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Abstract: Dengue fever is a serious and growing public health problem in Latin America and
elsewhere, intensified by climate change and human mobility. This paper reviews the approaches
to the epidemiological prediction of dengue fever using the One Health perspective, including
an analysis of how Machine Learning techniques have been applied to it and focuses on the risk
factors for dengue in Latin America to put the broader environmental considerations into a detailed
understanding of the small-scale processes as they affect disease incidence. Determining that many
factors can act as predictors for dengue outbreaks, a large-scale comparison of different predictors
over larger geographic areas than those currently studied is lacking to determine which predictors
are the most effective. In addition, it provides insight into techniques of Machine Learning used for
future predictive models, as well as general workflow for Machine Learning projects of dengue fever.
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1. Introduction

Dengue is a potentially life-threatening arboviral disease transmitted by female Aedes
mosquitoes [1,2], especially A. aegypti, A. albopictus, and A. vitattus. These vectors are
common tropical haematophagous ectoparasites. This zoonotic disease spread from African
or Asian non-human primates 500 to 1000 years ago [3], but within the last 60 years it has
spread from just 9 countries experiencing severe epidemics to become endemic in over
100 countries worldwide, even affecting non-tropical or subtropical areas [4,5]. Moreover,
approximately one hundred million people yearly suffer from the symptomatic disease [4]
caused by its four serotypes [6]. Given the significant impact of environmental changes
on disease transmission, the One Health approach is urgently needed to implement the
integration between human, animal, and ecological health.

The objective of this paper is to provide an insight into techniques that can be used for
future predictive models based on the One Health perspective, particularly in respect to
Latin America but also elsewhere.
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One Health is a multidisciplinary approach that acknowledges the synergy between
human and animal health and their shared environment. This idea is not new; the noted
nineteenth-century pathologist (and originator of the term zoonosis) Rudolph Virchow
famously asserted in 1858 that “between animal and human medicine, there are no dividing
lines—nor should there be” [7,8].

This approach has become increasingly important in the 21st Century with the conver-
gence of the pressures of changing climate, migration of human and animal populations,
and the growing human population that increases the proximity between wildlife and hu-
mans. Indeed, the term One Health was only coined in the early 2000s with the appearance
of the zoonotic SARS and H5N1 influenza diseases [9].

Whilst the One Health perspective is widely seen as necessary and increasingly used
for better disease control [10], epidemiological approaches have not kept up with this
change. Conventional epidemiological perspectives tend to view disease broadly from
a human-only perspective, focusing on human demographic conditions with often only
climatic/environmental factors accommodating the disease vector health. In contrast, One
Health requires the health and lifecycle of the zoonotic disease vectors to be explicitly
considered alongside the human environment, demographics, and interaction with the
zoonotic host vectors.

For example, whilst environmental and sociological considerations often take a back
seat in One Health [11], they frequently occupy the center stage in epidemiology [12].
Factors such as mean temperatures and rainfall used in predicting dengue [1], with a very
vague consideration of how they affect the mosquito vectors, are an emergent challenge to
be considered [13]. High rainfall, for instance, is beneficial to mosquitoes because it provides
water-filled locations for eggs and larvae, whilst the mosquitoes are primarily impervious
to strikes by raindrops that might otherwise kill them [14]. In addition, temperature and
rain generally affect many other infectious and tropical diseases [15].

This article focusses on the assessment of the risk factors for dengue, with particular
emphasis on South America, in an attempt to start to put the broader environmental
considerations into a more detailed understanding and examination of the small-scale
processes as they affect disease incidence.

In addition, the paper provides insight into techniques that can be used for future
predictive models, particularly in Latin America and elsewhere. Techniques such as Ma-
chine Learning (ML) have experienced explosive growth that promises to revolutionize
epidemiology and public health and offer new understandings of dengue and other infec-
tious diseases.

The Elsevier, Emerald, Google Scholar, IEEE Xplorer, PubMed, ScienceDirect, Springer
Science, and Taylor & Francis literature databases and search engines were searched for
suitable papers in both English and Spanish, covering the full range of publication dates to
2022. Search keyword combinations included: dengue fever, prediction, machine learning,
One Health, Latin America. The initial list of approximately 2000 papers was trimmed by
eliminating multiple close article matches, personal opinions, and short articles (including
conference papers, posters etc.).

2. Approach to Dengue Using the One Health Perspective

A recent epidemiological concern is the massive geographical expansion of dengue
fever worldwide, which has led to a renewed interest in identifying critical determinants in
disease transmission [16] that is part of a general trend over the past few decades. There
has been a significant increase in the emergence and re-emergence of epizootics, zoonosis
agents that can trigger epidemics worldwide [17]. The complex relationship between
environment, human, and biological interactions is crucial to understanding the course of
emergent infectious diseases and their implications for the public health sector [18]. In this
respect, the One World-One Health initiative proposed in 2004 suggests a more holistic
and transdisciplinary approach as a global strategy in the fight against those infectious
diseases [17], particularly dengue fever in the Americas.
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Traditional factors associated with dengue fever include social, economic, environ-
mental, cultural, socioeconomic conditions, poverty, and factors related to the well-being
of the inhabitants [1]. However, mosquito larval development and climatic conditions
effects are some influential drivers that need further investigation [19]. Epidemiological
experts claim that understanding the life cycles of relevant species in their natural habitats
(in contrast to experimental conditions) could be a scientific challenge that must be over-
come to move forward toward the construction of a more eco-inspired initiative for the
control and prevention of emergent and re-emerged infectious diseases [17]. The density
of infected agents, the diversity of the hosts, the viral replication, the migration rates of
humans and other host species, and even the interaction between vector and host could
guide us to elucidate more realistic scenarios to understand better the transmissibility of
the diseases [16,17]. Considerations about human behaviors, in conjunction with vector
population dynamics, are disease drivers strongly dependent on local ecology and social
context [20]. Consequently, a more profound understanding of local environment is re-
quired. Although there is much discussion about the importance of climate change in the
spatial distribution of infectious diseases worldwide [17,21], the lagged effects are also a
local dependent characteristic [1] that needs to be better explained.

In addition, some authors have emphasized the importance of political agendas,
economic inequalities, and cultural phenomena as factors that exacerbate the risk for the
transmission of those infectious diseases in particular countries in Latin America [17,22].

In this respect, a systematic literature review undertaken by Hoyos W. [23] revealed
a wide range of cofactors that have been recently included as newly identified drivers of
dengue infections. This refined classification of predictors is presented in the following
categories, all indicators of the One Health perspective. They have social (Soc), economic
(Econ), demographic (Dem), population (Pop), environmental (Env), meteorological (Met),
topographic (Top), climatic (Clim), dengue Baidu Search (DBSI), and Google Trends (G.T.)
amongst others. The Dem, Soc, Econ, and Pop are measures that refer to the population
features and typically include age, gender, type of housing, socioeconomic level, and oth-
ers. The Clim, Env, Met, and Top refer to climatic and environmental changes, such as
temperature, rainfall and altitude. Finally, the DBSI index, according to the study, refers
to the data indicating increased interest amongst the general population, possibly due
to increased community infections, identified by Internet search engines- for example,
Google trends, Baidur Search Index and Twitter. These indicators are essential for dengue
modeling and prediction [24–27]. Some other indicators are related to laboratory out-
comes, referring to blood metabolites, such as leukocyte counts, hematocrit, albumin, and
transaminase [23]. The considered clinical variables are the signs and symptoms in patients,
including fever, blood pressure, joint pain, headaches, ocular pain, and migraine. There
are also entomological factors for the vector insects, particularly, such measures as the
Breteau index, container index, adult index, and predation rates, amongst others [23]. Even
more, dengue, as other arboviral diseases [28,29], may lead to chronic and long-lasting
clinical consequences [29–31]. The above studies considered genetic data, including gene
expression, when available. In addition, some thermal imaging could also be valuable for
prediction of patient morbidity [32]. Other measures mentioned by Hoyos [23] include cell
phone data–referring to the data provided by mobile phones, such as geo-localization, and
the mobility cofactors as drivers referring to passenger travel data, for example, destina-
tion country.

As a result, this emerging understanding leads us to move toward a more holistic
scenario of the Global Health perspective regarding dengue transmission. According to
this perspective, we can classify the risk factors of dengue fever into four fundamental
categories based on the One Health approach: (i) ecology of the vector, (ii) dengue serotypes,
(iii) human conditions, and (iv) environment (Figure 1).
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Figure 1. Risk factors of dengue fever are classified into four One Health groups: (i) ecology of the
vectors, (ii) serotypes, (iii) human conditions, and (iv) environment.

Although this review attempts to classify a wide range of factors focused on the
One Health perspective, the geographical setting is relevant to gaining an understanding
of the issues and limitations that exist within Latin America-focused studies of dengue
fever, giving insights about potential challenges to be addressed, particularly regarding the
availability of detailed information.

For example, a study conducted in Zulia state, Venezuela [1] suggests an urgent public
health intervention to promote a national-scale social program to reduce the risk of dengue
infection in Venezuela. That is a similar situation for Colombia and other countries in
Latin America [33]. Furthermore, it emphasizes an urgent need for an efficient dengue
fever surveillance network with explanatory variables at the finest spatial and temporal
resolutions. We also encourage more innovative approaches to modeling dengue fever,
such as using realistic scenarios to promote more effective interventions. That may be
problematic in countries, such as Venezuela, where public health is neglected because of
political crises [22].

Figure 1 presents a view of the One Health framework to show the following subcat-
egories: (i) ecology of the vector (mosquito life cycle); (ii) dengue serotypes; (iii) human
conditions (individual conditions, socioeconomic factors, educational level, human behav-
ior), and (iv) environment (climatic factors, geographical factors, demographic factors).
These will be used as guidance to help understand each cofactor’s implication in the
presence and severity of the disease.

3. Ecology of the Dengue Vectors

Even though the Aedes aegypti mosquito is commonly found in tropical and sub-
tropical areas, its distribution is modulated by environmental factors [34] that affect its
life cycle, including lifespan, fecundity, survival rate, biting rate, disease transmission
probability, infection probability, vector abundance, and incubation period [35]. As a
result, Aedes aegypti is extremely synanthropic because of its anthropophilic nature and
reproductive characteristics [34].
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A good understanding of the dynamics of the disease using a One Health perspective
requires a profound knowledge of the mosquito’s lifecycle. Therefore, it is necessary to
consider the incubation periods in both mosquitos and humans and the biological cycles
of the vector and virus [1]. For instance, a study in Thailand examined the complete
mosquito life cycle, including egg laying, larval and pupal stages, and the adult period
ranging from 7 to 12 days [36]. In addition, the virus circulating from an infected mosquito
to a non-infected human host involves an intrinsic incubation period ranging from 3 to
14 days [37]. Subsequently, a viraemic period can manifest in humans with symptoms that
last for six days, developing into the most severe stage of the disease [22].

According to these incubation figures, the maximum time for developing the most
severe phase of the disease could be as long as 35 days. In the other direction, the virus can
pass from an infected human to a non-infected mosquito with an extrinsic incubation period
of between 8 and 12 days [37]. Some studies state that the maximum period from birth to
adulthood of the mosquito is 12 days [36]. Consequently, with the full infection path in
mind, the total period from the hatching of mosquito larvae to the final stage of the human
disease is 59 days or approximately 2 months. However, variations are observed, which
can be attributed to local weather conditions and environmental settings, which provide
a non-homogeneous pattern regarding the spread of the disease in different parts of the
world [38,39]. We will expand on such implications based on the environmental conditions.

4. Serotypes Circulating

Dengue fever is caused by an enveloped, positive single-stranded RNA virus of Fla-
viviridae with four different and genetically distinct serotypes DENV-1, DENV-2, DENV-3,
and DENV-4 [40]. More recently, a fifth serotype has been found, although since it is
sylvatic, it is currently of little consequence to humans [41]. A study performed in Vitoria
Espirito Santo in Brazil between 2009 and 2013 [40] evaluated the relationship between
the serotype circulating and the disease’s severity in this part of the world, and it revealed
that DENV-2 caused seven times the incidence of severe illness than the other serotypes,
consistent with similar studies conducted elsewhere [42,43]. Although the detailed mecha-
nism responsible for the severity of DENV-2 remains unknown, it may be related to the
high pathogenicity and rapid replication of this serotype, plus the stimulatory effect on the
nitric oxide production considered responsible for the toxic and inflammatory effects in the
host cells [40]. However, the authors also pointed to several limitations in the study, mainly
because only 1.6% of the dengue cases in Vitoria Espirito Santo (Brazil) were serotyped.

Consequently, the early detection of dengue serotypes circulating in a particular area
is crucial in controlling the number of severe cases of dengue. However, the authors also
confirm the need to include factors related to serotypes and genotypes for further studies,
with prospective approaches in hyperendemic settings and elsewhere related to suscep-
tible hosts, such as demographic characteristics, co-morbidities and the immunological
background of the hosts.

In addition, the study highlighted the recognition that multiple serotypes in multi-
center settings can exacerbate dengue fever outbreak severity [44]. In this regard, poten-
tial secondary dengue infections and the sequencing of dengue genomes responsible for
such diseases could contribute to understanding the complexities associated with dengue
outcomes [40].

To identify the specific DENV serotype in a study performed from 2005 to 2010 in Peru,
Bolivia, Ecuador, and Paraguay, serotype-specific monoclonal antibodies were generated
using hybridomas [44]. In addition, the concentration of IgM and IgG immunoglobins was
also measured, and the ratio of IgM/IgG was used as an indicator to discriminate between
primary and secondary infection. However, this study’s main limitation was the extensive
laboratory work needed to detect and identify the DENV serotype, which may be difficult
in much of the Latin American setting.

The study also noted that the main symptoms of dengue fever could be classified
into a set of groups: (i) constitutional symptoms such as malaise, headache, retro-orbital
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pain, and prostration; (ii) respiratory symptoms of cough, rhinorrhea, dyspnea, pharyngeal,
congestion, cyanosis, rhonchi, and wheezing; (iii) gastrointestinal symptoms of diarrhea,
nausea, vomiting, splenomegaly, hepatomegaly, abdominal distension, ascites; (iv) skeleto-
muscular symptoms, such as bone pain, myalgia and joint pain; (v) cutaneous symptoms
including maculopapular rash, central erythema, distal erythema, facial erythema, vesicles,
or subcutaneous nodules; and finally (vi) neurological symptoms of seizures, neck stiffness,
impaired mental status, and focal neurological deficit. Crucially, the prevalence of the
different clinical manifestations highly depends on the DENV serotypes involved.

5. Human Conditions
5.1. Individual Factors

Epidemiological studies of dengue fever conducted worldwide have provided evi-
dence that age, gender, and race affect the severity of the disease [22,45–47]. For instance,
a study conducted in Cuba revealed that Caucasians are less resistant than black African
groups [46]. In addition, age has been closely examined as a risk factor in many studies
performed in different parts of the world [22,45,47,48]. These confirm that children are the
most vulnerable portion of the population for both mortality and morbidity of the disease.

In addition, gender has been identified as another important factor in many, but not
all, epidemiological studies. For instance, some studies conducted in Latin America found
no evidence of such gender-modulated susceptibility [22,49].

5.2. Socioeconomic Factors

Innovative approaches based on different methodologies have provided essential
insights into how the urban environment or social network influences the well-being of the
citizens in terms of dengue fever transmission [17] and how those findings might guide
public health strategies in the fight against the disease.

A surveyed household study conducted in two urban locations within Machala in El
Oro province in Ecuador found that the social factors associated with dengue fever might
vary seasonally [20]. In addition, the mechanisms of seasonal influence on the host immune
system may be affected by decreasing the coverage of artificial containers during rainy
events [35]. However, further work is needed in this area.

Some investigations conducted in various parts of the world spotlight a strong associ-
ation between the absence of public water supply and the severity of the disease [1,49–54].
Inadequate water supply coverage promotes using artificial containers to store water, con-
sequently providing breeding sites for mosquitoes [55]. Such a lack of sanitary services
might result from inefficient urban planning development [49,54,56].

In addition, some studies confirm that the low gross domestic product (GDP) per
capita and higher population density [57] are potential indicators for dengue fever severity.
Low per capita GDP can result in poverty and poor public health services. Other studies
found that poor housing conditions and the percentage of empty houses and abandoned
properties in the area are risk factors for the disease [19]. In this context, Ferreira and
Schmidt [45] found that people who live in slums are more likely to become infected.

These conditions are often the result of inefficient governmental administration, in
which unplanned urbanization, inadequate health infrastructure, ineffective disease control
programs, and poor or no piped water and sewage services [20,49] are the main founda-
tions for a marginalized society. For example, a recent study conducted in Zulia state,
Venezuela [1] showed multiple socioeconomic risk factors for dengue, including the pro-
portions of households without connections to a water supply network, homes without
garbage collection services, families without properly installed showers, and those in
homes surrounded by unoccupied dwellings. Other socioeconomic indicators are related
to average household size and the number of people per room, mainly if the number of
occupants per room is >4 [19]. Further socioeconomic risk factors include whether the head
of the household is employed or, in contrast, if they are seeking work [19].
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5.3. Educational Level

Several studies have demonstrated the relevance of promoting programs for the
prevention of dengue fever, particularly in rural schools located in endemic locations in
India, as a practical intervention for reducing exposure to the disease [58].

In this context, studies conducted in other parts of the world confirmed that the
literacy rate is essential to the success of dengue preventive programs [59]. Moreover,
indices such as head of household with post-secondary education and primary or lower
educational level affect the severity of the disease in the home [19]. In line with the previous
understanding of dengue severity, the mentioned factors are also crucial in avoiding the
occurrence of the disease [20].

5.4. Human Behaviour

Common human behaviors also increase the risk of dengue outbreaks worldwide,
including the carelessness in cleaning water containers used for washing and bathing [60].
These authors, working in India, found that most people leave water storage containers
uncovered, inadvertently providing a good mosquito breeding site. Another factor related
to human behavior is the presence of exposed rubbish surrounding the neighborhood.
Discarded waste bottles, cans, plastic containers, and tires will likely become filled with
rainwater, forming breeding sites for mosquitoes. Similar dengue outcomes based on
measurements of rubbish surrounding the neighborhood have been confirmed in many
other countries, such as Venezuela [53,59], Brazil [50,51], and Thailand [61].

In this context, the seasonal trends play an important role, not only because of the
climatic and environmental factors but also because of their corresponding effect on human
behaviors, including school schedules, holiday trips, travel patterns, week or weekend
activities, and outdoor exposures [35].

Another crucial behavioral aspect is that A. aegypti are closely connected to human
behavior because they enter dwellings to feed and rest. A. aegypti are mainly daytime biting
species that can feed multiple hosts in a single gonotrophic cycle. In addition, the female
mosquitoes can lay their eggs in artificial containers, including domestic decorative items,
such as flower vases or pot plant bases [62].

Another issue regarding adult A. aegypti mosquitoes is the weakness of their intrinsic
dispersal capability [62]. However, once eggs have been laid on the water surface, they can
survive desiccation for up to a year, which allows the species an alternative mode of long-
distance dispersal via human-mediated behavior, including intercontinental transportation
on aircraft or ships [62].

6. Environmental Factors
6.1. Climatic Factors

Various studies have established the relationship between outbreaks of dengue fever
and climatological factors, making dengue a climate-sensitive disease [1,37,38,52,63] in
which temperature, rainfall, and humidity are significant drivers. In addition, the global
phenomenon of El Nino Southern Oscillation (ENSO) aggravates the risk of dengue trans-
mission in different parts of the world [16,38,52,64–68].

For example, a recent study conducted in Malaysia confirmed that rainfall, humidity,
and wind speed are natural drivers that significantly affect the incidence of dengue in
that country [69]. According to the authors, such findings could apply to many other
subtropical regions.

Even though the seasonal pattern of dengue fever has been widely explained in terms
of climatic factors, more studies are needed to better understand the short and long-term
effects of those environmental conditions [35]. In addition, some experts suggest developing
models around local or regional settings rather than more global models to increase the
predictive sensitivity for dengue outbreaks [62].

Warmer temperatures affect the spread of the disease in various ways: firstly, a
higher ambient temperature reduces the mosquito’s larva size, which produces smaller
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developed adults that digest blood faster [70,71]. Consequently, these adults require more
blood to nourish their eggs [1]. Secondly, areas previously found to be inhospitable for
developing a mosquito population became better, or even ideal, locations due to climate
change [16,65,70,72]. For instance, dengue cases have recently been reported in uplands of
Asian, African and Latin American regions, previously considered too cold for mosquito
breeding [16,67,73], having now become places where mosquitoes thrive.

Some researchers have found that at certain key temperature levels, there is a reduction
in the time it takes for the female mosquito to become infected after taking human blood
(extrinsic incubation) [66,70]. Consequently, a faster dengue fever transmission rate is
expected in those regions. For example, a study conducted in Mexico [70] reported that the
average incubation period dropped to 7 days when the temperature was between 32 ◦C to
35 ◦C as compared to 12 days when the temperature remained at 30 ◦C.

In addition, rainfall events also favor the abundance of mosquitos due to the increase
in potential juvenile habitats in the form of standing pools of water [20]. However, heavy
rainfall can also destroy Aedes aegypti larvae [1,20,37]. Nevertheless, although heavy rain
may reduce the number of individuals in the short term, it is more than compensated by
increased breeding sites in the longer term [37]. Equally, low rainfall levels can lead to a
rise in temperature, which unfortunately makes people more likely to use external water
storage containers. This practice has increased dengue incidence in different parts of the
world [1,20,60]. There is also a strong association between high humidity levels and dengue
transmission [16,36,63], owing to the increased longevity of mosquitoes.

The inter-annual fluctuation of dengue fever outbreaks is strongly associated with the
ENSO [65,74,75]. This cyclic phenomenon of ENSO, which originates in the Pacific Ocean,
starts with oscillations in sea temperature from the east coast of Australia to the west coast
of South America and causes global alterations in the atmospheric conditions every 2 to
7 years [72,75]. A recent study undertaken in Nepal revealed that dengue outbreaks in
that country followed a cyclical pattern every 3 years, markedly during 2010, 2013, and
2016 [16]. Other studies have shown anomalies in temperature and rainfall associated
with the El Niño phenomenon in some Latin American countries [64,75] and, consequently,
severe outbreaks of the disease owing to the rise in mosquito population [72].

In this context, two extremes are associated with the ENSO phenomenon: El Nino
(the warm event), characterized by the warming of the sea surface temperature and La
Nina (the cold event). The impact of the ENSO on dengue transmission has been widely
studied using a variety of indexes, such as the Sea Surface Temperature (SST) [52,64,70] in
which the Pacific Ocean is split into five geographical zones capturing the mean sea surface
temperature for each one, labelled: Nino1, Nino2, Nino3, Nino4, and Nino3.4 [64]. The
Nino3.4 region is a significant overlapping zone between Nino3 and Nino4, dramatically
impacting Latin American countries [1,52]. The outcomes resulting from [1] identified that
the risk of El Nino3.4 fluctuates between 26.5 ◦C and 28.0 ◦C as a reference point for further
comparations, also confirming the effect of the La Niña phase in the Zulia state, Venezuela.

6.2. Geographical Factors

The severity of dengue fever in some parts of the world is related to the length of the
coastline, marked by the lowest altitude levels in conjunction with hot and dry weather con-
ditions [53]. In this context, some investigations have found a strong association between
low altitudes and the incidence of dengue fever [50,52,53,76]. One reason might be that
biomechanical considerations suggest that Aedes aegypti species cannot fly in higher, thinner
air [50]. Conversely, in another study, authors [1] found no evidence of variation of the
disease in Zulia state, Venezuela, concerning altitude, suggesting that this measure might
no longer be relevant to dengue transmission dynamics. Other studies have confirmed such
findings because new outbreaks of dengue fever have been reported in regions without
previous historical cases [16,77,78].

Other investigators have pointed to a correlation between the presence of the disease
and rainforest due to the associated intense rainfall [66]. For example, a study performed
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in Peru during 1994–2004 revealed that dengue is highly persistent in the jungles for
this reason [79]. Those findings suggested that the wilderness is an endemic area and
triggers the expansion of dengue into the coastline. Therefore, to disrupt mosquito vector
transmission, the best practice in coastal areas might be to focus mosquito destruction
measures on adjacent jungle areas.

In addition, the considerable spatial heterogeneity of dengue fever in Guangzhou,
China, as well as in other countries [13,21,57], suggested the importance of socioecological
factors associated with urbanization, economy, accessibility, environment, and weather
of which road density and water body locations proved to be dominant. According to
these authors, water bodies exacerbated dengue transmission by providing mosquito
breeding sites.

In this context, a recent Geographical index used in China [57] is the Normalized
Difference Vegetation Index (NDVI), which may prove many uses. This index is computed
from satellite imagery and takes a value between −1 to +1 [80]. If the value is negative, the
image area is likely a body of water. An NDVI value close to +1 indicates a high possibility
of having dense green leaves, and a value close to zero indicates an urbanized area.

6.3. Demographic Factors

Dengue fever is mainly an urban transmissible disease because it quickly spreads in
urban contexts with a high human population density [51–53,81,82].

A mathematical modeling study revealed that commuting and day-to-day population
movement are crucial drivers [83]. The spatial heterogeneity concerning the vector-host
ratio and the travel patterns that people follow are critical components in dengue’s complex
transmissibility, which has been recently supported by census surveys, cell phone use
records, and GPS tracking techniques [83].

These authors emphasize the need for reliable information about human-vector contact
in rural areas, which might be helpful in endemic settings in South America. Mathematical
modeling simulated this via random movements that can be used for migratory exodus
or regular commuter movements between patches representing residential or other loca-
tions [83]. However, according to these authors, the epidemic risk in a whole population
comprises the contributions from the different demographic groups and their exposure
levels to the mosquito population.

Another study performed in Queensland, Australia, found that areas with low GDP
and high population density—usually peri-urban areas with poor hygiene conditions—
promote a large local mosquito vector population and hence an increased incidence of
dengue infection [57]. Hu et al., (2012) [84] agreed that whilst dengue fever is not naturally
endemic in Australia, the Aedes aegypti mosquito has invaded northern Queensland, and
the virus has been subsequently introduced to this local mosquito population by infected
international travelers.

7. Machine Learning for Dengue Predictive Purposes in Latin America
7.1. Machine Learning Overview

The interest of the present work is a review of epidemiological predictive modeling
based on ML techniques performed in the Latin American region. This section is devoted
to presenting a short resume of ML concepts and, secondly, a review of applied ML studies
of dengue fever, specifically predictive model applications to dengue fever outbreaks.

The recent growth in Big Data and the inclusion of Artificial Intelligence (AI) in
different research fields have made these disciplines emerging scientific approaches. AI can
be defined as computerized systems that can perform intelligent behavior [85]. Although
AI covers a wide range of aspects and techniques, the most frequently mentioned are
ML and Deep Learning (DL) [86]. Consequently, ML is a discipline of AI comprised of
algorithms capable of finding patterns or learning from data, generating information for
better decisions and predictions. On the other hand, DL is a subset of ML and is part of a
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family of methods based on Artificial Neural Networks (ANN), which are inspired by how
the human brain works, learning from a large amount of data [87].

ML uses three learning techniques; the first is Supervised Learning, which trains the
model based on known inputs and outputs. Second, Unsupervised Learning is when the
system tries to learn without previous knowledge and finds hidden patterns or intrinsic
structures in the information. Finally, Reinforcement Learning or intelligent agents can
observe the environment, take actions in the background, and get rewards in return [87].
Figure 2 shows a diagram of the types of learning usually employed in ML with corre-
sponding applications.
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Figure 2. Types of learning are usually employed in Machine Learning.

In order to use ML, there are a variety of frameworks, which are interfaces, libraries, or
tools that allow us to easily create ML models. Each of these frameworks is different from
the others. Some of the best-known frameworks for ML are: (i) TensorFlow [88] is an open-
source ML library developed by Google; (ii) PyTorch [89] it is an open-source and cloud
platforms which is used by Facebook, IBM, among others; (iii) MatLab (MathWorks) [90] is
a commercial programming and numeric computing platform that provides a variety of
Toolbox for designing and implementing ML and DL models; (iv) Scikit-learn [91] is a free
software machine learning library for the Python programming language. On the other
hand, an ML project generally follows the workflow shown in Figure 3.

Regression is one of the two fundamental tasks of supervised learning as shown the
Figure 2. Therefore, two of the regression models introduce hereinafter:

Linear Regression Model [87,92]: A linear regression model predicts the target as a
weighted sum of the feature inputs, formally:

The linear regression model assumes that the output variable y (a scalar) can be
described as an affine combination of the p input variables x1, x2, . . . , xp plus a noise term ε,

y = β0 + β1 x1 + β2 x2 + . . . + βp xp + ε = β0 + ∑p
j=1 β jxj + ε (1)

where β0 is called the intercept, the βj represent the learned feature weights or coefficients.
The term ε accounts for random errors in the data not captured by the model, i.e., the
difference between the prediction and the actual outcome.
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There are different methods to estimate the optimal weight. The ordinary least squares
method is generally used to find the weights that minimize the squared differences between
the actual and the estimated outcomes:

β̂ = arg min
β0,...,βp

n

∑
i=1

(
y(i) −

(
β0 +

p

∑
j=1

β jx
(i)
j

))2
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The results of linear regression models are evaluated using a number of well-known
metrics [87,92,93]. There are different models of linear regression, the major advantage of
these models is linearity, it becomes the estimation procedure simple and easy to interpret.
Due to this, linear models are consequently used extensively in fields such as medicine,
sociology, psychology, and many other research fields [92].

Artificial Neural Network [85,94]: is an interconnected group of nodes similar to the
vast network of neurons in a biological brain. They are a model inspired by the functioning
of the human brain. The architecture of an ANN is shown in Figure 4 and consists of (i)
the input layer that receives the input data and passes it to the first hidden layer; (ii) the
hidden layers will perform mathematical computations with the inputs; and (iii) the output
layer returns the prediction made.
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Each connection of the ANN neuron is associated with a weight. This weight dictates
how important that relation will be in the neuron when multiplied by the input value
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(Figure 5). The output of the neuron is the weighted sum followed by the application of a
nonlinear activation function:

y = ϕ

(
b +

p

∑
j=1

ωjxj

)
(3)

where xj are the input values in the neuron, ωj are the weights are adjusted, b is the bias and
φ() is the nonlinear activation function, which will determine the behavior of the output of
each neuron.
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The ANN training process is based on calculating the error between the given labels
and the output predictions using a loss function. Subsequently, the error is propagated
through the network generally by means of the backpropagation algorithm updating the
weights to minimize the error, repeating until converging or reaching a limit of iterations.

7.2. Machine Learning Applied to Dengue in Latin America

The use of ML to study dengue fever at different stages of the disease or for predictive
purposes has emerged in recent years. A systematic review of studies that model dengue
fever based on ML techniques [23] revealed three major research domains. These modeling
approaches can address the diagnosis of the disease and its severity in which case the use
of signs and symptoms is essential for developing the models. As a result, they are called
models of prescription; secondly, the production of epidemic models, based on the analysis
of the level of dengue severity within a selected population; in this domain, the models are
used for predictive purposes; and finally, there are the models of intervention, consisting of
the optimization and impact of the intervention programs [23], the authors create a list of
the most common ML models for predictive purposes shown in Table 1.

Table 1. Most common ML techniques for predictive purposes [23].

Abbreviation Name of ML Technique

LoR Logistic Regression
RF Random Forest
LiR Linear Regression

GAM Generalized Additive Model
GLM Generalized Linear Model
DT Decision Trees

SVM Support Vector Machines
ANN Artificial Neural Networks
GBM Gradient Boosting Machine
KNN K-Nearest Neighbors
GWR Geographical Weighted Regression
BRT Boosted Regression Trees
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However, a study [95] claims that no model for forecasting outbreaks of mosquito-
borne diseases (MBD) could be adopted entirely, mainly because they cannot fit all the
necessary conditions from the real world. According to the authors, the major constraint
emerges due to the insufficient available data and the lack of open-source information
via the internet, in conjunction with an unstructured and inadequate set of information,
amongst other drawbacks. Therefore, the literature review of the MBD outbreak prediction
framework in America [95] proposes an enhanced framework with the Entomological Index
feature. In addition, ML is leveraged to increase the future MBD outbreak prediction.

Another complementary study centers on the global distribution of Aedes aegypti and
Aedes albopictus as the main species responsible for dengue fever worldwide [96]. This study
combined a high-dimensional multidisciplinary dataset with the ML techniques of Support
Vector Machine (SVM), Gradient Boosting Machine (GBM), and Random Forest (RF).

There are some studies that focus specifically on ML techniques for dengue predictive
purposes in the Americas; several studies compare the effectiveness of different predictive
ML techniques. One of the more interesting is [97], which used a neural network model
based on Long Short-Term Memory (LSTM) to predict future dengue cases. The predictors
were collected weekly from 2016 to 2019, consisting of dengue incidence and the Egg
Density Index from 397 ovitraps dispersed over the municipality of Natal, Brazil. Using
dengue cases reported from previous weeks to forecast dengue incidence, the LSTM models
and forecasting dengue incidence with ovitrap data showed a goodness-of-fit estimated
by a correlation coefficient of 0.92 and 0.87, respectively. The results showed that ovitrap
data allowed an earlier prediction of dengue outbreaks, of approximately 4 to 6 weeks,
compared with just using the dengue itself, which was one week.

Furthermore, the authors in [98] implemented a recurrent neural network to forecast
Aedes aegypti mosquito counts locally, using Earth Observation data inputs as proxies to
environmental variables. The model was validated using in situ data from Vila Velha
and Serra in Espírito Santo, Brazil and compared with RF and k-Nearest Neighbor (kNN)
models, which showed a confidence adjustment of 95%.

Another study performed in Brazil [99] is based on dengue risk prediction across the
whole country, using three types of ML algorithms with environmental and socioeconomic
variables. Using monthly data from 2010 to 2013, the best performance was obtained with
a RF approach.

In another study [100], the authors investigated the performance and viability of LSTM
time series forecasting in predicting dengue cases compared to a Support Vector Regression
(SVR) model based on a dengue dataset and satellite climate data comprising 936 weeks
from 1990 to 2008 in San Juan, Puerto Rico. The findings revealed that LSTM showed
superior performance and better-captured trends than SVR regarding the rise and fall of
dengue cases. The performance of the models is evaluated using R2, mean absolute error
(MAE), mean squared error (MSE), and root mean squared error (RMSE). Obtained for
LSTM values R2 0.075, MAE 8.76 MSE 245.61 and RMSE 15.67, compared to SVR results of
R2 −0.13, MAE 18.02, MSE 1109.68, and RMSE 33.31.

Another study performed in the cities of San Juan (Puerto Rico) and Iquitos (Perú) [101]
implemented a weather-related dataset to predict the number of cases per week using
13 different ML regression techniques. The dataset consisted of 1456 records and 24 features
divided into five categories: location, temperature, precipitation, humidity, and vegetation
index. The data was compiled in San Juan from 1999–2008 and the city of Iquitos from
2000–2010. The results show the Poisson Regression Model (PRM), Negative Binomial
Regression model (NBM), and RF are the best with the lowest MAE of 25.6, 25.8 and
26.6, respectively.

In Mexico, some authors developed a holistic ML strategy for dengue fever using
annual temperature [102] and a multi-stage combination of auto-encoding, window-based
data representation and trend-based temporal clustering. The study used a trend association
based on the Nearest Neighbor predictor. The epidemiological data corresponds to the
number of dengue and dengue hemorrhagic cases collected from 1985 to 2010 within
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the 32 federal states of Mexico. The results showed the Autoencoding based Time Series
Clustering with Nearest Neighbor achieves the lowest RMSE in 13 of 32 federal states but
is the highest where another ML model is better.

ANN were used to predict dengue fever outbreaks in San Juan, Puerto Rico and the
state of Yucatan, Mexico [103]. The data collected corresponded to 19 years of dengue cases
in Puerto Rico and 6 years in Mexico. The study included environmental and demographic
data such as sea surface temperature, precipitation, air temperature, humidity, dengue
case epidemiological data, and population sizes. The authors applied two models in each
area: one to predict incidence and the other to estimate vulnerable population size. They
achieved a predictive power of better than 70%.

In another study [104], the authors used street-level images, such as those obtained
from Google Street View, processed by Convolutional Neural Networks (CNN), to predict
Dengue Fever (DF) and Dengue Hemorrhagic Fever (DHF) rates in urban locations in the
city of Rio De Janeiro, Brazil, with data from 2010 to 2014. In addition, the authors evaluated
simple and deep Siamese CNN architectures, comparing the results with both models. The
study’s findings revealed a potential benefit in using deep CNNs and street-level images to
identify DF/DHF hot spots in urban locations.

Finally, although the purpose of the present investigation was focused on ML ap-
plications in the field of dengue fever outbreaks, the holistic approach provides an open
opportunity to learn from other vector-borne infectious diseases such as yellow fever [105].
Therefore, this study included a robust set of entomological data and landscape composi-
tion to predict areas permissive to yellow fever outbreaks. The measures for each sampling
point were related to behavior, physiology, habitats, and epidemiological importance, as
shown in Table 2.

Table 2. The measures related to behavior, physiology, habitats, and epidemiological importance of
yellow fever can potentially be implemented in dengue outbreaks.

Mosquito Diversity

Species richness Total number of species sampled at each sampling point.
Shannon–Wiener index Measure of species diversity weighted by the relative abundance.

Functional richness (FRic)
Represents the quantity of functional space filled by the community,
where low FRic implies that some resources are unused or unavailable
in the ecosystem.

Functional evenness (FEve)
Describes the distribution of abundance in a functional space of traits,
where low FEve indicates that some parts of the functional niche
are underutilized.

Functional divergence (FDiv)
A measure of the functional similarity among the dominant mosquito
species of a community. FDiv is high when the most abundant species
have extreme functional trait values.

Functional dispersion (FDis)
A multivariate measure of the dispersion of mosquito species in the trait
space represents the mean distance of species to the centroid of the
community, weighted by mosquito species abundance.

Haemagogus relative abundance The number of Haemagogus mosquitoes is divided by the number of
mosquitoes collected at each sampling point.

Haemagogus minimum infection rate (MIR)

Represents the minimum number of infected mosquitoes, assuming that
only one was infected in each positive mosquito pool. It was calculated
for each sampling point using the formula MIR = number
of YFV-positive.

Ecological Indexes

Environment of Mosquito sampling, inside the forest Within dense forests connected to other forests.
Rural fragment Within forests smaller than 100 hectares and surrounded by pastures.

Rural peri-domicile Around homesteads and country houses.
Urban fragment Within forests inside cities.

Urban intra-domicile Within human houses inside cities.
Vertical distribution in the forest
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Table 2. Cont.

Geo-Environmental Indexes

Altitude, landcover/land use, forest fragment size.
Normalized Difference Vegetation Index (NDVI).

Functional Diversity

Physiology Egg resistance to desiccation; larval development speed.
Habitats Seasonal distribution; primary habitat.

Epidemiological importance Epidemiological importance concerning the disease.
Behavior Main hourly biting activity; host preference; oviposition preferences.

8. Discussion and Conclusions

Many factors can act as predictors for dengue outbreaks. There are numerous small-
scale studies that each examine a handful of these predictors in localized areas. However,
although good results are obtained in these different small studies, there is an absence of a
large-scale comparison of other predictors over larger geographical areas to indicate which
predictors are the most effective.

There is little dengue epidemiological work yet that combines the One Health mul-
tidisciplinary response with ML techniques. Innovation in global health will need multi-
disciplinary work amongst ecologists, mathematicians, epidemiologists, and national and
international government agencies for zoonic diseases using the One Health perspective.

AI is attractive because it offers powerful predictive capabilities for comparatively
little effort and allows many disparate predictors to be easily incorporated into a model.
However, some approaches, such as the novel use of street view image data by [98],
cannot be done without ML techniques because of the difficulty in automatically selecting
predictors from many features in an image.

AI is a promising approach to epidemiology because it can utilize many more factors
than other approaches, whilst most mathematical and statistical epidemiological models
typically only use a handful of predictors, ML approaches would have little difficulty
coping with a much larger number of predictors. However, the major challenge with
this approach is obtaining sufficient data to train the program, partly because data of the
necessary resolution is difficult to find and, in many cases, is not even recorded.

For this reason, there is a strong need for a separate project independent of specific
ML epidemiological approaches to obtain, collate, and publish in a suitable format likely
predictor data for Latin America, ideally in a single publicly accessible repository on the
web. That approach has been successfully used in many other areas of science, such as
climatology, astronomy, and particle physics [94,106,107].

As previously stated, ML consists of a wide variety of models that can perform
different tasks; the applicability of each model depends directly on the data and the task
to be performed. Currently, the best-performing models are usually ensembles of several
models [87,92]. There is no ML model that is better than another. This is evidenced in the
study by Appice et al. [102] for predicting dengue outbreaks, where an ensemble of ML
models showed the best results in 13 out of 32 states in Mexico, but this same ensemble
obtained the worst results in the rest of the states. This is also the case for other studies
predicting dengue outbreaks reviewed [100,103,104], showing good results for the modified
RF model in some cases and in others with LSTM networks.

Whilst dengue fever has become endemic in many parts of the world, there are
particular challenges in Latin America; whilst none are exclusive to this part of the world,
the combination is.
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