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Vitamin A, an essential fat-soluble micronutrient, plays a critical role in the body, by

regulating vision, immune responses, and normal development, for instance. Vitamin

A deficiency (VAD) is a major cause of xerophthalmia and increases the risk of death

from infectious diseases. It is also emerging that prenatal exposure to VAD is associated

with disease risks later in life. The overall prevalence of VAD has significantly declined

over recent decades; however, the rate of VAD is still high in many low- and mid-income

countries and even in high-income countries among specific ethnic/race groups. While

VAD occurs when dietary intake is insufficient to meet demands, establishing a strong

association between food insecurity and VAD, and vitamin A supplementation is the

primary solution to treat VAD, genetic contributions have also been reported to effect

serum vitamin A levels. In this review, we discuss genetic variations associated with

vitamin A status and vitamin A bioactivity-associated genes, specifically those linked to

uptake of the vitamin in the small intestine and its storage in the liver, as well as their

potential contribution to vitamin A deficiency risks among different ethnic groups.

Keywords: retinoid, vitamin A deficiency, genetic variations, micronutrient, ethnicity

INTRODUCTION

Malnutrition refers to deficiencies, excess, or imbalance of energy or nutrition intake. In 2020, about
one in three people in the world (2.37 billion) did not have access to adequate food (1). Iron, iodine,
folate, vitamin A, and zinc deficiencies are the most significant micronutrient-related malnutrition
conditions in the world, specifically in low-income and middle-income countries (2–4). Vitamin
A, an essential fat-soluble micronutrient, plays a critical role in the body, effecting vision, immune
responses, and normal development. VitaminA deficiency (VAD) is amajor cause of xerophthalmia
and increases the risk of death from infectious diseases. In addition, prenatal exposure to VAD is
associated with preterm birth, lung and kidney functions of the fetus, and mortality of offspring
born to mothers with human immunodeficiency virus infections (5–7). While VAD prevalence
rates have reduced in the last two decades, about 30% of children world-wide under the age of
5 years are still vitamin A deficient, and 1.7% of all deaths are attributable to VAD in this age
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group (3). VAD occurs when dietary intake is insufficient to
meet demands; thus, food insecurity is strongly associated with
its prevalence. The amount of vitamin A we need in the body
depends on age and sex. The Recommended Daily Allowances
(RDAs) recommended by FDA is 900 µg of Retinol Activity
Equivalents (RAE) for adult men, 700 µg for adult women, 770
µg for pregnant women, 1300 µg for breastfeeding women, and
400 µg for infants aged 6 months or less (8). An RDA is the
average daily dietary intake level to meet sufficient nutrition
requirements for nearly all (97–98%) healthy individuals in a
group. RAE for each vitamin A form can convert as: 1 µg RAE
= 1 µg retinol, 2 µg β-carotene from a supplement, 12 µg β-
carotene from food, 24 µg α-carotene from food, or 24 µg β-
cryptoxanthin from food (8, 9). There are two major forms of
vitamin A in the human diet, preformed vitamin A, mainly as
retinol, retinyl esters and small amount of retinoic acid, and
provitamin A carotenoids, mainly as β-carotene. The proportion
of preformed vitamin A and provitamin A carotenoid intake is
dependent on our diet. Preformed vitamin A is derived from
animal products and provitamin A carotenoids from plant-
derived food [reviewed in (10)]. Since our body can downregulate
bioconversion of provitamin A carotenoids (11, 12), high
intakes of fruit and vegetables will usually not significantly
contribute to hypervitaminosis A. However, it has been reported
that high-dose supplementation of β-carotene increases cancer
incidence in the lung and stomach (13–16), suggesting that
excess supplementation of provitamin A carotenoid could be
harmful to humans. In contrast to provitamin A, if the dietary
intake of preformed vitamin A becomes high through foods,
such as animal liver, fortified foods, or supplements, the body
will store the excess in the liver, reaching levels defining
hypervitaminosis A (defined as ≥1µg/g liver) (17, 18). Ingested
preformed vitamin A and provitamin A carotenoid are processed
for normal physiological functions or storage (bioavailability).
While the metabolic pathways by which each form of vitamin
A is metabolized are partly different until they are converted to
retinal, both preformed vitamin A and provitamin A carotenoids
are metabolized to the active vitamin A molecules, retinoic acid
that directly regulates gene activity and function, in the body
[reviewed in (19)].

Although vitamin A deficiency in high-income countries is
believed to be a rare condition, it has been reported that certain
ethnic groups have high rates of vitamin A deficiency even in
developed countries (20–22). Several genetic variations to play
a role in serum vitamin A levels have been reported in humans
(23, 24). As we reported previously, the allele frequencies of
some genetic variations associated with vitamin A bioavailability
vary among ethnic groups (22). Moreover, Obrochta et al.
reported that strain and tissue-specific variations of retinol and
all trans-retinoic acid in serum and tissues of five inbred mouse
strains feeding two different vitamin A concentration diets to
the mothers (25). Since all mouse strains fed equal amounts of
vitamin A in the study, their findings suggest the existence of
genetic variation-dependent vitamin A variations. This review
focuses on genetic variations associated with vitamin A status
and vitamin A bioactivity-associated genes, specifically vitamin
A uptake in the small intestine and storage in the liver, and

their potential contribution to vitamin A deficiency risks among
different ethnic groups.

INTESTINAL ABSORPTION OF
β-CAROTENE

In the human diet, retinyl palmitate and β-carotene are the
dominant forms of vitamin A (26). While retinyl palmitate is
enzymatically converted to retinol in the intestinal lumen before
absorption by enterocytes, β-carotene is partially converted to
retinol in the enterocytes. Interestingly, high inter-individual
variability in carotenoid absorption from nutritional intake has
been observed in human studies (27–30). Moreover, reported β-
carotene absorption rates differ between individuals as well as
between studies, for instance, 3.4% (n = 12 individuals) (30) to
90.0% (n = 5 individuals) (28) following the oral administration
of a pharmacologic dose of β-carotene. These interindividual
efficiency ranges were much higher than that of the preformed
vitamin A (retinol) absorption efficiency (70 to 90%) (8, 31).
Intriguingly, O’Neill and Thurnham further reported that while
the interindividual variations of absorption rates of β-carotene
are high, the response to β-carotene was constant within
an individual and reproducible over time (30). De Pee &
West reviewed and noted that a number of factors influence
the bioavailability of carotenoids, which they grouped in the
mnemonic SLAMENGHI: Species of carotenoids, molecular
Linkage, Amount of carotenoids consumed in a meal, Matrix
in which the carotenoid is incorporated, Effectors of absorption
and bioconversion, the Nutrient status of the host, Genetic
factors, Host-related factors, and mathematical Interactions (32).
The genetic contribution to interindividual variability of β-
carotene status has also been proposed [reviewed in (33)].
While a part of β-carotene incorporated in mixed micelles
reaches the apical membrane as free molecules, the scavenger
receptor class B type I (SR-BI) protein, encoded by SCARB1,
and cluster determinant 36 (CD36), also known as FAT (fatty
acid transporter), are involved in cellular uptake of β-carotene
in the small intestine (29, 34). Associations between SNPs and
haplotypes in SCARB1 and CD36 and plasma concentrations
of provitamin A carotenoids have been identified (29, 35).
Study participants bearing the C allele of the SNP rs61932577
at the SCARB1 intron 5 had lower β-carotene concentrations
than men homozygous for the T allele, while participants
bearing rs5888C/rs4238001C/rs61932577T haplotype had lower
plasma β-cryptoxanthin than the participants did bearing the
rs5888T/rs4238001C/rs61932577C haplotype (35). The same
research group also reported that the CD36 haplotype affects
plasma provitamin A carotenoid (29).

In the enterocyte, the β-carotene taken up is converted into

retinaldehyde by the β-Carotene 15,15
′

oxygenase 1 enzyme
[BCO1, previously named β-Carotene 15,15’-monooxygenase 1
(BCMO1)] and the retinaldehyde is then reduced to retinol
by a retinal reductase (36, 37). We summarize the known
genetic polymorphisms of the BCO1 gene, the associations of
retinoid status, and the linkage disequilibrium of the known
genetic polymorphisms in Figure 1A. It has been suggested
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FIGURE 1 | Summary of genetic variations of BCO1 gene. (A) (top) locations of genetic variants in BCO1 locus; (middle) the association to the provitamin A status of

each genetic variation; (bottom) Linkage Disequilibrium (LD) plot, the numbers in the boxes indicate the LD status and darker red shading illustrate higher LD; (B)

Proportions of BCO1 gene activity genotypes by ethnic groups. (C) Proportion of low BCO1 gene activity haplotype defined by Hendrickson’s estimation by ethnic

groups.
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that the reduced enzymatic activity of BCO1 might cause
the large interindividual variability of β-carotene absorption
as a consequence of genetic polymorphisms in the gene (38).
Importantly, the study reported that these polymorphisms,
rs12934922 A/T (R267S) and rs7501331 C/T (A379V), are
common variants (i.e., variants with a frequency of >1% in
the population). They reported that 379V and 267S + 379V
reduced the ability to convert β-carotene (38). Using the 1,000
Genomes Project dataset, we found that the low BCO1 activity
genotype allele frequency is higher in European Ancestry,
especially the Finnish group who have the highest percent (267S
+ 379V 9.09, and 379V 37.9%) out of all 25 ethnic/racial
groups (Figure 1B). The aforementioned study which found
that β-carotene supplementation increases lung cancer incidence
was conducted on Finnish cohorts suggesting a subset of
participants carry low BCO1 activity genotype (15, 16). A Bco1
knock-out mouse model study showed that while β-carotene
supplementation to mice lacking Bco1 function reduced the
inflammatory response, it increased concentration of β-carotene
in lung and serum and retinyl ester concentration in the lung
compared to wild type mice (39). This result suggests that a
person who carries the genotype that reduces the activity of
the Bco1 enzyme may more readily accumulate β-carotene and
retinyl ester in the lung following β-carotene supplementation.
Therefore, assessing BCO1 genotypes in participants who
developed lung cancer in the β-carotene supplementation study
is needed to test whether the BCO1 genotype also modulates
lung cancer incidence. The associations between other common
variants of the gene and genes adjacent to the BCO1 gene and
serum β-carotene status also have been extensively reported
(40–45). The rs6564851 common variant located about 8 kb
upstream of the BCO1 gene is reported to be associated with
circulating levels of β-carotene in different ethnic groups (40,
43, 44). The rs6564851 variant is located within a haplotype that
includes other genetic polymorphisms (Figure 1A). Hendrickson
et al. carefully tested the associations between BCO1 common
variants and plasma carotenoid concentrations and developed
gene score systems that predict plasma carotenoid concentrations
in women of European descent (42). In their model, the
rs12934922 T allele and rs4889286 T allele predict higher plasma
β-carotene (42). Interestingly, the proportions of these allele
combinations vary between ethnic/race groups, with the allele
frequencies of the “lower” plasma β-carotene combination
highest among African ancestry groups (Figure 1C). These
findings show that testing the associations of genotypes with
plasma β-carotene in a multi-ethnic population is needed.
Besides the common variants, one missense pathogenic variant
of BCO1, rs119478057, has been identified in a patient
with hypercarotenemia and hypovitaminosis A (46, 47). The
rs119478057 T allele is a rare variant with a frequency less than
0.01 in the European population.

β-carotene-9’,10’-oxygenase 2 (BCO2) is another carotenoid
converting enzyme located in the mitochondria; it cleaves β-
carotene asymmetrically in position 9’,10’ generating long-chain
apocarotenoids. BCO1 and BCO2 also differ for their substrate
specificity. Lutein, lycopene, β-cryptoxanthin, and zeaxanthin
are all specific substrates for BCO2, which BCO1 cannot cleave

(48). While livestock studies suggested that BCO2 mutations
are associated with carotenoid metabolism alterations, genetic
variation associations in humans’ carotenoid statuses are not
elucidated yet. Table 1 lists the reported genetic variants and the
reported associations on provitamin A intestinal absorption.

INTESTINAL ABSORPTION OF RETINOL

Dietary retinyl esters are enzymatically converted to retinol in
the intestinal lumen before absorption by enterocytes. Pancreatic
lipase, encoded by PNLIP, and pancreatic lipase-related protein
2, encoded by PNLIPRP2, hydrolyze retinyl palmitate to retinol
(49). PNLIP, on chromosome 10q26.1, encodes a 465-amino acid
protein and is predominantly expressed in the pancreas (50).
One missense variant of PNLIP (rs746000327 C/T) associated
with pancreatic lipase deficiency has been identified in two
brothers from a consanguineous family of Arab ancestry (51).
The frequency of rs746000327 T allele is less than 0.0001
in NHLBI Trans-Omics for Precision Medicine (TOPMed,
PRJNA400167) Whole Genome Sequencing (WGS) Project and
the Genome Aggregation Database (gnomAD, PRJNA398795).
Currently, no sequence variations with clinical significance on
PNLIPRP2 have been reported. In enterocytes, retinol that
has been taken up binds to retinol-binding protein 2 [RBP2;
initially called cellular retinol-binding protein, type II (CRBPII)
(52)]. This retinol-RBP2 complex serves as a substrate for
microsomal lecithin:retinol acyltransferase (LRAT). RBP2 is
exclusively expressed in the small intestinal absorptive cells
with specific localization (highly expressed in duodenum and
jejunum and less expressed in the ileum). It is one of the most
abundant soluble proteins in the small intestine (53, 54). It
has been suggested that the expression of RBP2 is regulated
predominantly by dietary fatty acids but little by dietary retinoids,
as reviewed by Takase et al. (55). Currently, no sequence
variations with clinical significance have been identified in
RBP2. Retinol bound to RBP2 converted from retinyl palmitate
is re-esterified by the enzyme lecithin:retinol acyltransferase
(LRAT) and acyl coA:retinol acyltransferase (ARAT). While
retinol complexedwith CRBP2 is the preferred substrate of LRAT,
uncomplexed retinol may be esterified by ARAT. LRAT may
mainly esterify in the intestine when the retinol is present in
normal amounts. In contrast, when retinol is present at high
levels, and CRBP becomes saturated, ARAT may function to
esterify the excess (26). Three rare pathogenic variants of LRAT
have been identified in European populations; a single nucleotide
mutation, rs104893848, and two 2-bp deletions, rs761717462
and rs1560870755. Two variants, rs104893848 and rs761717462,
were identified as early-onset severe retinal dystrophy-associated
mutations (56). The rs104893848 is a missense variant causing
the Ser175Arg (S175R) amino acid change. The rs761717462
variant is a 2-bp deletion (396delAA) which causes a frameshift
after codon 133 to encode 11 amino acids unrelated to the
wildtype sequence followed by a premature stop codon. The
S175R missense variant shows no acyltransferase activity in an
in vitro study (56). The third variant, rs1560870755, a Leber
congenital amaurosis-associated mutation, is a mutation causing
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TABLE 1 | A list of sequence polymorphisms and the reported associations on provitamin A intestinal absorption.

Gene symbol dbSNP ID Position* Allele Reference

allele

frequency

(1000

genome)

Type Reported associations on serum provitamin A

concentrations

Reference

SCARB1 rs61932577

rs5888

rs4238001

chr12:124811816

chr12:124800202

chr12:124863717

G/A,C,T

A/G,T

C/T

0.964856

0.322883

0.935703

Intron variant

Synonymous variant

Missense variant

Plasma provitamin A carotenoids (high in rs61932577

TT), beta-cryptoxanthin [high in TCC haplotype (rs5888,

rs4238001, rs61932577)]

Borel et al.

(29)

CD36 rs1984112 chr7:80613604 A/G 0.653155 Intron variant Beta-cryptoxanthin (high in women AA), alpha-carotene

[high in GGACC haplotype (rs1984112, rs1761667,

rs1527479, rs1527483, rs13230419)],

beta-cryptoxanthin [high in GGACC haplotype

(rs1984112, rs1761667, rs1527479, rs1527483,

rs13230419)]

Borel et al.

(29)

rs1761667 chr7:80615623 G/A 0.609625 Intron variant Beta-cryptoxanthin (high in women AA), alpha-carotene

[high in GGACC haplotype (rs1984112, rs1761667,

rs1527479, rs1527483, rs13230419)],

beta-cryptoxanthin [high in GGACC haplotype

(rs1984112, rs1761667, rs1527479, rs1527483,

rs13230419)]

rs1527479 chr7:80643252 T/A,C 0.650958 Intron variant Alpha-carotene [high in GGACC haplotype (rs1984112,

rs1761667, rs1527479, rs1527483, rs13230419)],

beta-cryptoxanthin [high in GGACC haplotype

(rs1984112, rs1761667, rs1527479, rs1527483,

rs13230419)]

rs1527483 chr7:80672184 G/A 0.898163 Intron variant Alpha-carotene [high in GGACC haplotype (rs1984112,

rs1761667, rs1527479, rs1527483, rs13230419)],

beta-cryptoxanthin [high in GGACC haplotype

(rs1984112, rs1761667, rs1527479, rs1527483,

rs13230419)]

rs13230419 chr7:80679969 C/T 0.65615 Alpha-carotene [high in GGACC haplotype (rs1984112,

rs1761667, rs1527479, rs1527483, rs13230419)],

beta-cryptoxanthin [high in GGACC haplotype

(rs1984112, rs1761667, rs1527479, rs1527483,

rs13230419)]

rs7755 chr7:80676955 G/A 0.612021 3’ UTR variant Beta-cryptoxanthin (high in GG women and AA men)

BCO1 rs4889286 chr16:81223108 C/T 0.507987 Alpha-carotene (high in T allele), beta-carotene (high in T

allele)

Hendrickson

et al. (42)

rs12925563 chr16:81224725 T/C,G 0.488618 Beta-carotene
†

rs56389940 chr16:81225547 C/A,T 0.846046 Lutein/zeaxanthin (high in A allele)

(Continued)
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TABLE 1 | Continued

Gene symbol dbSNP ID Position* Allele Reference

allele

frequency

(1000

genome)

Type Reported associations on serum provitamin A

concentrations

Reference

rs56389890 chr16:81225661 G/T 0.844649 Lutein/zeaxanthin
†

rs12918164 chr16:81228347 G/A 0.826478 Beta-Cryptoxanthin (high in A allele)

rs10048138 chr16:81230572 A/C,G,T 0.278355 Lutein/zeaxanthin (high in A allele)

rs6564851 chr16:81230992 T/G 0.476238 Alpha-carotene (high in G allele), beta-carotene (high in G

allele), beta-Cryptoxanthin (high in G allele),

lutein/zeaxanthin (high in T allele)

Hendrickson

et al., He et

al., Ferrucci et

al. (40, 42, 45)

rs4889293 chr16:81259125 C/A, G 0.761581 Alpha-carotene (high in G allele), beta-Cryptoxanthin

(high in G allele)

Hendrickson

et al. (42)

rs12923433 chr16:81264097 A/G 0.747804 Intron variant Alpha-carotene
†

Hendrickson,

et al. (42)

rs119478057 chr16:81264677 C/A,T 0.999601 Missense variant Hypovitaminosis A (T170M mutation) Lindqvist, et

al. (46)

rs12934922 chr16:81268089 A/G, T 0.772764 Missense variant Alpha-carotene (high in T allele), beta-carotene (high in T

allele), beta-Cryptoxanthin (high in T allele),

lutein/zeaxanthin (high in T allele), retinol
†

Hendrickson

et al., Leung

et al. (38, 42)

rs7501331 chr16:81280891 C/T 0.847843 Missense variant Alpha-carotene (high in C allele), beta-carotene (high in C

allele)

Leung et al.,

He et al.,

Hendrickson

et al.

(38, 42, 45)

rs4448930 chr16:81297397 G/A,C,T 0.822484 Beta-carotene (high in C allele), beta-Cryptoxanthin (high

in C allele)

Hendrickson

et al. (24)

*hg38;
†
allelic information was not available.
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a frameshift at codon 73 and a premature termination codon
at residue 120. The mutation results in the loss of essential
amino acids for accepting the acyl group from the lecithin
(57). In humans, two transferases can also have acyl-CoA:retinol
acyltransferase activities have been identified, diacylglycerol O-
acyltransferase 1 (DGAT1) (58–60) and acyl-CoA wax alcohol
acyltransferase 2 (AWAT2) (61). While both genes have the
acyl-CoA:retinol acyltransferase activities, DGAT1 plays an
important intestinal ARAT in vivo (60). One pathogenic variant
of DGAT1, rs148665132, has been identified in a study of a
family of Ashkenazi Jewish descent with congenital diarrheal
disorders; however, the effect of the variant on acyl-CoA:retinol
acyltransferase activity is not yet elucidated (62). Table 2 lists
these pathogenic sequence polymorphisms of intestinal retinol
absorption-related genes.

TRANSPORT, ABSORPTION, AND
STORAGE IN THE LIVER

As mentioned earlier, newly absorbed vitamin A in the small
intestine is packaged into chylomicrons and secreted to the
lymphatic system by enterocytes. Once the chylomicrons reach

the circulation, a part of the triglycerides are hydrolyzed, and
the lipoprotein particles shrink to form chylomicron remnants.
About 70% of retinoids packaged into chylomicron remnants
in the bloodstream are taken up by the liver, the main organ
involved in storing retinoids and regulating serum vitamin A
levels (63, 64). Besides the liver, chylomicron remnants are
delivered to the lung, heart, kidney, adipose tissue, muscle,
spleen, and bone marrow (65, 66). In the liver, hepatocytes
play the leading role in the uptake of chylomicrons, where
retinyl ester is hydrolyzed again to form retinol by several
enzymes, such as carboxyl ester lipases and carboxylesterases,
and hepatic lipases [reviewed in (67)]. In the hepatocyte,
formed retinol is bound to cellular retinol-binding protein 1
(CRBP1 or RBP1) and then is transferred to retinol-binding
protein 4 (RBP4 or RBP) to secrete into e the circulation
or transferred to hepatic stellate cells where retinol is re-
esterified by LRAT. From the hepatocyte, retinol bound to
the RBP4 is secreted into the circulation and delivered to
the target cells and organs. RBP4 is the sole specific retinol-
binding protein in the blood, and RBP-bound retinol accounts
for approximately 99% of all retinoids present in the blood in
the fasting state (68). Genetic variations of RBP4 and serum
retinol levels have been identified in European populations and

TABLE 2 | A list of pathogenic sequence polymorphisms of intestinal retinol absorption related genes.

Gene symbol dbSNP ID Position* Allele Reference

allele

frequency

(1000

genome)

Type Reported diseases Reference

PNLIP rs746000327 chr10:116555268 C/T 0.999996 Missense variant Pancreatic lipase

deficiency

Behar et al.

(51)

LRAT rs104893848 chr4:154744851 T/A,C 0.999944 Missense variant Early-onset severe

retinal dystrophy

rs761717462 chr4:154744723-154744727 delAA 0.999996 Frameshift variant Early-onset severe

retinal dystrophy

Thompson et

al. (56)

rs1560870755 chr4:154744543-154744544 delAT - Frameshift variant Leber congenital

amaurosis

TABLE 3 | A list of sequence polymorphisms and the reported associations on transport, absorption, and storage of vitamin A in liver.

Gene symbol dbSNP ID Position* Allele Reference allele

frequency (1000

genome)

Type Reported

associations on

vitamin A

status/metabolism

Reference

RBP4 rs10882272 chr10:93588425 T/C 0.610224 Downstream

variant

Homozygous for the

common allele for both

SNPs have higher

circulating retinol levels

Mondul et al.

(24)

TTR rs1667255 chr18:31607316 A/C,G,T 0.499601

STRA6 rs151341424 chr15:74190856-74190857 CC/TT - Missense Variant Reduced vitamin A

uptake activity

Casey et al.

(75)

PNPLA3 rs738409 chr22:43928847 C/G 0.737819 Missense Variant Elevates retinyl ester

levels in the liver with

reduced serum retinol

levels

Kovarova et

al., Mondul,

et al., Pirazzi

et al.

(24, 90, 95)
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A

B

FIGURE 2 | Summary of eQTLs of RBP4 (A) and PNLIPRP2 (B). (A) (top) Locations of eQTLs in RBP4; (bottom left) normalized expression status of RBP4 by

genotype; (bottom right) an LD plot; (right) haplotype proportion by race/ethnicity group. (B) (top) Locations of eQTLs in PNLIPRP2; (bottom left) normalized

expression status of PNLIPRP2 by genotype (block 1); (bottom center) a Linkage disequilibrium (LD) plot of eQTLs; (bottom right) normalized expression status of

PNLIPRP2 by genotype (block 2).

estimated that 2.3% of the variance in serum retinol levels in
the cohort are accounted for the genetic variations of RBP4
and transthyretin (TTR)(24), and low serum retinol level allele
frequency varies between race/ethnic groups (22). Delivery
of retinol to the target cells is mediated by the binding of
retinol-bound- (holo-) RBP and an RBP receptor called STRA6
(Stimulated by Retinoic Acid 6) (69). STRA6 is ubiquitously
expressed, and its expression status is regulated by the retinoid
metabolisms (69). While there are five genetic variants listed on

the NHGRI-EBI Catalog of Published Genome-Wide Association
Studies, rs351242 (70), rs351237 (71), rs11635868 (72), rs10910
(73), and rs11638831 (74), no associations between these genetic
variants and STRA6 function have been described. Interestingly,
a missense double-nucleotide polymorphism (g.1157G>A and
g.1156G>A; p.Gly304Lys, rs151341424) in STRA6 was found
in the Irish Traveler family with isolated microphthalmia and
coloboma (MCOPCB8) (75), a rare autosomal recessive disorder
(76). Casey reported that the G304K mutant STRA6 protein

Frontiers in Nutrition | www.frontiersin.org 8 April 2022 | Volume 9 | Article 861619

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Suzuki and Tomita Genetic Variations of Vitamin-A Metabolism-Related Genes

is mislocalized and has severely reduced vitamin A uptake
activity (75). Besides rs151341424, four common missense
variants, rs736118, rs351236, rs971756, and rs76336272, have
been identified. Of those, rs971756 and rs736118 are reported
to be linked to human diseases (77–84), but associations of the
variants to STRA6 function were not described.

Hepatic stellate cells play a major role in storing vitamin A
in the liver. It has been estimated that approximately 70% of
vitamin A in the body of healthy and well-nourished individuals
is stored in the liver, specifically a small subset of cells, hepatic
stellate cells (85). Hepatic LRAT expression is regulated by
vitamin A status, a positive feedback loop to increase retinyl
ester synthesis when cellular retinoic acid concentration is high
(86–88). Two lipases mainly perform the mobilization of retinyl
ester stores: the patatin-like phospholipase domain-containing
2 (PNPLA2)/adipose triglyceride lipase (ATGL) and patatin-like
phospholipase domain-containing 3 (PNPLA3) proteins (89, 90).
Currently, 11 genetic variants in ATGL/PNPLA2 are reported
to associate with neutral lipid storage disease with myopathy
(91–94); but no associations of retinyl ester mobilization and
these genetic variations have been reported. A missense genetic
variation of the PNPLA3 (I148M, rs738409) gene, one of
the most prominent genetic risk factors associated with non-
alcoholic liver disease (NAFLD), elevates retinyl ester levels in
the liver with reduced serum retinol levels (90, 95, 96). While
32 missense variations have been identified in the PNPLA3 gene,
rs738409 is the only pathogenic genetic variant of the PNPLA3
gene. Table 3 lists the reported genetic variants associated
with the transport, absorption, and storage of vitamin A in
the liver.

GENETIC VARIANTS AND EXPRESSION
STATUS OF THE VITAMIN A
INTAKE-RELATED GENES

The associations between genetic variants and gene expression
status have been well-characterized. In the previous sections, we
discussed the associations of genetic variants on the vitamin A
metabolism related to gene functions and human disease. This
section focuses on the genetic variants that alter gene expression
status. Genetic variants associated with gene expression status,
expression quantitative trait loci (eQTLs), have been identified
in the human genome (97–100). We searched for eQTLs of
the vitamin A metabolism-related genes in the Genotype-
Tissue Expression (GTEx) project database (97). We identified
eQTLs clusters for RBP4 (liver) and PNLIPRP2 (pancreas)
(Figure 2, Supplementary Table 1). The RBP4 gene has two
eQTLs, rs11187538 and rs11187547, located in a haplotype block
including the previously reported genetic variant associated with
lower RBP4 levels, rs10882272 (24). Allele frequency analysis
showed that Eastern Asian ancestry has a higher frequency
of the low-expression haplotype (rs11187538C/rs11187547A)
(Figure 2A). While no genetic variants with clinical significance
on PNLIPRP2 have been reported, there are 173 eQTLs in its
most highly expressed tissue, the pancreas. Haplotype analysis
indicates that the PNLIPRP2 eQTL cluster contains two large

blocks (Figure 2B). The block located upstream of the gene
(Block 1) is positively associated with the expression with
the reference allele, and the block downstream of the gene
(Block 2) is negatively associated with the reference allele.
Based on the 1,000 Genomes allele frequency database, the
haplotype allele frequencies of the blocks vary by race/ethnicity.
Europeans and South Asians have higher frequencies with
low expression haplotypes in Block 1, and East Asians
have higher frequencies with low expression haplotypes in
Block 2. These findings suggest that the genetic variations
might contribute to the vitamin A metabolism through
modifications of the expression of these vitamin A intake-
related genes.

DISCUSSION

While the prevalence of VAD has significantly declined over
recent decades (3), it remains a concern from a population
health perspective that the rate of VAD remains high in
many low- and mid-income countries (3, 101, 102) and in
specific ethnic/race groups within high-income countries (22).
West reported that approximately 127 million pre-school-
aged children and 7 million pregnant women were VAD in
2003 (103). The WHO estimated in 2009 that 5.2 million
preschool children and 9.8million pregnant womenwere affected
with the VAD-associated phenotype of night blindness (104).
Many interventions have been implemented to reduce VAD in
lower-income countries (101); but these interventions did not
consider the individual susceptibilities associated with genetic
variation and race/ethnicities. As described in this review, genetic
variation near retinoid metabolism-related genes significantly
contributes to the function and expression levels of these genes.
Excess amounts of vitamin A can be toxic to human health
and have adverse effects on normal development (reviewed
in [105]). Moreover, the genome-wide association study that
identified genetic variants contributing to serum retinol levels
was performed in European ancestry, in which the overall rate
of VAD is low (24). This raises the possibility that this kind
of study may not fully detect all of the genetic variants that
contribute to VAD. Although vitamin A supplementation is
a primary treatment for VAD and a solution to reduce the
prevalence rate of VAD in populations bearing a high prevalence
of VAD, knowing the person’s vitamin A metabolism-related
gene variants helps to perform the treatment and intervention
effectively and safely. In addition, vitamin A metabolism is
not fully elucidated yet. Genetic variations associated with the
process that has not been described fully could contribute to
the VAD. We propose a major need to perform genome-wide
association studies in multiethnic and admixed populations to fill
this knowledge gap.
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