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ABSTRACT

Metagenomics-based studies of mixed microbial
communities are impacting biotechnology, life sci-
ences and medicine. Computational binning of
metagenomic data is a powerful approach for
the culture-independent recovery of population-
resolved genomic sequences, i.e. from individual or
closely related, constituent microorganisms. Exist-
ing binning solutions often require a priori character-
ized reference genomes and/or dedicated compute
resources. Extending currently available reference-
independent binning tools, we developed the Busy-
Bee Web server for the automated deconvolution
of metagenomic data into population-level genomic
bins using assembled contigs (Illumina) or long
reads (Pacific Biosciences, Oxford Nanopore Tech-
nologies). A reversible compression step as well
as bootstrapped supervised binning enable quick
turnaround times. The binning results are repre-
sented in interactive 2D scatterplots. Moreover, bin
quality estimates, taxonomic annotations and anno-
tations of antibiotic resistance genes are computed
and visualized. Ground truth-based benchmarks of
BusyBee Web demonstrate comparably high per-
formance to state-of-the-art binning solutions for
assembled contigs and markedly improved perfor-
mance for long reads (median F1 scores: 70.02–
95.21%). Furthermore, the applicability to real-world
metagenomic datasets is shown. In conclusion, our
reference-independent approach automatically bins
assembled contigs or long reads, exhibits high sen-
sitivity and precision, enables intuitive inspection of
the results, and only requires FASTA-formatted in-
put. The web-based application is freely accessible
at: https://ccb-microbe.cs.uni-saarland.de/busybee.

INTRODUCTION

Metagenomic sequencing, i.e. whole genome sequencing
of DNA indiscriminately extracted from mixed microbial
communities, was successfully used to study the taxonomic
composition as well as the functional potential of environ-
mental microbiomes (1–4). The independence of prior iso-
late culturing steps is often considered an advantage as this
independence allows reduction in costs and time, as well
as the potential to characterize microorganisms that, thus
far, have resisted culturing attempts under artificial labora-
tory conditions (5,6). While metagenomic sequencing has
been mostly used for basic research, its potential in clini-
cal settings has been demonstrated recently (7,8). Moreover,
third generation-sequencing technologies, e.g. from Pacific
Biosciences (PacBio) or Oxford Nanopore Technologies
(ONT), are emerging and enable the long read-based study
of mixed microbial communities (9–11).

The recovery of genomic sequences resolved at the level
of individual organisms (or populations of closely re-
lated organisms) from metagenomic sequencing data us-
ing computational solutions is termed ‘binning’. The cur-
rent body of binning approaches can be roughly subdivided
into (i) reference-dependent approaches and (ii) reference-
independent approaches. Reference-dependent binning ap-
proaches are typically characterized by very low run-
times as well as high degrees of sensitivity and precision
(12–16). However, these approaches, by design, perform
best for sequences derived from organisms that are part
of or are closely related to the references present in a
database, and are challenged by genomic sequences derived
from hitherto uncharacterized microorganisms. In contrast,
reference-independent binning approaches do not rely on
prior knowledge as they infer sequence cluster structures
from the input data only (17–20) and are mostly based on
sequence composition, with approaches relying on abun-
dance co-variation across multiple samples emerging re-
cently (21–24). Due to their reference independence, these
approaches are of particular use for the analysis of envi-
ronments with limited representations in the current ref-
erence genome databases, frequently allowing resolution
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of ‘unclassified’ sequences. However, reference-independent
binning often requires substantial amounts of CPU hours,
sequence lengths above a certain threshold, e.g. 1000 bp,
and/or multiple, ideally independent, samples. While var-
ious binning web servers exist, these are mostly based on
reference-dependent approaches (15,25–27), or require up-
front computations which results in the need for dedicated
computing resources and/or user training (28,29).

Here, we extend the currently available reference-
independent binning tools by presenting the BusyBee Web
server, a web application implementing bootstrapped super-
vised binning (BSB) of metagenomic sequencing datasets.
Our binning approach combines unsupervised and super-
vised machine learning approaches by ‘bootstrapping’ the
training data from the input rather than relying on refer-
ence databases. BusyBee Web only requires a single FASTA-
formatted file as input and performs automated deconvolu-
tion of the sequences into population-resolved bins. Dur-
ing BSB, clusters are defined de novo on a subset of the se-
quences using an unsupervised approach (30–32). This step
is followed by the training of a random forest-based classi-
fier using the cluster labels as the response/dependent vari-
ables (supervised part). To further accelerate the binning,
an optional ‘compression’ step is implemented in which
data points are randomly sampled serving as representa-
tives for their nearest neighbors (associates) during the un-
supervised part (compression). The representatives as well
as their associates are subsequently used during the su-
pervised part in combination with the respective represen-
tatives’ de novo cluster labels (decompression). Thus, the
training set size is increased compared to only using the
randomly sampled, representative data points. Ultimately,
every sequence (≥500 bp, by default) is assigned a label us-
ing the bootstrap-trained classifier, thereby defining the fi-
nal set of bins. For inspection of the clustering/binning re-
sults, a 2D scatterplot of the data-inherent as well as the
inferred structures is presented to the user. To complement
this, estimates of bin quality, i.e. degrees of completeness,
contamination and strain heterogeneity, are computed and
visualized. Moreover, sequences are taxonomically anno-
tated using Kraken and functional annotation of antibi-
otic resistance genes is performed. Because all of the bin-
ning and annotation steps are automatically executed by the
web server transparently to the user, no dedicated comput-
ing resources or special user training is required. Further-
more, custom per-sequence annotations can be uploaded by
the user, e.g. to highlight specific sequences of interest, and
BusyBee Web offers the option to download the generated
results should specialized downstream analyses be required,
e.g. population-resolved annotation of KEGG pathways.
Ground truth-based benchmarks comparing our BSB ap-
proach to state-of-the-art binning approaches are provided
for assembled contigs (Illumina) and long reads (ONT).
Moreover, the applicability of our web server for the analy-
sis of real-world metagenomic datasets (Illumina or PacBio)
is demonstrated. The BusyBee Web server is available free-
to-use at https://ccb-microbe.cs.uni-saarland.de/busybee.

IMPLEMENTATION

Workflow

When a new job is initiated, the user has to provide a
FASTA-formatted file of nucleotide sequences, e.g. assem-
bled contigs or long sequencing reads, as the only manda-
tory input. By default, population-level genomic bins are
automatically defined by BSB of the input sequences fol-
lowed by bin quality assessment. Moreover, BusyBee Web
can optionally compute taxonomic annotations and anno-
tations of antibiotic resistance genes. Custom, per-sequence
annotations can also be provided by the user, e.g. to high-
light specific sequences of interest. Importantly, as BSB is
a reference-independent approach, population-level resolu-
tion is achieved even in the absence of taxonomically anno-
tated reference genomes, e.g. for environments with limited
representations in current reference databases. Robust de-
fault values for all BSB parameters are pre-set but can be
adjusted by the user. Upon completion of all computational
steps, the user can explore the results through interactive
visualizations directly in the browser (HTML, JavaScript),
e.g. to identify bins that are enriched for specific antibiotic
resistance genes or bins that represent candidate hitherto
uncharacterized microorganisms (Figure 1). Individual re-
sults can be shared using the unique job ID or the URL
of the results page. Moreover, a zipped archive of the re-
sults can be downloaded for downstream processing. This
archive includes the binning results (in particular, per-bin
FASTA files), results from the bin quality assessment, as
well as results from the optional taxonomic and functional
annotation steps.

Bootstrapped supervised binning

BSB is reference-independent and combines unsupervised
as well as supervised machine learning approaches using
genomic signatures in the form of oligonucleotide frequen-
cies as the feature set (Supplementary Materials and Sup-
plementary Figure S1). Supervised binning approaches are
often equated with reference-dependent approaches, in par-
ticular, using reference genomes derived from microbial iso-
lates for a priori training. However, more generally, a super-
vised machine learning approach uses training data to gen-
erate a model which is subsequently used for the classifica-
tion of test data. The training data can be inferred from the
input data as it is effectively done in our approach by first
using an unsupervised machine learning approach (Supple-
mentary Figure S1A). Accordingly, BSB can be seen as an
extension of a classifier trained on a specific set of refer-
ences, albeit bootstrapping the training data from the in-
put data (19), rather than relying on previously character-
ized reference sequences (13,33). In brief, sequences are size-
selected and separated into border points, cluster points and
remaining points according to the user-specified parameters
(border points sequence length threshold, tb and the clus-
ter points sequence length threshold, tc). Each sequence is
then represented by its genomic signature, using pentanu-
cleotide frequencies (default). Optionally, the border points
and the cluster points are ‘compressed’ which will reduce
the runtimes of both, the 2D embedding and the automated
clustering. Following this, the 2D embedding is computed
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Figure 1. Overview of individual components of the BusyBee Web results page. (A) Input sequences are represented as individual points (according to
the thresholds tb and tc) in the 2D scatterplot. Convex hulls (black polygons) delineate the predicted clusters. If the optional taxonomic and functional
annotations were enabled, taxon and antibiotic resistance-related information is shown to the right of the scatterplot. Individual clusters, bins or taxa can
be shown or hidden and sequences encoding for specific antibiotic resistance genes can be highlighted using points of larger size and dark color, here, for
the vanB gene. A left-click on a point reveals detailed information about the respective sequence, e.g. the taxonomic lineage or encoded antibiotic resistance
genes. The user can pan and zoom the plot using the mouse, e.g. to focus on a region of interest, and point sizes are easily adjusted using sliders below the
2D scatterplot. (B) Bin quality estimates (completeness, contamination, strain heterogeneity) are provided as a sortable table, here, sorted by decreasing
completeness. An excerpt representing the five most complete bins is shown. (C) The optional taxonomic compositions of the clusters/bins are shown
as stacked bar charts. The taxonomic rank, e.g. genus, can be selected and a second chart can be shown to compare the compositions of the individual
clusters/bins at different ranks, e.g. genus versus family.
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(20,32). Subsequently, automated clustering (30,31) is per-
formed on the cluster points only, while the border points
are supposed to help push individual clusters further apart
and, thus, improve the automated segregation into distinct
sequence clusters (Supplementary Figure S1B). The clus-
tering information is used to train a random forest-based
classifier, which predicts cluster assignments for the input
sequences (≥500 bp; default), thereby defining the final set
of bins (Supplementary Figure S1). In this context, it is im-
portant to highlight the difference between a ‘cluster’ and
a ‘bin’. While both represent sequence sets, a ‘cluster’ is an
intermediate sequence set and a ‘bin’ is a final sequence set.
Consequently, a cluster may represent only a limited frac-
tion of a population-level genome, while a bin tries to max-
imize the recovery of genomic information derived from the
respective population.

While generally robust default parameters are provided
in BusyBee Web, the user might need to specify custom set-
tings based on the characteristics of the input data. For ex-
ample, given highly fragmented assemblies or datasets with
narrow sequence length distributions, the border points se-
quence length threshold, tb and the cluster points sequence
length threshold, tc, may be set to equal values, e.g. decreas-
ing tc to the value of tb. The ‘minPts’ parameter value may
be decreased to allow the identification of small-sized clus-
ters. In this context, if the degree of compression is set too
high and the ‘minPts’ parameter is not decreased accord-
ingly, clusters might be missed. This typically becomes ap-
parent as distinct groups of points in the 2D visualization
lacking a convex hull, i.e. not delimited by a polygon. More-
over, increasing the minimum sequence length can avoid the
annotation of short sequences and thus decrease the frac-
tion of incomplete genes. Detailed parameter descriptions
are provided in the Supplementary Materials and as online
tooltips.

Annotations

Taxonomic annotation. Kraken (v0.10.5-beta) in combi-
nation with the Minikraken database, i.e. a reduced-size
database constructed from complete bacterial, archaeal and
viral genomes in RefSeq as of 8 December 2014 (https://
ccb.jhu.edu/software/kraken/dl/minikraken.tgz), is used to
compute taxonomic annotations for the input sequences
(14). The reduced-size database was chosen due to its low
memory requirements. However, the integration of a larger
database is possible in the future to increase the sensitivity
of the taxonomic annotations.

Annotation of antibiotic resistance genes. Prokka (v1.11)
with the ‘––fast’ option is used for gene (CDS) calling
(34,35) on all input sequences. The translated CDS se-
quences are then searched against the ResFams collection
of antibiotic resistance genes (36) using hmmsearch from
HMMER (v3.1b2; http://hmmer.janelia.org/).

Custom annotations. Custom annotations can be up-
loaded to highlight individual sequences or sequence sets.
The former can, for example, be used for sequences en-
coding genes with a particular function and the lat-
ter for sequences annotated with a custom reference

genome database or characterized according to their ge-
nomic or transcriptomic fold-coverage, or ratio of both
(high/medium/low) (37). To enable this option, a tab-
separated text file containing the sequence ID in the first
column and the respective annotation in the second column
should be provided by the user.

Bin quality assessment. CheckM (v1.0.7) is used to eval-
uate the quality (degrees of completeness, contamination
and strain heterogeneity) of the individual bins using a cus-
tom set of marker genes (‘essential genes’) (38–40). The
default memory requirement of CheckM (≥16 GB RAM)
is prohibitive for use in a web application serving multi-
ple users concurrently. Hence, the use of a custom set of
marker genes which reduces the memory requirements of
CheckM considerably by bypassing the reference genome-
tree placement. While the currently implemented custom
set is bacteria-specific, extended sets can be integrated into
BusyBee Web in the future to represent microorganisms
from other domains, e.g. archaea.

Representation of the results

BusyBee Web provides interactive visualizations of the re-
sults (Figures 1 and 2). The automated clustering/binning
results are represented as a 2D scatterplot, with individual
points colored according to their assignment (cluster, bin or
noise; Supplementary Figure S1) and each point represent-
ing an input sequence with length ≥tb. Convex hulls are ad-
ditionally plotted to help in delineating the individual clus-
ters. Suboptimal automatically defined clusters can thus be
identified visually, e.g. distinct clusters which have been ar-
tificially joined. Clicking on individual points provides de-
tailed information on the point’s optional annotations, i.e.
the predicted taxonomy and antibiotic resistance genes en-
coded by the respective sequence. Moreover, the user can
change the size of the points as well as pan and zoom the
plot. Individual clusters, bins or taxonomic groups (e.g. at
the genus-level or at the species-level) can be selected. Un-
selected points are plotted with reduced opacity. Similarly,
groups of sequences encoding specific antibiotic resistance
genes or sharing individual, user-provided annotation can
be shown or hidden. The number of contigs per cluster and
per bin is shown as a bar chart. This allows the user to see
how many sequences represented a cluster during the train-
ing phase and how many sequences were assigned to a bin
by the trained classifier. Furthermore, bin quality estimates
(completeness, contamination, strain heterogeneity) are dis-
played as a bar chart and as a sortable table. The taxonomic
compositions per cluster and per bin are shown as stacked
percent bar charts and a second chart of taxonomic compo-
sitions can be opened, thereby allowing the comparison of
cluster/bin taxonomic compositions at different taxonomic
ranks, e.g. at the family-level and the genus-level. A zipped
archive of the results, including per-bin FASTA-formatted
files and per-sequence taxonomic annotations among oth-
ers, can be downloaded.

Metagenomic datasets to evaluate BusyBee Web

Two metagenomic datasets of short read-assembled contigs
(Shakya2013 (41), Gregor2016 (13); Illumina) as well as one
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Figure 2. Screenshots of the interactive scatterplots for (A) ground truth-based Illumina (Shakya2013), (B) ground truth-based ONT, (C) small-scale
Illumina and (D) PacBio metagenomic data. (A) A compression of 1 (‘1NN’) as well as sequence chunks (3 kbp chunk-length) derived from the full-length
contigs were used. (B) Only sequences with species-level taxonomic assignments are shown. (C) Sequences encoding for class A CTX-M beta-lactamases
(CTXM-RF0059) are highlighted. (D) A compression of 1 (‘1NN’) was used. The convex hulls (black polygons) delineate the individual sequence clusters.
Descriptions at the top of each plot represent job names; if none is specified, a unique job ID is shown. Colors are based on species-level taxonomic
assignments.

raw, long read sequencing-based dataset (ONT) represent-
ing microbial communities of known composition (42–48)
(Table 1, Supplementary Materials and Supplementary Ta-
ble S1), i.e. representing ground truth data, were used to
quantitatively assess the performance of our BSB approach
and to compare it against two state-of-the-art binning ap-
proaches, MaxBin2 and MetaBAT (23,24).

Three additional metagenomic datasets were used to
demonstrate the versatility of the BusyBee Web server: two
Illumina-based datasets (small-scale (49), large-scale (39))

and a PacBio-based dataset (10) were used as originally pro-
vided (Table 1). The PacBio dataset consisted of Circular
Consensus Sequences (CCS) which provide increased se-
quence quality by repeatedly sequencing the same molecule
(50), thereby correcting for sequence errors. However, no
additional error correction nor assembly were performed on
the CCS reads.
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Table 1. BusyBee Web runtimes reported in minutes for the herein studied ground truth and real-world datasets

# sequences Total length [bp] Binning runtime [min] Total runtime [min]

Ground truth Shakya2013 24 974 179 063 212 8 30
Gregor2016 14 393 142 556 476 6 23
ONT 21 000 97 715 136 11 20

Real-world Small-scale Illumina 859 50 964 782 1 6
Large-scale Illumina‡ 133 149 399 132 179 28 75
PacBio† 71 029 93 937 106 18 27

Runtimes were determined manually based on the progress interface in the browser and were rounded to the next full minute. The minimum sequence
length threshold was 1 kbp for the large-scale Illumina dataset and 500 bp for the other datasets.
†Compression of 1 was used.
‡Compression of 2 was used.

RESULTS AND DISCUSSION

To cover the heterogeneity of currently available sequenc-
ing technologies, we applied BusyBee Web to Illumina-,
PacBio- and ONT-based sequencing data. Moreover, we
compared the binning performance of BusyBee Web against
MaxBin2 and MetaBAT on three ground truth datasets.

Ground truth-based evaluation of BSB

We used two Illumina-based (Shakya2013, Gregor2016)
and one ONT-based metagenomic dataset of defined
composition to evaluate our BSB approach (Table 1).
The numbers of bins inferred by BSB were 45/38
(Shakya2013/Gregor2016), with 58/45 expected species
(Supplementary Notes and Supplementary Tables S2–5).
Normalization of the cluster density by using sequence
chunks (3 kbp chunk-length) derived from the full-length
contigs (49,51) resulted in 60/50 bins. Moreover, the sensi-
tivity, precision and F1 values were substantially increased
(Supplementary Tables S3 and 5). For example, the me-
dian precision value was almost 20% higher using sequence
chunks (91.49%; Figure 2A) instead of the full-length con-
tigs (71.99%; Supplementary Figure S2), and the median F1
score increased to 90.09 from 70.02% for the Shakya2013
dataset.

For the ONT-based ground truth data (tb = tc = 500 bp),
our approach reported 23 bins, with the large bins repre-
senting the six constituent bacterial organisms (Figure 2B).
The influenza A virus-derived sequences formed at least
three major bins. The bin quality assessment yielded no rep-
resentative results which may be due to the increased error-
rate of the raw, nanopore sequencing-based reads (52–54)
and the use of read subsamples for this dataset (Supple-
mentary Table S6). About 31.91% (6701/21 000) of the se-
quences remained unclassified at the phylum-level, which is
likely due to their increased error-rate. Nevertheless, Busy-
Bee Web created representative bins for all the included iso-
lates resulting in mean/median F1 scores of 89.00/92.66%
(Supplementary Table S7). Processing only the influenza A
virus-derived (subsampled) sequences revealed eight bins
(Supplementary Figure S3). While an in-depth study of the
individual bins was beyond the scope of the current work,
this serves as an example of using BusyBee Web to inspect
microbial isolate-derived genomic sequences or bins gen-
erated by a complementary binning tool for the presence
of multiple sequence clusters, e.g. due to multiple chromo-
somes or possible contaminations.

Benchmarking against existing binning tools using ground
truth data

We compared the results of our BSB approach to two
state-of-the-art approaches, MaxBin2 and MetaBAT. These
tools were selected as they both support single sample-
based binning. As described above, BSB identified 45/38
(Shakya2013/Gregor2016) bins for the Illumina-based
ground truth data. In comparison, MetaBAT produced
63/41 bins and MaxBin2 produced 58 bins for the
Shakya2013 data but was omitted for the Gregor2016
data due to missing coverage information. While MetaBAT
typically had high precision values for both Illumina-
based ground truth datasets, the sensitivity was often low
(Supplementary Tables S3 and 5). MaxBin2 had higher
mean/median sensitivity compared to MetaBAT on the
Shakya2013 data, yet had low mean/median precision
(59.76/57.09%). Using our BSB approach, the highest me-
dian F1 scores were reached with 90.09 and 95.21% for the
Shakya2013 and Gregor2016 chunked datasets, respectively
(Supplementary Notes).

For the ONT data, MetaBAT and MaxBin2 returned
18 and 2 bins, resulting in mean/median F1 scores of
58.35/56.92% and 40.26/34.56%, respectively (Supplemen-
tary Table S7). MaxBin2 and MetaBAT use an empirically
determined probability distribution for the tetranucleotide
frequency distances (23,24). This distribution is learned a
priori on high quality reference genomes. The increased se-
quence error rate of third generation-sequencing data is
likely to negatively impact the distance calculations, i.e. two
sequences might have larger tetranucleotide frequency dis-
tances despite being derived from the same genome. Conse-
quently, this is likely to have negatively affected the binning
performance in MaxBin2 and MetaBAT. Moreover, cover-
age values are a mandatory input to MaxBin2, yet were un-
available for the unassembled, long read ONT data. Hence,
surrogate, unit coverage values were used for MaxBin2
while MetaBAT defaulted to coverage-free binning us-
ing tetranucleotide frequencies. While coverage information
provides important information for binning and bin refine-
ment (1,21,23,24,51), an initial assembly is required onto
which reads can be mapped to compute the fold-coverage
of the assembled contigs. However, if the reads are suffi-
ciently long, e.g. >1000 bp, the binning can be performed
prior to the assembly, thereby facilitating population-level
assemblies. Accordingly, our BSB approach can be used to
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pre-partition raw, metagenomic, long reads, thus enabling a
‘divide and conquer’ approach.

Real-world metagenomes

For the small-scale Illumina-based dataset (Figure 2C and
Table 1), a total of 11 bins was identified with 7 near-
complete bins (≥90% complete) and 4 partially complete
bins (≥50%). A total of 5 of the 11 bins had contamination
degrees ≥20% with 2 of the 5 bins showing high degrees of
strain heterogeneity (≥80%). This indicates that sequences
derived from closely related organisms were grouped to-
gether while sequences derived from more distantly related
organisms were separated. Class A CTX-M �-lactamases
were highlighted to demonstrate the antibiotic resistance
gene annotation functionality (Figure 2C). A total of 6
of the 11 bins were found to contain sequences encoding
for the respective genes. For the large-scale Illumina-based
dataset (Table 1) a compression of 2 was used, resulting in
51 bins (Supplementary Figure S6) of which 11 were ≥90%
complete and 33 were ≥50% complete. The average/median
degrees of completeness, contamination and strain hetero-
geneity were found to be 62.36/74.77%, 85.96/11.71% and
22.75/9.81%, respectively.

For the analysis of the PacBio dataset (Table 1), a com-
pression of 1 was used and the border points and cluster
points thresholds were set to 500 bp due to the small av-
erage read length of 1319 bp. A large bin (bin number 1),
including sub-structures that were not resolved by the au-
tomatic clustering step, dominated the results visualization
(Figure 2D; center of the scatterplot). However, the interac-
tive visualization in BusyBee Web enables the user to easily
identify suspect bins, e.g. bins with suboptimal automated
deconvolution. A detailed inspection and refinement (55–
57) of the suspect bins can be subsequently performed using
a user-driven binning approach, such as anvi’o or VizBin
(29,32). Overall, the bins were less complete compared to
the Illumina-based dataset (3 bins ≥50%). It should be
noted that the Illumina-based data was derived from the se-
quencing of 11 samples (∼2.4 Gbp per sample) (49), while
the PacBio-based data consisted of 94 Mbp of CCS reads
derived from 8 flow cells (10). About 90.82% (32 255/35
515; after compression) of the sequences could not be clas-
sified at the phylum level using Kraken in combination with
the Minikraken database. However, our BSB approach as-
signed 91.16% (64 753/71 029) of the total of sequences to
the five largest bins.

The total runtimes for the herein studied datasets were
between 6 and 75 min (Table 1) and the BSB step required
<30 min for the largest dataset (133 149 sequences; 399 132
179 bp). While the taxonomic annotation step is fast (below
5 min for the large-scale Illumina dataset), a considerable
and highly variable proportion of the runtime is spent by the
bin quality control. The high variability might be explained
by varying amounts of identified single copy marker genes.

CONCLUSION

Metagenomic sequencing has become a widely used ap-
proach for the culture-independent study of mixed mi-
crobial communities and is often coupled with in silico

deconvolution of metagenomic sequence fragments into
population-resolved genomic bins (‘binning’) in order to
study the constituent micro-organisms at an organismal
level. While several binning approaches have been devel-
oped, they mostly require previously characterized refer-
ences, substantial computing resources and/or prior user
training. Here, we presented the BusyBee Web server for the
automated, reference-independent binning and visualiza-
tion of metagenomic data in the form of assembled contigs
(Illumina) or long reads (PacBio, ONT). The web-based in-
teractive representations, including a 2D embedding of ge-
nomic signatures, bin quality assessment using single copy
marker genes and optional taxonomic assignments, allow
for intuitive inspection of the results. This can help the user
to build confidence in the individual bins while simultane-
ously facilitating the identification of sequence groups re-
quiring special attention. In addition, automatically gener-
ated annotations of antibiotic resistance gene-encoding se-
quences or user-provided, per-sequence annotations are op-
tionally overlaid on the 2D embeddings, e.g. with the former
allowing to identify population-level genomes enriched for
genes possibly conveying specific antibiotic resistances. The
only mandatory input consists of a FASTA-formatted nu-
cleotide sequence file and all computations are performed
online and transparently to the user. Hence, no special user
training, software installation or dedicated computing re-
sources are required and individual results can easily be
shared via the web. Moreover, BusyBee Web was evaluated
on ground truth and real-world metagenomic data, with
the ground truth-based benchmarks demonstrating com-
parable performance to state-of-the-art binning approaches
for assembled contigs and markedly improved performance
for long reads when using our approach. Overall, Busy-
Bee Web facilitates population-level resolved analyses of
metagenomic data, thereby being of service for the study
of mixed microbial communities derived from various envi-
ronments and sequencing technologies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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