effects and functions of the cysteinyl 
LT and LTB,. 

Enzyme-catalyzed chemical modification of the cysteinyl- 
glycine moiety of LTD, followed by stepwise w-oxidation and 
P-oxidation of the degradation products of LTE, and LTB, 
result in complete inactivation (Fig. 1). LTC, and LTD, are 
rapidly metabolized in the blood circulation to LTE; with an 
half-life of 30 s up to 4 min (14-16). Therefore, the estimation 
of the biologically active LT in plasma is without real signif- 
icance. 

The liver represents the main organ for the uptake, metabolic 
inactivation, and biliary elimination of LT and their metabo- 
lites (17-20). However, renal uptake also contributes to the 
disappearance of cysteinyl LT from the circulation (17,21-23). 
Changes in the urinary excretion of LTE, are assumed to 
reflect short-term changes in the rate of formation of LTC, 

(24). 
Unlike the prostaglandins that are degraded from the carbon- 

1-carboxyl-group, LTE, and LTB, are further degraded from 
the w-end by P-oxidation of their respective w-carboxy- 
metabolites. w-Oxidation of LTB, to w-hydroxy-LTB,, w-al- 
dehyde-LTB,, and w-carboxy-LTB, has been shown to occur 
in leukocytes and hepatocytes (25-27). Hepatocytes were also 
shown to P-oxidize w-carboxy-LTB, to w-carboxy-dinor- 
LTB, and w-carboxy-tetranor-LTB3 (26-28). Furthermore, the 
liver converts LTE4 to the respective w-hydroxy and w-car- 
boxy metabolites (29, 30). These substances are further de- 
graded by 0-oxidation yielding w-carboxy-dinor-LTE, and 
w-carboxy-tetranor-LTE3 (31, 32) (Fig. 1). Measurement of 
urinary w- and @-oxidation products of LTE, may reflect 
long-term changes in cysteinyl LT biosynthesis and metabo- 
lism (24). 

Peroxisomes have been recently identified as the site of 
P-oxidation of the LT from the w-end (33). Whereas the 
cysteinyl LT w-carboxy-N-acetyl-LTE, has been found to be 
exclusively P-oxidized in peroxisomes, w-carboxy-LTB, was 
degraded both in isolated peroxisomes and mitochondria. Fur- 
ther evidence for the essential role of peroxisomes in the 
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Figure 1. Metabolic pathway of LT biosynthesis and metabolism. The numbers refer to the enzymes most active in the pathways, as follows: I, phosholipases; 
2, 5-lipoxygenase-activating protein; 3, 5-lipoxygenase; 4, LTA, hydrolase; 5, LTC, synthase; 6, y-glutamyl transpeptidase; 7, y-glutamyl dipeptidase; 8, 
N-acetyltransferase. 



LEUKOTRIENES IN HUMAN DISEASES 3 

Table 1. Biologic effects of LT 

Cysteinyl LT 

Vasoconstriction 
Increase of vascular permeability in 

postcapillary venules 
Bronchoconstriction 
Stimulation of mucus secretion 
Intestinal contraction (ileum) 
Plasma extravasation 
Decrease of blood pressure 
Reduction of myocardial contractility 

and coronary blood flow 
Decrease of renal blood flow and 

GFR 
Proliferation of glomerular 

endothelial cells 
Release of LH-releasing hormone 
Stimulation of prostacyclin synthesis 

(endothelium) 

LTB, 

Aggregation; chemokinesis 
Chemotaxis; release of lysosomal 

enzymes; stimulation of 
superoxide anion production 

Adhesion and transendothelial 
migration of neutrophils 

Increase of vascular permeability 
(in the presence of PGE,) 

Enhancement of C3b receptor 
expression and 
complement-dependent 
cytotoxicity 

Modulation of lymphocyte function 
Affector of the production and 

action of cytokines 
Release of intracellular calcium 
Increase of CAMP and cGMP 

synthesis 

catabolism of LT has been obtained by studying endogenous 
LT excretion in the urine of patients with peroxisome defi- 
ciency disorders (34). In these patients the defect of peroxiso- 
ma1 LT degradation results in increased levels of LTE, and 
LTB,. In addition, the concentrations of urinary w-carboxy- 
LTE, and w-carboxy-LTB,, which are the immediate sub- 
strates for peroxisomal P-oxidation, are markedly increased. 

ANALYTICAL METHODS FOR DETERMINATION IN 
BIOLOGIC FLUIDS 

The low nanomolar and picomolar concentrations of these 
mediators in biologic fluids make analysis difficult. Addition- 
ally, LT have an extremely short half-life in vivo. LT are 
susceptible to oxidative degradation during sample prepara- 
tion. They are easily artificially generated and released in vitro 
from blood leukocytes during blood sampling (22). Therefore, 
LT analysis in plasma is of little meaning and not a reliable 
way to evaluate the role of LT under pathologic conditions. 
The generation of LT, especially LTB,, in isolated and stim- 
ulated white blood cells can be used to obtain information 
about the role of LT in various disease states (7, 35-37). 
Activation is carried out with different stimuli such as calcium 
ionophore ,423187, zymosan, antigen, or aggregated immuno- 
globulins. This approach appears to be the most reliable in 
vitro method to estimate LTB, generation. 

For the investigation of systemic cysteinyl LT production, 
species-characteristic index metabolites could be defined by 
tracer studies. After administration of radiolabeled LTC, to 
humans, [ 3 ~ ] ~ ~ ~ 4  is the main urinary metabolite (32, 38, 39). 
In contrast, [ 3 ~ ] ~ ~ ~ 4  is not detectable in urine after i.v. 
[ 3 ~ ] ~ ~ ~ 4  infusion (40). In addition, i.v. administration of 
[ 3 ~ ] ~ ~ ~ 4  leads to the detection of w-and P-oxidation products 
that are excreted into bile and urine (31, 32, 38). In humans, 
urinary LTE, has been proposed as an index metabolite for the 
systemic generation of cysteinyl LT in vivo (36,41-44). To get 
reliable information on the role of cysteinyl LT in pathologic 
states or after pharmacologic intervention, cysteinyl LT me- 
tabolites have to be analyzed in urine. 

Quantitative determinations of LT can be performed by 
bioassays, HPLC, RIA or enzyme immunoassays, or gas chro- 
matography-mass spectrometry. Extraction, purification, and 
separation of LT metabolites by HPLC serve as an initial 
analytical step (45). The use of immunoassays for LT mea- 
surements requires that identification be verified by HPLC or 
mass spectrometry. The method of choice for unequivocal 
identification is gas chromatography-mass spectrometry (46- 
48). Because no specific antibodies for w- and P-oxidation 
products of LTE, are available, a recently described procedure 
for determination of w-carboxy-LTE, in human urine using 
180-labeled standards provides a promising technique (34). 

PATHOPHYSIOLOGIC ROLE OF LT IN HUMAN 
DISEASES 

In recent years, research on LT and their significance in 
human diseases focused on the determination of the different 
LT in biologic fluids and tissues. The amounts of these bio- 
logically highly active mediators were found to be sufficient to 
elicit pathophysiologic responses in humans and experimental 
animals in a variety of conditions. A selection of diseases in 
which increased or impaired LT synthesis or metabolism is 
implicated is presented in Table 2. 

Lung diseases. In acute asthma, allergic rhinitis, and aspirin- 
sensitive and exercise-induced asthma, elevated concentrations 
of LT have been recovered from biologic fluids, including - 
bronchoalveolar lavage, sputum, blood, and urine, spontane- 
ously as well as after antigen challenge (43, 49-53) (Table 2). 
Clinical studies with LT receptor antagonists (see below) 
resulted in clinical improvement. Because LT are up to 1000 
times more potent constrictors of bronchial smooth muscle 
than histamine and because of their capacity to stimulate 
mucus secretion, their mediator role in the pathogenesis of 
asthma is evident. 

Sputum, lung lavage, or lung edema fluid obtained from 
patients with cystic fibrosis, adult respiratory distress syn- 
drome, and neonatal hypoxemia with pulmonary hypertension 
contained elevated concentrations of cysteinyl LT (54-56). 
Recently, it was suggested that the aspiration of tracheal 
secretions can be used to monitor airway LT biosynthesis in 
patients with lung injury (57). Elevated airway LT levels may 
reflect airway epithelial damage but may not predict the de- 
velopment of adult respiratory distress syndrome (57). Recent 
studies also suggested an involvement of amniotic fluid sur- 
factant in LT production (58) and demonstrated a stimulatory 
effect of arachidonic acid on surfactant phospholipid secretion 
in type I1 pneumocytes mediated at least in part by cysteinyl 
LT (59). 

Cysteinyl LT appear to be important mediators of group B 
P-hemolytic streptococcus-induced pulmonary hypertension 
in newborn lambs (60). It has been shown that LT inhibition 
prevents and reverses hypoxic pulmonary vasoconstriction in 
newborn lambs (61). Therefore, specific LT synthesis inhibi- 
tors may be useful in the management of infants with persistent 
pulmonary hypertension. Severe bronchiolitis due to respira- 
tory syncytial virus infection results from IgE-mediated hyper- 
sensitivity reactions to viral antigens with subsequent release 
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Table 2. Elevated concentrations o f  leukotrienes in human diseases 

Disease Source LT* Ref, 

Lung diseases 
Asthma Sputum, urine, leukocytes LTC,, LTD,, LTE, 
Cystic fibrosis Sputum, urine, leukocytes LTB,, LTD,, LTE, 
Viral bronchiolitis Nasopharyngeal secretion, urine LTB,, LTC,, LTD,, LTE, 
Adult respiratory distress syndrome Lung edema fluid, urine LTB,, LTD,, LTE, 
Neonatal hypoxemia with pulmonary Lung lavage fluid LTC,, LTD, 

hypertension 
Allergic disorders 

Allergic rhinitislconjunctivitis Tears, nasal secretion, urine LTC,, LTD,, LTE, 
Connective tissue disorders 

(Juvenile) rheumatoid Synovial fluid, urine LTB,, LTE, 
arthritis/spondyloarthritis 

Lupus erythematosus/scleroderma Urine LTE, 
Gout Synovial fluid LTB, 
Lyme arthritis Synovial fluid LTB, 

Skin diseases 
Psoriasis Epidermis, urine, skin chamber fluid LTB,, LTC,, LTD,, LTE, 
Urticaria Skin chamber fluid, plasma LTE, 
Kawasaki disease Leukocytes LTB, 

Gastrointestinal diseases 
Inflammatory bowel disease Mucosa, dialysate LTB, 
Acute pancreatitis Bile LTE, 
Liver cirrhosislhepatorenal Urine LTE,, N-acetyl-LTE, 

syndrome/hepatitis/cholestasis 
Hematogic diseases 

Chronic myeloid leukemia Leukocytes LTC, 
Sickle cell disease Urine, plasma LTB,, LTC,, LTD, 

Inherited metabolic diseases 
Peroxisome deficiency disorders Urine LTB,, LTE,, w-carboxy-LTEJLTB, 
Mevalonate kinase deficiency Urine LTE, 
Glutathione synthetase deficiency Urine, leukocytes LTB,, LTC4 (GI.), LTE4 ( v )  
Cystinosis Leukocytes LTC4, LTB4 ( 9 )  

Nutritional diseases 
Kwashiorkor Urine, whole blood LTC4, LTE,, LTB, ( v )  

CNS disorders 
Astrocytoma Urine LTE, 
MS Cerebrospinal fluid, leukocytes LTB,, LTC, 

Other clinical conditions 
Myocardial ischemia Urine LTE, 
Chronic smoking Leukocytes LTB, 
Multiple traumaisevere burns Urine, leukocytes LTE4, LTB4 ( q )  
Capillary leak syndrome Urine LTE, 
Cytokine therapy Urine LTE,, N-acetyl-LTE, 

* Concentrations of the LT listed were found to be elevated unless decreased concentrations are specifically indicated by (Q). 

of LT leading to airway obstruction (62). The positive corre- 
lation between elevated LT levels and symptoms and the 
decrease in LT levels in parallel with clinical improvement 
after ribavirin treatment support an involvement of LT in the 
pathophysiology of acute viral bronchiolitis in infants (63). 

Host defense. The high levels of LTB, measured in bron- 
choalveolar lavages and pulmonary tissues from nonimmune 
animals infected with live bacteria implicate LTB, as an 
important amplifier of the inflammatory response during acute 
pulmonary infections with mucoid Pseudomonas aeruginosa 
in unimmunized hosts (64). LTB, also exerts stimulatory ef- 
fects on macrophage association and intracellular destruction, 
e.g. in Trypanosoma cruzi infection (65). In contrast, LT 
production by macrophages ingesting Toxoplasma gondii was 
found to be absent (69), possibly explaining the relative lack of 
a neutrophil inflammatory response in diseases due to obligate 
intracellular organisms. In general, LT formation in human 

leukocytes induced by various microorganisms under different 
conditions is probably important in host defense (66-68). 

The nonimmune response to a single stimulus induces com- 
plement activation, phagocytosis, and LT generation. LT are 
generated by monocytes upon stimulation of their P-glucan 
receptor during phagocytosis (70). The release of LTB, by 
monocytes during nonimmune phagocytosis is believed to 
potentiate recruitment and margination of leukocytes onto the 
interior surface of blood vessels and to create a gradient for the 
entry of leukocytes into the tissue space (70). In the newborn 
polymorphonuclear leukocytes (PMNL), chemotaxis to LTB, 
in vitro is lower than in adults (71). This may protect the 
neonate against excessive inflammation as in bronchopulmo- 
nary dysplasia, but may also increase susceptibility to infection 
in the newborn. 

w-Oxidation of LTB, by PMNL is inhibited by pyocyanin, a 
phenazine derivative produced by P. aeruginosa, having im- 
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portant implications for PMNL chemotaxis in vivo (72). w-Ox- 
idation of LT was further shown to be inhibited by bifonazole 
(73), isoniazid (74), ethanol (79 ,  or trifluoro-analogs of LT 
(76). Inhibition of o-oxidation by these substances in vivo may 
thus be reflected in an altered pattern of LT metabolites. 

Connective tissue disorders. Elevated levels of LTB, have 
been reported in synovial fluid from patients with acute flares 
of gout (77), spondyloarthritis (78-80), Lyme arthritis (35), 
and severe seropositive rheumatoid arthritis (78-80), relative 
to patients with degenerative or traumatic joint diseases. The 
concentrations of LTB, in synovial fluid in these disorders 
most likely contribute to the inflammatory reactions. Addition- 
ally, increased LTB, production by stimulated PMNL has been 
reported from patients with rheumatoid arthritis, while elevated 
urinary LTE, levels were found in patients with active sys- 
temic lupus erythematosus, scleroderma (81), and juvenile 
rheumatoid arthritis (82). 

Gastrointestinal diseases. The concentration of LTB, was 
significantly elevated in inflamed mucosal extracts from pa- 
tients with inflammatory bowel disease (IBD) (83-85). It was 
suggested that LTB, o-hydroxylase activity plays an important 
role in the pathogenesis of IBD because the apparent V,,, 
values of this enzyme in PMNL were significantly higher in 
patients with Crohn's disease and ulcerative colitis than in 
healthy control subjects (86). Furthermore, enhanced formation 
of cysteinyl LT was inhibited by 5-aminosalicylic acid (84), 
and increased generation of LTB, in rectal dialysis fluid from 
patients with ulcerative colitis could be reduced under treat- 
ment with a 5-lipoxygenase inhibitior (87). These results to- 
gether with the effect of accelerated healing after application of 
a specific 5-lipoxygenase inhibitor in an animal model of IBD 
(88) should encourage further clinical trials of inhibiting LT 
synthesis in IBD. So far, elevated levels of cysteinyl LT have 
not been reported to occur in IBD. However, cysteinyl LT have 
been shown to mediate staphylococcal enterotoxin-induced 
enteric intoxication in the monkey (89). 

In nonalcoholic liver cirrhosis, synthesis of LTB, by PMNL 
is altered in association with an impaired 0,- production (90). 
In hepatorenal syndrome, renal clearance of LTE, is reduced, 
whereas excretion rate of LTE, is increased as result of an 
increased production of cysteinyl LT (44, 91). Urinary cystei- 
nyl LT concentrations are only slightly enhanced in patients 
with hepatic diseases associated with primary renal failure 
(44). In humans, hepatobiliary elimination of cysteinyl LT 
predominates over renal excretion. However, extrahepatic cho- 
lestasis leads to a compensatory diversion of cysteinyl LT 
elimination to the kidney with subsequent increased excretion 
of endogenous LTE, into urine (92). 

Capillary leak syndrome/kwashiorkor. Cysteinyl LT may 
induce increased vascular permeability by contracting endo- 
thelial cells (3, 7, 9), resulting in edema and hemoconcentra- 
tion. High urinary LTE, levels were found in the edematous 
malnutrition syndrome kwashiorkor, suggesting that LT are 
involved in the pathophysiology of the syndrome, particularly 
in edema formation (36). During acute crisis conditions, pa- 
tients with mevalonate kinase deficiency, a rare genetic defect 
of cholesterol biosynthesis, show features similar to those seen 
in capillary leak syndrome (93), a condition that is also asso- 

ciated with an increased urinary LTE, excretion (94). A pos- 
itive linear relationship between increased urinary excretion of 
mevalonate and LTE, suggests that increased cysteinyl LT 
synthesis is involved in the pathogenesis of mevalonate kinase 
deficiency. 

Skin diseases. LTB, was found to be elevated in psoriatic 
skin and implicated in neutrophil infiltration leading to the 
formation of microabscesses in psoriasis (95). LTC, and LTD, 
obtained from skin chambers applied to lesional skin in pa- 
tients with psoriasis suggest that cysteinyl LT contribute to 
pathology by increasing blood flow (96). Furthermore, in vivo 
cysteinyl LT synthesis is enhanced in psoriatic patients as 
measured by increased urinary LTE, (97). The in vitro results 
of elevated LT levels obtained in patients with urticaria (98) 
and Kawasaki disease (99) still have to be confirmed by 
measuring their urinary LTE, excretion as an indicator of an 
increased cysteinyl LT generation in vivo. 

Hematologic diseases. The possible role of LT in regulating 
the proliferation of hemopoietic cells has been the object of 
several studies (100). The proliferation of both normal and 
malignant hemopoietic cells is stimulated by exogenous LT. 
However, up to now there was no evidence that hemopoesis is 
modulated by LT generation and that the autocrine secretion of 
LT is important for the continuous proliferation of leukemic 
cells. Abnormal formation of lipoxygenase products has been 
observed in chronic myeloid leukemia (101). Inasmuch as 
neutrophil chemotaxis to LTB, is significantly impaired in 
patients with chronic granulocytic leukemia, specific defects in 
LTB,-mediated responses may contribute to neutrophil dys- 
function in this disease (102). Results of an altered LT metab- 
olism in sickle cell disease (103) have to be verified with 
additional analytical techniques. In vitro studies demonstrated 
an increase in eosinophil LTC, generation in hypereosinophilic 
states (104). The significance of these findings with regard to 
the pathogenesis of hematologic disorders is still highly spec- 
ulative. 

Cytokines, such as IL-3 and granulocyte-macrophage colo- 
ny-stimulating factor, prime cells in vitro for an enhanced 
biosynthesis of LT (105,106) and can lead to in vivo symptoms 
compatible with an increased generation of LT. Clinical studies 
established an enhanced endogenous LT production after ex- 
ogenous granulocyte-macrophage colony-stimulating factor or 
IL-3 treatment (107, 108). Furthermore, infusion studies with 
tumor necrosis factor lead to an increased production of cys- 
teinyl LT in humans (109). 

CNS. Human brain tissue has the capacity to synthesize 
large amounts of cysteinyl LT (110). LT occur in a number of 
regions in the normal brain, including the median eminence 
and other parts of the hypothalamus (111-113). Cysteinyl LT 
are normal constituents of the cerebrospinal fluid (114). LTC, 
is concentrated in the choroid plexus by an active transport 
system (113). LT are viewed as potential messengers or mod- 
ulators of central nervous activity and neuroendocrine events 
(110, 112, 115-117). Antibody reacting with bound LTC, 
suggests that LTC,-immunoreactive nerve endings exist in 
mammalian brain (112). Additionally, LTB, may contribute to 
neuronal dysfunction during inflammatory diseases by affect- 
ing neuronal membrane currents (118). 
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LT increase blood-brain permeability and enhance the for- 
mation of vasogenic edema surrounding tumors (119). The in 
vitro formation of LTC, is stimulated by intracranial tumors 
(120). A pathophysiologic significance of cysteinyl LT is 
especially suggested in human astrocytomas. Their in vivo 
production, as measured by urinary LTE, excretion, correlates 
with the grade of malignancy and perifocal edema (121). 

LTB, and LTC, levels in cerebrospinal fluid of patients with 
multiple sclerosis (MS) were significantly increased (122). 
Lipoxygenase products were implicated in the early encepha- 
litic phase of MS. LTB, and LTC, stimulate the adherence of 
leukocytes in MS patients treated with high doses of pred- 
nisone, possibly reflecting alterations of membrane processes 
in MS leukocytes associated with calcium homeostasis and the 
arachidonic acid metabolic cascade (123). Finally, LT might 
participate in the cerebrovascular reactions in migraine (124, 
125). 

Renal disorders. LT have been implicated in the pathogen- 
esis of renal disorders, including nephrotoxic serum nephritis 
in the rat, murine lupus nephritis, and hepatorenal syndrome in 
humans (126, 127). Studies on the normal and hydronephrotic 
kidney demonstrate a preferential preglomerular vasoconstric- 
tion under LTD, and LTE, causing a marked decrease in renal 
and glomerular blood flow, GFR, and filtration fraction (128). 
Furthermore, studies on the role of 5-lipoxygenase products in 
obstructive nephropathy indicated an increased synthesis of LT 
in the hemodynamic changes seen after unilateral release of 
bilateral urethral obstruction (129). It is uncertain whether 
plasma levels of LT are high enough to have direct effects on 
the kidney even under pathologic conditions (91). However, 
there is evidence that LT influence renal hemodynamics within 
the kidney inasmuch as synthesis of cysteinyl LT occurs in the 
kidney itself (23). It was shown that the isolated pig kidney can 
metabolize LTE, by an extensive oxidative metabolism via 
P-oxidation from the wend (23). The role of the kidney 
regarding synthesis, inactivation, and degradation of LT in man 
still has to be established. 

Inherited metabolic diseases. The generation of LTC, in 
calcium ionophore-stimulated PMNL of untreated cystinotic 
children was significantly increased compared with that in 
controls (130). LTB, production, however, was found to be 
decreased. PMNL from cysteamine-treated cystinotic children 
generated lower amounts of LTC, that increased after removal 
of cysteamine. These findings indicate an abnormal synthesis 
of LTC, in PMNL in infantile cystinosis. Patients with perox- 
isome deficiency disorders such as the Zellweger syndrome 
show an impaired catabolism of LT and an altered pattern of 
urinary metabolites (34). Defective peroxisomal P-oxidation 
results in an unique pronounced urinary excretion of o-car- 
boxy-LTE,, w-carboxy-LTB,, LTB,, and massive decrease of 
urinary o-carboxy-tetranor-LTE3. In glutathione synthetase 
deficiency, an inborn error of glutathione biosynthesis leading 
to generalized intracellular glutathione deficiency, LTC, syn- 
thesis is significantly decreased in ionophore-stimulated neu- 
trophils and monocytes, whereas LTB, synthesis is increased 
and other lipoxygenase products are not affected (37). Neutro- 
phils and monocytes from those patients show a markedly 
reduced capacity to form [ 3 ~ ] ~ ~ ~ 4  from [ 3 ~ ] ~ ~ ~ 4 .  Inasmuch 

as urinary LTE, is found to be greatly decreased in this 
disorder, glutathione synthetase deficiency may serve as a 
model for the linkage between LT synthesis and glutathione 
metabolism in vivo. 

PHARMACOLOGIC REGULATION OF THE 
GENERATION AND EFFECTS OF LT 

The current understanding of the LT biosynthetic pathway 
and the importance of LT in the pathogenesis of human 
diseases have led to the development of LT antagonists and 
inhibitors. Initial pharmacologic strategies for inhibition of 
arachidonic acid metabolism involved use of corticosteroids 
that were believed to inhibit LT synthesis, e.g. in IBD (83), or 
dietary manipulation with n-3 fatty acids such as eicosapente- 
noic acid, which is highly enriched in fish oil (139-141). A 
preliminary study also suggests that endogenous LT production 
can be reduced effectively by high doses of vitamin E (142). 
The inhibition of 5-lipoxygenase by vitamin E in vivo is 
probably not entirely due to its antioxidant function and de- 
serves further investigation. Today, potential strategies to 
block LT synthesis include inhibiting the release of arachidonic 
acid, preventing the conversion of arachidonic acid to LTA, 
via 5-lipoxygenase enzyme inhibitors, blocking the synthesis 
of LTB,, LTC,, and LTD,, inhibiting the release of LTA,, or 
blocking the uptake of LTA,. In addition to inhibitors of LTA, 
hydrolase, antagonists of the receptor binding of LTB,, and 
inhibitors of phospholipase A,, LT antagonists of clinical 
relevance include inhibitors of 5-lipoxygenase and LTC, or 
LTD, receptor antagonists. Several 5-lipoxygenase inhibitors 
are currently undergoing phase I1 trials. These agents either 
block the biologic activity of 5-lipoxygenase or its activating 
protein. In this group, zileuton (compound A-64077) seems 
promising for clinical use in the form of an oral agent (143- 
145). Other promising agents acting as LT receptor antagonists 
include LY 171883 (146), ICI 204,219 (147), SK&F 104353 
(148), and MK-571 (149). Clinical trials suggest that these 
agents are efficacious in the management of different forms of 
asthma. 

FUTURE ASPECTS OF BIOCHEMICAL AND 
CLINICAL RESEARCH 

In addition to clinical and pharmacologic trials that are 
needed to clarify the role of LT in human disease states, future 
aspects of research on LT will include the development of 
improved analytical methods ultimately allowing quantifica- 
tion of o -  and P-oxidation products of LTE, and LTB,. Further 
studies will concentrate on the role of the human kidney in 
synthesis, metabolism, and degradation of LT; the relative 
importance of cell compartmentation (mitochondria versus 
peroxisomes) to degradation and inactivation; the interaction of 
antioxidants (e.g. vitamin E or glutathione) and 5-lipoxygen- 
ase; and the pathophysiologic significance of LT in the CNS. 
Of particular interest will be the pathobiologic role of LT in the 
neonate, especially with respect to chronic lung disease of 
prematurity, sepsis, complement activation, and persistent pul- 
monary hypertension. 
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