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Improvements of growth traits are always the focus in selective breeding programs
for the Pacific white shrimp Litopenaeus vannamei (L. vannamei). Identification of
growth-related genes or markers can contribute to the application of modern breeding
technologies, and thus accelerate the genetic improvement of growth traits. The aim of
this study was to identify the genes and molecular markers associated with the growth
traits of L. vannamei. A population of 200 individuals was genotyped using 2b-RAD
techniques for genome-wide linkage disequilibrium (LD) analysis and genome-wide
association study (GWAS). The results showed that the LD decayed fast in the studied
population, which suggest that it is feasible to fine map the growth-related genes
with GWAS in L. vannamei. One gene designated as LvSRC, encoding the class
C scavenger receptor (SRC), was identified as a growth-related candidate gene by
GWAS. Further targeted sequencing of the candidate gene in another population of
322 shrimps revealed that several non-synonymous mutations within LvSRC were
significantly associated with the body weight (P < 0.01), and the most significant marker
(SRC_24) located in the candidate gene could explain 13% of phenotypic variance.
The current results provide not only molecular markers for genetic improvement in
L. vannamei, but also new insights for understanding the growth regulation mechanism
in penaeid shrimp.

Keywords: penaeid shrimp, growth traits, GWAS, candidate gene, class C scavenger receptor

INTRODUCTION

Litopenaeus vannamei (L. vannamei), as one of the most economically important marine
aquaculture species, is playing an important role in fulfilling the increased requirement for high
quality animal proteins consumption. It is estimated that L. vannamei provided approximately 70%
of the total shrimp production in the world (Li et al., 2018). The continuous development of shrimp
industry drives the genetic improvement of important economic traits. During the past decade,
large efforts have been put to improve the key economic traits, including growth traits and disease
resistance (Argue et al., 2002; Huang et al., 2011; Andriantahina et al., 2013). Among these traits,
growth is always the focus of breeders because it directly contributes to the shrimp production.
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FIGURE 1 | The extent of LD (r2) in Litopenaeus vannamei. (A) The scatter plot of r2 against the physical distance; (B) the fitted decay curve of r2 within 500 kb.

In general, the growth trait, such as body weight, presents
a moderate to high heritability (Sui et al., 2016; Nolasco-
Alzaga et al., 2017), and the genetic gain per generation
reached 10.7% (Andriantahina et al., 2012), which is higher
than that of farmed terrestrial species. At present, broodstocks
with high and stable growth traits are urgently needed to
meet the requirement of shrimp culture industry. Modern
molecular breeding technologies, including marker assisted
selection (MAS), gene assisted selection (GAS), and gene editing
technology, etc., are promising methods for accelerating the
genetic improvement of growth traits (Gjedrem and Baranski,
2010). Till present, several growth-related genes involved in
molting and muscle development such as molt-inhibiting
hormone (MIH), crustacean hyperglycaemic hormone (CHH),
ecdysteroid receptor (EcR), actin and myostatin differential
factor 11 (MSTN), etc., were identified (Li et al., 2011; Jung
et al., 2013). However, the growth traits are likely to be highly
polygenic, and the underlying physiological bases may involve
complex regulatory networks of many interacting genes with
different effects. Although QTL mapping analysis of growth traits
has been conducted in L. vannamei (Yu et al., 2015), limited
number of markers makes the fine mapping of QTLs difficult.
Hence, new methods are urgently required to localized the major
genes or markers related to growth traits in shrimp.

Genome-wide association study (GWAS) have been
successfully performed to identify genes participating in
the regulation of complex traits in human (Mccarthy et al.,
2008), livestock (Zhang et al., 2013), and crop (Huang and
Han, 2014). Recently, with the development of high-throughput
sequencing technologies and the successive decoding of
aquatic animal genomes, GWAS is becoming a powerful
tool to analyze the genetic basis of complex traits, and some
candidate genes associated with growth traits or disease
resistance were reported in a number of aquatic animals,
including Atlantic salmon (Sodeland et al., 2013; Gutierrez et al.,
2015; Correa et al., 2017), rainbow trout (Vallejo et al., 2014;

TABLE 1 | Numbers of SNPs and the average distances between adjacent SNP
pairs for each chromosome.

Chr No. of
SNPs

Average
distance (kb)

Chr No. of
SNPs

Average
distance (kb)

chr1 761 129.27 chr23 121 392.39

chr2 234 181.74 chr24 213 257.15

chr3 488 109.82 chr25 378 151.94

chr4 284 237.89 chr26 320 199.39

chr5 259 161.81 chr27 363 160.89

chr6 304 225.06 chr28 373 174.65

chr7 245 202.13 chr29 388 192.25

chr8 155 474.03 chr30 183 339.49

chr9 531 102.06 chr31 370 182.45

chr10 381 138.56 chr32 303 200.49

chr11 346 112.84 chr33 191 131.57

chr12 200 249.82 chr34 437 160.01

chr13 492 110.15 chr35 159 411.33

chr14 43 223.06 chr36 243 162.66

chr15 517 91.45 chr37 263 228.44

chr16 448 131.59 chr38 195 370.07

chr17 503 117.04 chr39 56 1431.73

chr18 283 186.67 chr40 283 204.97

chr19 482 114.79 chr41 201 247.52

chr20 550 127.01 chr42 350 185.81

chr21 96 113.30 chr43 269 226.41

chr22 250 199.09 chr44 303 198.62

Chr, chromosome; No, number.

Gonzalez-Pena et al., 2016), and catfish (Geng et al., 2015; Jin
et al., 2016). However, there is no relevant study in L. vannamei.
In the present study, we aimed to identify growth-related loci
or genes in diverse population by using GWAS integrated with
candidate gene association study, and provide a convinced
result for revealing the molecular mechanism of growth traits
in L. vannamei.
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FIGURE 2 | Manhattan plot of genome-wide association analysis for body weight of Litopenaeus vannamei.

MATERIALS AND METHODS

Animals and Genotyping
Two populations, designated as A16 and B2016_13, had been
used in this study. These two populations were created and
cultured at Guangtai Marine Breeding Company in Hainan
province, China. The population A16 was established in
2015 as previously described (Wang et al., 2017). Briefly, it
was composed of 200 individuals from 13 full-sib families
(offsprings of 13 dams and 13 sires). Each full-sib family
was cultured separately in the 5 m2 tank before their body
length reached 3 cm, and then 50 individuals from each
family were transferred to a 10 m2 pond for culture. At the
harvest, two hundred individuals were randomly collected for
the phenotyping and genotyping. For population B2016_13, it
was constructed in 2016 and the individuals from multiple full-
sib families were mixed after spawn, a total of 322 individuals
were collected and phenotyped. The sex of all individuals
from these two populations was determined by sex-associated
marker (Yu et al., 2017). The average body weight for A16
population was 5.56 ± 2.16 g and that for B2016_13 population
was 9.51± 3.30 g.

Total DNA of each sample was extracted from the muscle
of shrimp using Plant Genomic DNA Kit (TIANGEN, Beijing,
China) according to the manual instruction. The purity and
integrity of the extracted DNA was determined by using a
NanoDrop 1000 Spectrophotometer (NanoDrop, Wilmington,
DE, United States) and electrophoresis on 1% agarose gel.
Qualified genomic DNA was stored at−20◦C.

All individuals from A16 population were genome-widely
genotyped using 2b-RAD method (Wang et al., 2012),
which was carried out by OE Biotech Company (OE
Biotech, Shanghai, China). The reference genome were de

TABLE 2 | Summary of the first twenty significant SNPs associated with body
weight by GWAS.

Marker ID Chr Alleles MAF P value

ref-466132-2 UN C/G 0.30 4.85E-05

ref-123254-9 UN T/A 0.10 2.59E-04

ref-231-26 UN T/C 0.09 2.91E-04

ref-331386-1 21 G/C 0.14 3.20E-04

ref-331386-3 21 C/G 0.14 3.20E-04

ref-628970-14 UN C/T 0.31 3.88E-04

ref-53799-25 UN G/A 0.15 4.05E-04

ref-165277-22 UN T/C 0.35 4.67E-04

ref-97619-15 UN A/G 0.06 5.80E-04

ref-456266-7 UN A/G 0.09 6.69E-04

ref-85081-3 UN C/G 0.09 6.83E-04

ref-372581-7 UN T/A 0.31 7.61E-04

ref-382704-3 11 C/A 0.08 7.71E-04

ref-150968-7 UN T/C 0.16 8.43E-04

ref-249669-5 15 T/C 0.17 8.91E-04

ref-377367-16 UN G/A 0.14 9.21E-04

ref-613742-15 44 C/G 0.49 9.67E-04

ref-595037-3 11 G/T 0.09 1.13E-03

ref-58593-5 28 A/C 0.08 1.17E-03

ref-613798-25 18 A/G 0.19 1.18E-03

Chr, chromosome; MAF, minor allele frequency; and UN, no chromosome was
assigned for the marker.

novo assembled using the reads from the 10 individuals
with high sequencing depth, and the genotyping of each
individuals were conducted using RADtyping program (Fu
et al., 2013). The shrimp from B2016_13 population were
genotyped for the targeted locus of the candidate genes by using
PCR-based sequencing.
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TABLE 3 | The primers designed for the identification of SNP in the coding region of LvSRC.

Primer ID Primer sequence (5′–3′) Fragment
length (bp)

Ta (◦C)

Primer0 Forward GTCTGTTGGAGTGGTAGCGTTTT 281 58

Reverse CCAGCACATCTACGCCTTCC

Primer1 Forward TCTTCCACATCCACCAACGC 210 58

Reverse TCCCTCCCCAGAAAAGAAGC

Primer2 Forward CATTCCAGTTGATGCCGTCG 177 58

Reverse CATTCTCACCCTCCCGTTCC

Primer3 Forward GCCCATCTCAACTCACCTTCG 322 58

Reverse GGCAACCTTTTCACCTCCCTA

Primer4 Forward CCAAGCCTCGTGAACCGTAG 294 58

Reverse CGCTGACCCTGACATAGTGC

Primer5 Forward TGGTCGTAGTGGTCTCAGTATCG 168 58

Reverse CTGTGAGCGTGTTCCGTCTC

Primer6 Forward GTCGTAACAGGTGACCCATCG 142 58

Reverse CCAGCACATCTACGCCTTCC

Primer7 Forward TCTTGTTTTCCGTTCCCTCG 446 58

Reverse CAGCACATCTACGCCTTCCAC

Primer8 Forward CCGTATTTGTTGAATGAGTGGG 339 58

Reverse CTACCACTCCAACAGACGAAGG

Primer9 Forward GTGCTCCCCAGGCTGAAGAT 174 58

Reverse CATCTCCCTGGTCGTCTTCG

Ta, the optimal annealing temperature.

Genome-Wide Linkage Disequilibrium
Analysis
The physical position of SNPs was identified by blasting
the 2b-RAD marker to the assembled reference genome
of L. vannamei (Zhang et al., 2019). LD was estimated by
using SNPs genotyping and physical position information.
The squared correlation of allele frequencies (r2) was used
as a measure of LD (Hill, 1974). The r2 between each
pair of SNPs on the same chromosome was calculated
using “genetics” package in R (R Core Team, 2018). The
decay of the r2 with distance was fitted using the expected
value of r2 under drift-recombination equilibrium that
had previously been implemented (Remington et al., 2001;
Marroni et al., 2011).

Genome-Wide Association Study
Genome-wide association study for body weight were performed
using the egscore function in the R package GenABEL (Aulchenko
et al., 2007). The potential bias in association caused by
hidden population stratification was corrected by principal
components (PCs) of genomic kinship matrix (Price et al.,
2006). Via inspecting the eigenvalues of the kinship matrix,
the first four PCs were selected to adjusting the genotypes
and phenotypes. Sex was selected as fixed factor. Besides,
adjusting with PCs did not remove all population stratification,
hence a further genomic control correction of the obtained P
values was performed using the inflation factor. Considering
the small sample population size and the sparse marker
density, the significance level for genome-wide significance was
set as P = 0.01 (−logp

10 = 2).

Candidate Genes Study
The sequences of SNPs associated with body weight were
compared by BLAST against the genome sequence of the
L. vannamei (Zhang et al., 2019). Given the rapid LD decay rate
(Figure 1), the genes within the 18 kb upstream and downstream
of the significant SNPs were considered as candidate genes.
Then, the SNPs in the coding region of candidate genes were
detected by PCR-based sequencing. The non-synonymous SNPs
were genotyped in all the individuals from B2016_13 population
and tested for association with body weight. The association test
of candidate genes was performed by using linear model in R
software, and sex was selected as covariate. According to the
principle of variance decomposition in linear model (Ho and Lin,
2003), the ratio of phenotypic variance (Var) explained by the
SNP, significantly associated with the body weight of L. vannamei,
was calculated as following:

Var =
SSR

SSR + SSS + SSE
× 100%

where SSR is the sum of squares produced by the SNP;
SSS is the sum of squares produced by the sex; SSE is the
residual sum of squares.

RESULTS

Genome-Wide Linkage Disequilibrium
A total of 23,049 single nucleotide polymorphism (SNP) markers
were obtained after quality control that SNPs with missing rate at
more than 5% across samples and minor allele frequency less than
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FIGURE 3 | The positions of identified SNPs in the LvSRC gene.

0.05 were removed. By blasting these markers to the assembled
reference genome of L. vannamei, 13,814 SNPs were successfully
mapped onto chromosomes. These SNPs were located on 44
chromosomes (Chrs) with a median distance between adjacent
markers of 226.12 kb and an average of 314 SNP markers per
chromosome (Table 1). The number of SNPs varied among Chrs,
from 43 on chr14 to 761 on chr1. The average distance between
the adjacent SNPs pairs within Chr was also different, ranging
from 91.45 kb on chr15 to 1431.73 kb on chr39. A total of
2,579,595 paired SNPs had been used to calculate the r2. The r2

with distance was plotted in Figure 1A. The overall LD across
the genome between all paired SNPs was 0.06 and only few
values (0.4%) of r2 > 0.6 were found. A rapid decay of LD was
presented in Figure 1B, where r2 decreased to 0.2 at SNP marker
interval of 18 kb.

Genome-Wide Association Study
The Manhattan plot of all SNPs is shown in Figure 2. A total
of 226 SNPs significantly associated with body weight were
identified at a threshold of P < 0.01 (−logp

10 > 2). Among
the 226 significant SNPs, 84 SNPs are currently unassigned to
chromosomes, and the remaining 142 SNPs were successfully
mapped to 39 chromosomes. Given the large number of
significant markers, the first twenty significant markers were
used for subsequent analysis. Of these, 12 SNPs are currently
unassigned to chromosomes, and the remaining 8 SNPs
were successfully mapped to 6 chromosomes (Table 2). Gene
annotation showed that only the marker ref-613798-25 was
located in the coding region of one gene which can encode the
class C scavenger receptor (SRC). Therefore, the gene, referred to
hereafter as LvSRC, was considered as the most likely candidate
gene for body weight in L. vannamei.

Candidate Gene Association Study
Ten PCR primers (Table 3) were developed from the targeted
genome sequences of LvSRC and then used to amplify for a
specific locus. A total of 29 SNPs (including ref-613798-25) were
identified in the coding region of LvSRC (Figure 3). Among

TABLE 4 | Summary of the non-synonymous SNPs in the coding region of
LvSRC gene.

Marker ID Primer ID Site Alleles P value Var (%)

ref-613798-25 Primer0 exon7 A/G 1.27E-03 4

SRC_7 Primer6 exon7 A/G 1.61E-04 6

SRC_8 Primer6 exon7 T/C 9.10E-02 NA

SRC_11 Primer7 exon8 A/C 1.10E-01 NA

SRC_13 Primer7 exon8 T/C 1.01E-04 6

SRC_14 Primer7 exon8 A/C 1.89E-04 6

SRC_15 Primer7 exon8 A/G 1.03E-04 6

SRC_24 Primer8 exon8 A/C 1.31E-10 13

SRC_27 Primer8 exon8 T/A 6.45E-03 4

Var, the ratio of phenotypic variance explained by the SNP; NA, null value.

these, 20 SNPs are synonymous mutation (Supplementary
Table S1), and 9 SNPs are non-synonymous mutations (Table 4).
All these non-synonymous mutations were examined for
association with body weight in B2016_13 population. The
statistical results showed that 7 SNPs presented significant
association (P < 0.01) with body weight, and the SNP
(SRC_24) contributed most significantly to the trait and it could
explain 13% of phenotypic variance, followed by SRC_13 (6%),
SRC_15 (6%), SRC_7 (6%), SRC_14 (6%), ref-613798-25 (4%),
and SRC_27 (4%).

DISCUSSION

To our knowledge, this is the first report about LD pattern
and GWAS in L. vannamei. Overall, the decay of LD in this
population is rapid, which suggested it is feasible to perform the
fine mapping of growth-related genes with GWAS. However, it
is worth noting that high-density markers will be required to
increase the power of GWAS. An average r2 greater than 0.2
has been proposed to be the desirable requirement for GWAS
in previous studies (Meuwissen et al., 2001; Mckay et al., 2007).
Considering a genome length of 2.64 Gb in L. vannamei
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(Yu et al., 2015), ∼150 K fully informative markers would be
needed to saturate the requirement of GWAS at an average
resolution of 18 kb.

Although only ∼23 K markers were used for GWAS in
this study, a large number of markers significantly associated
with body weight were identified (P < 0.01). This result may
confirm the previous speculation that the shrimp growth is
highly polygenic, and regulated by complex regulatory networks
of many interacting genes (Moss and Moss, 2009). The current
identified LvSRC gene may be one of those interacting genes and
play an important role in the regulation of shrimp growth.

Scavenger receptors (SRs) comprise a large family of
structurally diverse transmembrane cell surface glycoproteins
and nine heterogeneous subclasses (A-I) were classified in
accordance with their multidomain structures (Canton et al.,
2013). As one member of SRs, SRC has only been identified
in a few invertebrates, including Drosophila melanogaster, Aedes
aegypti, and Marsupenaeus japonicus. Especially, previous studies
only reveal the function of SRC in immunological process (Rämet
et al., 2001; Yang et al., 2016, 2017), and whether SRC participates
in growth regulation remains largely unknown. Indeed, although
SRs family encompasses a wide range of molecules with little
structural homology (Canton et al., 2013), almost all of them have
been characterized in vertebrates by the common feature to bind
modified low density lipoproteins (LDLs), such as oxidized LDL
(OxLDL) and acetylated LDL (AcLDL). Therefore, SRs can play a
central role in lipid metabolism. The similar function of SRs was
also revealed in invertebrates. For example, in Macrobrachium
nipponense, the expression of gene encoding the class B SR can be
regulated by dietary lipid sources including soybean and linseed
oils (Ding et al., 2016). Therefore, it’s interesting to note that SRC
may be related to the body weight of shrimp by participating in
lipid metabolism.

The significant SNPs in the coding region of LvSRC, especially
the marker SRC_24, could be promising candidates for marker
assisted breeding of growth traits in L. vannamei. Nevertheless, it
is still uncertain that which mutations within the LvSRC gene are
the causative loci associated with growth of shrimp. Therefore,
gene editing technology will be a powerful tool to determine
the causative locus in the future. Besides, it is important to
note that the phenotypic variation of complex traits can be
affected by the mutations in the non-coding region of genes,
including untranslated region (Si et al., 2016) or promoter region
(Wang et al., 2016). Therefore, it should be further investigated
that whether the causative loci located in the non-coding
region of LvSRC.

In addition, it is important to note that a number of
significant markers from GWAS failed to be annotated. There
may be two reasons for this result. Firstly, parts of the reference

genome was not fully assembled which result in the difficulty of
gene annotation. Secondly, the region of candidate genes was
determined based on the average LD decay rate in this study;
however, the LD decay of different genomic regions might be
quite different (Lu et al., 2012; Kawakami et al., 2017). Therefore,
in the future, more growth-related genes would be revealed with
the increase of genome information and the detail survey of LD
decay of different genome regions.

CONCLUSION

In this study, the LD decay of the studied population is rapid
with an average r2 (0.2) values at 18 kb, which suggested
that it is feasible to fine map the growth-related genes
by using this population. By using GWAS integrated with
candidate gene association study, the LvSRC was proved to
be associated with growth traits. This result not only provides
molecular markers that may contribute to accelerate the genetic
improvement for penaeid shrimp, but also provides new insights
to help understand regulatory mechanism of shrimp growth.
Further studies are needed to fine mapping the causative
mutation in the LvSRC and investigate its regulatory mechanism
on shrimp growth.
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