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SUMMARY

The 2019 coronavirus disease (COVID-19) became a worldwide pandemic with
currently no approved effective antiviral drug. Flux balance analysis (FBA) is an
efficient method to analyze metabolic networks. Here, FBA was applied on hu-
man lung cells infected with severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) to reposition metabolic drugs and drug combinations against
the virus replication within the host tissue. Making use of expression datasets
of infected lung tissue, genome-scale COVID-19-specific metabolic models
were reconstructed. Then, host-specific essential genes and gene pairs were
determined through in silico knockouts that permit reducing the viral biomass
production without affecting the host biomass. Key pathways that are associated
with COVID-19 severity in lung tissue are related to oxidative stress, ferroptosis,
and pyrimidine metabolism. By in silico screening of Food and Drug Administra-
tion (FDA)-approved drugs on the putative disease-specific essential genes and
gene pairs, 85 drugs and 52 drug combinations were predicted as promising can-
didates for COVID-19 (https://github.com/sysbiolux/DCcov).

INTRODUCTION

Constraint-based modeling (CBM) approaches have successfully been applied in fundamental research

(Blätke and Bräutigam, 2019; Marinos et al., 2020; Swainston et al., 2016) especially in cancer research (Ag-

ren et al., 2012; Larsson et al., 2020; Pacheco et al., 2019; Yizhak et al., 2015), as well as in microbial engi-

neering (Choon et al., 2014; Reed and Palsson, 2003) among other research fields. CBM uses data- and prior

knowledge-driven constraints to identify feasible metabolic flux distributions for a given condition (Schel-

lenberger et al., 2011). Many communities and collaborative works contributed to reconstructing organism-

specific generic metabolic networks which serve as starting points for CBM. Examples of such generic

models are Recon 2 (Thiele et al., 2013), Recon 2.2 (Swainston et al., 2016), Recon3D (Brunk et al., 2018),

Human1 (Robinson et al., 2020), and HMR (Agren et al., 2012). Other types of metabolic models are

context-specific models that are built from tissue- or disease-specific data. Usually, the context-specific

models are draft reconstructions built from the expression data of this condition by building algorithms

such as FASTCORE (Vlassis et al., 2014), rFASTCORMICS (Pacheco et al., 2019), INIT (Agren et al., 2012),

and RegrEX (Robaina Estévez and Nikoloski, 2015)/or manually curated such as for E. coli (Reed and Pals-

son, 2003), hepatocyte (Gille et al., 2010), and Zea mays (Saha et al., 2011). These models are often used

as scaffolds for the integration of omics data or more interesting to simulate the metabolic phenotypes

of organisms, tissues, or cell lines.

Within the CBM methods, flux balance analysis (FBA) is a linear programming-based approach that max-

imizes or minimizes an objective function, often a growth rate, to identify the optimal flux distribution(s)

(Heirendt et al., 2019; Orth et al., 2010). In silico knockout studies are common in FBA through gene or re-

action deletion. This deletion may be single, double, or multiple (Perumal et al., 2011). The goal of single

reaction deletion is finding the most critical reactions in respect to the objective function through brute

force removal of each reaction individually and calculating the ratio of the objective rates betweenmutated

and wild-typemodels. Gene deletion studies are taking advantage of Boolean representations of the gene-

reaction links known as gene–protein-reaction (GPR) rules (Reed et al., 2003). Gene deletion helps in

defining essential genes whose deletion impacts the flux through the objective function (Heirendt et al.,

2019). Essential genes are often used as targets for drug repositioning.
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The 2019 coronavirus disease (COVID-19) is caused by a betacoronavirus strain called severe acute respi-

ratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 was declared as a global pandemic on 11 March

2020 by WHO (Adhanom, 2020). Human-to-human infection can be transmitted by droplets (Huang et al.,

2020) or aerosols (Morawska and Cao, 2020) by both symptomatic and asymptomatic patients (Kronbichler

et al., 2020). The virus strain might have originated from the betacoronaviruses in bats and pangolins (An-

dersen et al., 2020). SARS-CoV-2 can cause upper and lower respiratory infections, increasing its transmis-

sibility and severity. SARS-CoV-2 utilizes the human protein angiotensin I-converting enzyme 2 (ACE2) for

cell entry with its spike protein. ACE2 is expressed on lung epithelial cells and other organs. The role of

ACE2 is converting angiotensin II (AT-II) to angiotensin-(1,7) (AT-1,7) to negate the inflammatory effect

of AT-II (Sparks et al., 2014). Thus, SARS-CoV-2 infection decreases the concentration of cellular unbound

ACE2 molecules to facilitate the cell entry, causing an increase of AT-II which eventually increases the

oxidative stress ion superoxide (Zimmerman et al., 2004). People with increased COVID-19 risk are patients

with cancer (Fung and Babik, 2020), chronic kidney disease (Hirsch et al., 2020), obesity (Petrilli et al., 2020),

type 2 diabetes mellitus (Fadini et al., 2020), immunocompromised (Tschopp et al., 2020), cardiac diseases

(Yang et al., 2020), chronic obstructive pulmonary disease (COPD) (Yang et al., 2020), and sickle cell disease

(Panepinto et al., 2020).

Acute respiratory distress syndrome (ARDS) is one of the severe symptoms of COVID-19, which may be

attributed to alveolar epithelial cell injury (Li and Ma, 2020). This ARDS may become unresponsive to inva-

sive mechanical ventilation and increase lung injury (McGuinness et al., 2020). Severe COVID-19 courses are

also associated with acute injury to heart, kidney, and cerebrovascular diseases (Wu et al., 2020). In addition

to the previous symptoms, long-term effects for COVID-19 survivors (or long-haulers) have been emerging.

These long-term effects include new-onset diabetes, increasing severe complications in pre-existing dia-

betes (Rubino et al., 2020), fatigue, dyspnea, psychological distress (Halpin et al., 2021), and myocardial

inflammation (Puntmann et al., 2020).

Metabolic modeling and in particular FBA were often used to understand the effects of microbes on human

cells. Notably, a human alveolar model was used to assess the metabolic interaction between the host and

Mycobacterium tuberculosis (Bordbar et al., 2010). Lately, a similar approach was applied in the viral genomes

to model the impact of the Chikungunya, Dengue, and Zika viruses on the macrophage (Aller et al., 2018).

Only a few studies employed FBA on COVID-19 so far. Renz et al. used the viral genome information available

at that time, to generate a SARS-CoV-2 specific viral biomass objective function (VBOF) (Renz et al., 2020). This

VBOF generation from the genome information consisted of six steps on nucleotide, and amino acid invest-

ment, adenosine triphosphate (ATP) requirements, pyrophosphate liberation, total viral molar mass, and final

construction of the VBOF (Renz et al., 2020). Then, the VBOF was added to a human alveolar macrophage

model (iAB-AMØ1410) (Bordbar et al., 2010) to build a SARS-CoV-2-infected macrophage model. They iden-

tified guanylate kinase (GUK1) as an essential gene through in silico knockout that allows decreasing the viral

biomass without affecting the human biomass maintenance. Several worldwide collaborative works in compu-

tational modeling of COVID-19 were established. Cheng et al. built context-specific models for different in-

fected cell lines using multiple expression data (Cheng et al., 2021). They also predicted drug combinations

to remdesivir (Cheng et al., 2021). Ostaszewski et al. built the COVID-19 Disease Map to understand the

mechanistic interactions between SARS-CoV-2 and human tissues (Ostaszewski et al., 2020). In another

collaborative study,Gysi et al. applied network analysis for drug repositioning using three different ranking ap-

proaches: network proximity, diffusion, and deep learning-based (Morselli Gysi et al., 2021). With the rising

SARS-CoV-2 variants globally, variant-specificmetabolicmodels were built and foundGUK1 as a shared essen-

tial target (Renz et al., 2021). Previous methods for metabolic modeling of SARS-CoV-2, either focused on

generating the VBOF from the viral genome (Renz et al., 2020) or onmultiple cell linemodeling and drug com-

bination prediction with remdesivir (Cheng et al., 2021). To further support the search for an effective treatment

for COVID-19, we employ here FBA to find candidate drugs and drug combinations that target viral-specific

essential genes in SARS-CoV-2-infected lung cells through context-specific models built from expression

data and theVBOF from (Renz et al., 2020) by the rFASTCORMICSworkflow (Pacheco et al., 2019) (see Figure 1).

We also highlight key pathways of these essential genes that might contribute to COVID-19 severity.

RESULTS

Themain goal of the present study is to understandmetabolic changes induced by COVID-19 in several lung

cell lines, at various severity of infection, and at different time points after the infection (see Tables 1 and 2
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for the metadata of the two RNA-Seq studies). We then used single and double knockouts to identify vul-

nerabilities that are specific to infected cells that are predicted by our network models to reduce the viral

proliferation, while only moderately affecting the growth of host and control cells (see Figure 1). To further

prioritize essential genes, we considered their essentiality scores across cell lines and in time and the effect

of a knockout of these genes in the healthy tissues. The final aim is to identify conserved essential genes

across infected models that do not provoke severe side effects when the gene is knocked out in the healthy

counterpart model. To further identify vulnerabilities in the networks that could be exploited as drug tar-

gets, in silico inactivation of reactions was simulated. We further investigated the pathways harboring the

predicted essential genes and reactions, to gain insight into how the virus adapts to the metabolism of

lung cells. Finally, we proposed drug and drug combinations that target the predicted essential genes

and synergistic essential gene pairs.

Metabolic pathway analysis of differentially expressed genes indicates COVID-19-based

rewiring of core metabolism

Infection by the SARS-CoV-2 virus provokes alterations in the metabolism of the host cells. To elucidate

these inducedmetabolic changes, we took advantage of two available expression datasets (Severity Study;

Time-series Study; see STAR Methods for details). Principal component analysis (PCA) of the severity study

samples shows a clear cluster separation according to the cell type (see Figure S1). Besides determining the

differentially expressed genes (DEGs), we built genome-scale metabolic models applying rFASTCORMICS

(related to STAR Methods A.2.1). The context-specific model reconstruction process resulted in 50 models

(28 infected and 22 mock) with a median of 3646 metabolites (2465-5088) and 2456,5 reactions (1790-3474).

To determine the key dysregulated pathways, we mapped the DEGs on the RECON3D_01 model and dis-

played the pathway alterations in the mostly dysregulated conditions (Figures 2 and S2 that shows a rep-

resentation of all pathways without filtering on the number of reactions, nor the reactions per pathway).

A549_0.02 condition didn’t show any differentially expressed metabolic genes, thus it was discarded

from the DEGs metabolic pathways. Meanwhile, the Normal Human Bronchial Epithelial cell line with

MOI of 2 (NHBE_2) condition pathways were filtered (related to STAR Methods A.1.2). Among the most

down-regulated pathways in the A549 cell lines with transfection (A549_2_ACE2 and A549_0.2_ACE2) in

comparison to no ACE2 vector (A549_2) were chondroitin sulfate degradation, phosphatidylinositol phos-

phate metabolism, and phenylalanine metabolism, whereas glutathione metabolism was upregulated. For

Figure 1. Overview of the pipeline of essential gene prediction for SARS-CoV-2-infected lung cells

The viral biomass function (VBOF) was added to the generic metabolic models (Recon2.04 and Recon3D_01) (related to STAR Methods A.2.1) to build the

infected generic models. Consistent versions of both the control and the infected generic models were obtained. Mock and infected lung expression data

were used to build the context-specific models using rFASTCORMICS and the consistent control models as an input for the mock-specific models and the

consistent infected models for infected-specific models, respectively. The objective functions were adjusted (related to STAR Methods A.2.2). Then,

essential genes and gene pairs were identified by in silico gene knockout, before mapping to DrugBank V5 for drug repositioning to drugs and drug

combinations.
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the A549 cell line with high viral load (A549_2_ACE2 and A549_2) in comparison to low (A549_0.2_ACE2), a

downregulation of fatty acid synthesis, androgen and estrogen synthesis and metabolism, chondroitin syn-

thesis, and pyruvate metabolism were also detected. Across all conditions including Calu3_2, we found a

moderate downregulation of several pathways (glycerophospholipid metabolism, glycosphingolipid

metabolism, sphingolipidmetabolism). Other regulated pathways in Calu3_2 are the downregulated chon-

droitin sulfate degradation, nucleotide interconversion, and the upregulated cholesterol metabolism. The

two additional DEG analyses on the ACE2 transfection showed some dysregulated pathways, such as the

metabolism of folate, cholesterol, butanoate, arginine, proline, and D-alanine. Only cholesterol meta-

bolism was shared between ACE2 transfection and Calu3_2 pathways (Figure S2).

In silico single-gene deletion predicts common potential drug targets across infected cell

lines with reduced side effects on control cells

TheDEGs and the performedpathway analysis indicate a rewiring of themetabolism induced by SARS-CoV-2.

The next step was then to verify if these alterations caused the appearance of infected cell-specific essential

genes that could specifically be targeted by repositioned drugs. Therefore, for every condition of both lung

studies, in silico single-gene deletion was performed on the respective reconstructed metabolic models.

Twenty-three unique genes were predicted to be essential in the infected models (Tables S1 and S4). To

assess if a drug targeting the candidate essential gene will kill the infected cell or reduce the viral proliferation,

we computed an essentiality score for each essential gene, which sums up the number of models in which this

gene is predicted to be essential. Essential genes that are only found in one or a few conditions might be cell

line or experiment (e.g., medium) specific and hence might not have general biological relevance. Single-

gene deletion of each predicted essential gene was then performed on the counterpart control model

(related to STARMethods A.2.2) to predict the effect of the gene knockout on the healthy tissue. This allowed

obtaining a safety score and hence estimating the potential toxicity of each of the considered drug targets.

The obtained essentiality and safety scores are plotted for visual inspection (see Figure 3). Cardiolipin syn-

thase 1 (CRLS1) and sphingomyelin synthase 1 (SGMS1) scored highest for essentiality, but were among the

lowest for safety, thus indicating that targeting any of these genes might be effective against the virus but

also reduces the growth of healthy cells, suggesting high toxicity of respective drugs. On the other hand,

GUK1 gene showed a moderate essentiality score, but a higher safety score expecting fewer side effects.

No gene could be identified that has high efficiency and safety. Also, nine of the 23 essential genes belong

to the solute carrier (SLC) transporter gene family. Transporters are known key regulators of metabolic flux

(Pacheco et al., 2015, 2019), hence modulating their expression might contribute to diverting metabolic

fluxes to pathways for viral survival and proliferation. Of the 23 essential genes, 10 genes were shared be-

tween the two investigated lung studies, andmany essential gene sets are shared between the investigated

conditions (CRLS1, GUK1, SGMS1 in the severity study and CRLS1, ISYNA1, SGMS1, SLC27A4 in the time-

series study), suggesting the existence of a consistent metabolic rewiring of the host metabolism rather

than random alterations.

In silico single-gene deletion predicts potential drug targets for different stages and disease

severity levels

Variability in the metabolism of cell lines, viral load, and time of infection gives rise to the appearance of

context-specific essential genes. Core essential genes in infected cells are optimal drug targets as likely

Table 1. Severity study metadata (GEO: GSE147507)

Condition Cell line

Multiplicity

of infection ACE2 vector Abbreviation

Number of samples

infected/Mock

Series 1 NHBE 2 No NBHE_2 3/3

Series 2 A549 0.02 No A549_0.02 3/3

Series 5 A549 2 No A549_2 3/3

Series 6 A549 0.2 Yes A549_0.2_ACE2 3/3

Series 7 Calu-3 2 No Calu3_2 3/3

Series 16 A549 2 Yes A549_2_ACE2 3/3

Expression data from three lung cell lines infected with SARS-CoV-2 at three different viral loads and for some samples trans-

fected with a vector expressing ACE2 with their controls.
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to be efficient for a majority of patients. Essential genes that are specific to the time of the disease or

severity level are also of interest, as it allows modulating the specific treatment. It might be reasonable

to provide drugs with strong adverse effects to more severe cases and to opt for lighter treatments for

mild affections. To identify core and context-specific essential genes, we performed in silico gene knock-

outs on all reconstructed models and compared the sets of essential genes across all the conditions and

between the severity and time-series studies. And more specifically, we focused on the effect of the trans-

fection of the ACE2 vector, the viral load in the severity study, and the time after infection in the time-series

study. ACE2 is crucial for SARS-CoV-2 cell entry by binding with its spike protein, but ACE2 also has many

cellular functions crucial to the host cells, such as in the angiotensin–renin system. By comparing the essen-

tial genes in the absence (A549_2) and the presence of the ACE2 vector (A549_2_ACE2 & A549_0.2_ACE2),

we could identify one set of genes (ISYNA1, SLC3A2, SLC7A11) that are essential for the virus in the absence

of the ACE2 vector. By comparing the essential genes in the A549 cell line in the severity study with a high

multiplicity of infection (MOI) (A549_2 & A549_2_ACE2) against lowMOI (A549_0.02 & A549_0.2_ACE2), we

identified essential genes for high viral load (CMPK1, CTH, PTDSS1, SLC2A13, SLC3A1, SLC5A3, SLC7A9) in

A549_2_ACE2 and one essential gene, DTYMK, in A549_2, where the gene set (AGXT, DHFR, SLC27A4,

TYMS) were unique for low viral load in A549_0.2_ACE2.

For the time-series study, a list of core essential genes (7–10 genes) was common to every time point and for

each cell line (see Table S2). Besides the core essential genes, there were time point-specific essential

genes that were essential only at very specific time-points owing to the inactivation of alternative pathways

(Table S2). The Calu-3 cell line has eight core essential genes (CRLS1, GUK1, ISYNA1, PEPD, SGMS1,

SLC27A4, SLC3A2, SLC7A11) and three-time point-specific genes (see Table S2). Out of the eight core

essential genes, five (SLC27A4, CRLS1, GUK1, PEPD, SGMS1) were also in the six essential genes of the

Calu3_2 condition in the severity study. Six core essential genes (CRLS1, ISYNA1, PLD2, SGMS1,

SLC27A4, SLC7A6) and two time-specific genes were predicted for the H1299 cell line. Jaccard similarity

of the essential genes between different conditions shows cell type-specific essential genes in the time-se-

ries study (see Figure S4). Clustering of the reconstructed models by core reactions using Jaccard similarity

(see Figure S3) shows four clusters by cell type (A549, H1299, NHBE, Calu-3), even for cell lines between the

two studies (Calu-3). This cell line-specific clustering is more apparent in Recon 3D than in Recon2. More-

over, the infection state (Mock, infected) forms sub-clusters within each of the four main clusters.

Essential genes and reactions are predicted to be harbored in 8 unique pathways among

which is methionine and cysteine metabolism

To obtain a comprehensive picture of viral essentiality, we apply pathway analysis for core and context-spe-

cific essential genes to identify pathways that are major players in the determination of the severity as well

as the stage of the infections. For both studies, the predicted essential genes were enriched in 13 unique

pathways, of which eight were shared between both studies (Figure 4B) (fatty acid oxidation, glycerophos-

pholipid metabolism, inositol phosphate metabolism, methionine, and cysteine metabolism, nucleotide

interconversion, sphingolipid metabolism, starch, and sucrose metabolism, extracellular transport).

Glycerophospholipid metabolism was enriched in all conditions across both studies. Nucleotide intercon-

version and extracellular transport were highly enriched in the severity and in the time-series study, respec-

tively. Also, two pathways were shared with the DEGs pathways (glycerophospholipid metabolism,

Table 2. Time-series study metadata (GEO: GSE148729)

Condition Cell line Time point in hrs Number of samples (infected/mock)

Calu3_4h Calu-3 4 4/4

Calu3_8h Calu-3 8 2/0

Calu3_12h Calu-3 12 4/2

Calu3_24h Calu-3 24 2/2

H1299_4h H1299 4 2/2

H1299_12h H1299 12 2/0

1299_24h H1299 24 2/0

H1299_36h H1299 36 2/2

Time series expression data with five time-points (4, 8, 12, 24, and 36 hrs) with infected andmock samples for two lung cell lines.
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sphingolipid metabolism). The essential gene ISYNA1, encoding a synthase in the inositol phosphate

metabolism pathway, was specific to cell lines without ACE2 vectors. No unique change in the set of

essential genes’ pathways was found in the function of the viral load in both conditions (A549_2 &

A549_2_ACE2).

To also explore pathways harboring essential genes that are not directly linked to metabolism or that are

not captured by the metabolic genes and pathways in Recon3D_01, and Enrichr pathway analysis was per-

formed (Kuleshov et al., 2016). Among others, ferroptosis, selenocompound metabolism, cysteine, and

Figure 2. Reactions per pathway Heatmap for pathway analysis of differentially expressed genes in the severity study

Differentially expressed genes (DEGs) were computed with DESeq2 (absolute log2 fold change >1, adjusted p-value < 0.05). The Down- and up-regulated

were mapped to the pathways (subSystems) of Recon3D_01. The number of up and down-regulated reactions was then summed up to identify the top

altered pathways in the infected lung cell lines in the severity study (related to STAR Methods A.1.2). The color code ‘‘Reactions per Pathway [%]’’ represents

the number of enriched metabolic reactions in a pathway divided by the overall number of reactions in this pathway. The transfection of ACE2 at an MOI of

two in the A549 cell lines caused the downregulation of many pathways, which was not seen when the MOI was decreased by a factor of ten.
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methionine metabolism, mTOR signaling pathway, and ether lipid metabolism were enriched for the

essential genes (Figure 4A). Ferroptosis was the only Enrichr derived pathway that was associated with

non-ACE2 vector samples owing to context-specific essential genes (SLC3A2, SLC7A11). Protein digestion

and absorption were also enriched in some conditions with high viral load, whereas glycerophospholipid

metabolism was highly enriched in both lung studies. Finally, pyrimidine metabolism was enriched in most

severity study conditions; meanwhile, sphingolipid metabolism was enriched in all time-series study con-

ditions. Only folate metabolism was shared between the essential genes’ metabolic pathways and the

dysregulated pathways of ACE2 transfection (Figure S2).

Prediction of candidates for repositioning of drugs and drug combinations targeting

essential genes and synergetic gene pairs

Out of the 23 predicted essential genes, eight genes are druggable by 45 unique drugs (Table S3) from

DrugBank (Wishart et al., 2018). Six antiviral drugs (acyclovir, valaciclovir, lamivudine, sofosbuvir, metho-

trexate, trifluridine) were identified in these 45 drugs. These drugs cover many modes of actions such as

immunosuppressive, antiviral, folic acid antagonists, antirheumatic, and hypolipidemic actions besides

some known nutraceutical cofactors such as lactose and folic acid (see Figure S5). The mode of actions

were downloaded from the Drug Repurposing Hub (Corsello et al., 2017), while side effects were extracted

from the MedDRA database (downloaded on 26th May 2020) (Mozzicato, 2009) with selecting only side ef-

fects containing the pattern ‘‘toxic.’’ The tripartite network of individual repositioned drugs (Figure 5B)

shows a multi-target effect of four drugs (pralatrexate, pemetrexed, methotrexate, gemcitabine). Gemci-

tabine affects the nucleotide interconversion pathway through both CPMK1 and TYMS essential genes.

Meanwhile, pralatrexate, pemetrexed, andmethotrexate affect both nucleotide interconversion and folate

metabolism pathways through thymidylate synthetase (TYMS) and dihydrofolate reductase (DHFR) essen-

tial genes, respectively.

A B

Figure 3. Scatterplot and tripartite network of essential genes, and their predicted drugs and pathways, determined by in silico single-gene

deletions on the infected lung models

(A) Scatterplot of essentiality and safety scores of the essential genes. Essentiality and safety scores correspond to the number of infected and healthy

models, respectively, in which each gene is predicted to be essential. The y axis indicates the number of infected cell lines for which the gene is predicted to

be essential, whereas the x axis indicates the number of control cell lines that are predicted to remain unharmed by the silencing of the target genes.

(B) Tripartite network of the drug-gene-pathway interactions of the essential genes: A network of the single repositioned drugs and their essential genes,

predicted by in silico gene deletion, was built. The relationships between the essential genes and their pathways were mapped using Recon3D_01

subSystem. Genes, and their connected drugs, that don’t have pathways in Recon3D_01 subSystems were discarded.
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Double gene deletion produced 598 unique gene pairs across the two lung studies. Out of these

598 gene pairs, 56 gene pairs are druggable by 3411 unique drugs or drug pairs. We found 47 single

drugs with two paired targets (Table S4), owing to multiple identified targets per drug. As these 3411

drug pairs could target more than one gene-pair, safety scores and essentiality scores were

calculated using the average of these scores. To prioritize among the 3411 drug pairs, we filtered by

keeping drug pairs with more than two essentiality scores, and more than one in either the number

of gene pairs or safety scores. This reduced drug pair list has 52 drug pairs that consist of 37 individual

drugs (Table S5). The top-ranked drug pairs in the number of gene pairs are (azathioprine-pemetrexed

and mercaptopurine-pemetrexed) affecting five essential gene pairs, while (imexon–valaciclovir and im-

exon–acyclovir) are top-ranked in the essentiality score of 10. The pathway analysis of the druggable

essential gene pairs (see Figure 5) shows that most of the single drugs with two paired, targets the

extracellular transport pathway. Meanwhile, the reduced drug pairs cover more diverse pathways.

These pathways include new pathways in addition to the single druggable pathways such as purine

catabolism, purine synthesis, nucleotide salvage pathway, and NAD metabolism. The aforementioned

azathioprine–pemetrexed drug pair targets seven metabolic pathways such as transporter pathway

and purine synthesis and catabolism. Also, among the 47 predicted single drugs with two paired

targets, four drugs are affecting more than one gene-pair (gemcitabine, trifluridine, mercaptopurine,

tegafur–uracil).

A

B

Figure 4. Pathway analysis of the essential genes in the two lung studies

Identification of the pathways harboring the identified essential genes using Enrichr and Recon3D_01 subSystem, and

hence the most critical pathways for the viral survival and proliferation across cell type, severity level, and time after

infection. On the x axis from the left to the right, are the conditions of both the severity study and the time-series lung

studies, respectively (related to STAR Methods B). Conditions in the severity study were named as cell line + ACE2 vector

(if exists) + MOI. Conditions in the second lung cell line were named as cell line + time point.

(A) Enrichr enrichment: The color code in (A) "Enrichment [%]" represents the number of enriched genes in this pathway

divided by the overall number of genes in this pathway.

(B) Metabolic pathway analysis: The color code in (B) "Reactions per Pathway [%]" represents the number of enriched

metabolic reactions in a pathway divided by the overall number of reactions in this pathway.
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DISCUSSION

In the present study, we analyzed changes in transcriptomic data of lung cell lines infected with COVID-19

at various viral loads and at different time points after infection. The main focus was on the alteration of

expression of metabolic genes that could be evidence of a metabolic rewiring induced by the virus.

Then, in silico single and gene double knockouts were performed to identify potential infected cell-specific

essential genes that arise from this metabolic rewiring and that could be used as potential drug targets. To

extend the list of targets and identify critical pathways for the growth or survival of the virus, reactions were

inactivated in silico and the resulting impact on the viral biomass production was estimated. In addition, we

explored pathways enriched for predicted essential genes and reactions to obtain a better picture of the

occurring metabolic rewiring. Furthermore, we predicted a set of 85 repositionable single drugs (45 drugs

on single targets in Table S3 and 47 drugs on gene pairs in Table S4 with 7 drugs shared between the 2 drug

lists), and 52 drug combinations that could be explored as a treatment against COVID-19. Finally, we

compared our results against two recent studies that cover the candidate metabolic pathways’ alternation

in COVID-19 infection (Bernardes et al., 2020; Thomas et al., 2020).

COVID-19-induced dysregulated pathways may not be essential

To unravel the metabolic rewiring induced by COVID-19 on the host lung cell after ACE2 or a mock trans-

fection at different viral loads, we computed the metabolic differentially expressed genes (DEGs) in the

severity study. Among the metabolic pathways with a different activation pattern after the transfection

with the ACE2 vector, are chondroitin sulfate degradation and synthesis that have a link to oxidative

stress. Chondroitin is a glycosaminoglycan (GAG) with antioxidant and neuroprotective effects against

oxidative stress through the upregulation of phosphoinositide 3-kinases (PI3K)/Akt signaling and heme

oxygenase-1 (HMOX1) (Cañas et al., 2007). Chondroitin sulfate degradation was downregulated after

the transfection with ACE2 vector, while chondroitin synthesis was downregulated with a high viral

load. This dysregulation is consistent with the hypothesis of chondroitin accumulation in the infected cells

to balance the oxidative stress induced by the virus. The phosphoinositol phosphate pathway, which in-

cludes PI3K, was also downregulated after transfection with the ACE2 vector, further supporting the pro-

tective role of chondroitin in COVID-19 infection. Although this hypothesis was not tested in vitro, in an

in vivo study on the Vero cell line, chondroitin sulfate showed weak inhibition of SARS-CoV-2 cell entry in

comparison to other types of GAGs such as heparin and enoxaparin (Tandon et al., 2020). Finally, HMOX1

has been found to bind to SARS-CoV-2 open reading frame 3 A (ORF3a) (Gordon et al., 2020). The inef-

fectiveness of chondroitin sulfate as an antiviral agent in SARS-CoV-2 was expected owing to its unspe-

cific mode of action. Reducing oxidative stress may alleviate the symptoms but may not kill the virus nor

does it reduce its ability to replicate itself. The assessment of ACE2 transfection alone (see Figure S2)

didn’t show that shared dysregulation after infection with SARS-CoV-2. Meanwhile, ACE2 transfection

increased the viral reads to �54% of the total mapped reads (Blanco-Melo et al., 2020). Also, ACE2 trans-

fection decreases the interferons IFN-I and IFN-III through the inactivation of the kinase TBK1 (Blanco-

Melo et al., 2020).

Pyrimidine metabolism as a candidate druggable essential pathway

To bemore effective, drug candidates have to target genes, reactions, or pathways that are key and specific

to viral metabolism. Hence, in silico single and double gene knockouts were performed to identify genes

essential to the viral biomass production but whose knockout has little or no effect on the host biomass

production. Among the 23 predicted essential genes for viral biomass, two genes of the phospholipid

metabolism (CRLS1 and SGMS1) showed the highest essentiality score. GUK1, which was themain essential

gene identified in (Renz et al., 2020), is also among the top predicted targets and displays moderate

Figure 5. Tripartite network of the drug-gene-pathway interactions of the synergetic gene pairs determined by

double gene deletion

Determination for the individual repositioned drugs for the synergistic gene pairs, and also mapping the relationships of

the genes to pathways determined by Recon3D_01 subSystem.

(A) Tripartite network of the reduced list of double gene deletion drug pairs: Candidate gene pairs causing synergistic

lethality were determined by double gene knockout (DKO) (related to STAR Methods A.2.3). Gene pairs for which both

genes are targeted by the same drug were excluded from the candidate list for drug combinations and added to the list of

single drugs. Genes, and their associated drugs, that are not present in Recon3D_01 were discarded.

(B) Tripartite network of single drugs targeting two genes that reduce biomass when knocked-out together: The gene

pairs were determined by DKO (related to STARMethods A.2.3). Only targets present in Recon3D_01 were included in the

analysis.
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essentiality and safety score. Also, pyrimidine biosynthesis was among the pathways with consistent flux

changes in the metabolic modeling of multiple cell lines (Cheng et al., 2021). Furthermore, three essential

genes (DTYMK, CMPK1, and TYMS) are part of pyrimidine metabolism (through pyrimidine deoxyribonu-

cleotides de novo biosynthesis) that were enriched in all conditions in the severity study, but for the last

time point of the time-series study in the Calu-3 cell line. In two separate in vivo studies on the Vero cell

line, inhibition of de novo pyrimidine biosynthesis pathway through dihydroorotate dehydrogenase

(DHODH) inhibitors, showed broad-spectrum antiviral activity, stopped, or halted SARS-CoV-2 replication,

respectively (Luban et al., 2020; Xiong et al., 2020). Although DHODH inhibitor PTC299 showed a little cyto-

toxic effect on SARS-CoV2, they were proven to have an immunomodulatory effect on IL-6, IL-7A, IL-17F,

and VEGF (Luban et al., 2020). Alterations in the expression of genes of the pyrimidine metabolism were

significantly higher in the A549, suggesting a response that could be specific to this cell line. Additionally,

using pyrimidine biosynthesis inhibitors on SARS-CoV-2-infected mouse models, reduced individually viral

infectivity, and reduced lung inflammation when used in combinations (Schultz et al., 2021).

Ferroptosis as a candidate prognostic and target pathway for COVID-19

To further understand why a gene is essential for viral biomass production, we examined the pathways

harboring the essential genes, where eight out of 13 pathways were found between the two lung studies.

Pathways harboring essential genes were also enriched for DEGs. Exploring the ferroptosis-specific data-

base FerrDb shows that three out of the 23 essential genes are related to ferroptosis. SLC7A11 and SLC3A2

are classified as suppressors; meanwhile, SLC7A5 is a marker. Also, FerrDb, classified only one of our pre-

dicted drugs, sulfasalazine, as an inducer of ferroptosis. Ferroptosis is an iron-dependent programmed cell

death that can be inhibited by Selenium. In a cross-sectional study, selenium level was found higher in tis-

sue samples from COVID-19 survivors in comparison to non-survivors (Moghaddam et al., 2020). Similarly,

the analysis of blood single-cell expression data found that four genes governing ferroptosis were upregu-

lated in infected patients than recovered (Huang et al., 2021). Also in a population retrospective analysis,

the selenium concentration in the hair in the population of Chinese cities outside Hubei province was corre-

lated with the COVID-19 cure rate in Chinese cities (Zhang et al., 2020a). Even though the last retrospective

study using city population-level data instead of patient-level data, might be less reliable, these studies

suggest a role of ferroptosis in the survival of patients with COVID.

Comparison to a metabolomics study shows altered polyunsaturated fatty acids

We further compared our enriched pathways from the DEGs and essential genes (Figure 2) with a

recent metabolomics study (Thomas et al., 2020). In this study, serum metabolites were compared

among SARS-CoV-2 positive and negative patients, also altered IL-6 levels measures as an indication of

COVID-19 severity. The study found several altered pathways and dysregulation, notably of nitrogen

and tryptophan metabolism associated with increased severity. Also, some metabolite levels were

increased in patients with COVID-19 such as kynurenines, methionine sulfoxide, cystine, and free polyun-

saturated fatty acids (PUFAs). Up-regulated fatty acid oxidation in DEGs and glycerophospholipid meta-

bolism in essential gene pathways is consistent with the increased levels of PUFAs (Thomas et al., 2020).

The increased PUFAs are biomarkers for ferroptosis which was predicted in the condition without ACE2

vector. The recent evidence for the role of selenium in COVID-19 and the significant presence of PUFAs

as a biomarker in severe COVID-19 cases might be a further indication of the role of ferroptosis regarding

COVID-19 severity. Moreover, the SARS-CoV-2 spike protein was discovered to have a binding pocket for

free fatty acids (Toelzer et al., 2020). This seems to allow the PUFA linoleic acid to have a synergistic effect

with the antiviral remdesivir against SARS-CoV-2 in vitro (Toelzer et al., 2020). The use of 5-aminosalicylate

or sulfasalazine, a 5-aminosalicylate prodrug, has recently been shown to increase COVID-19 severity in

patients with inflammatory bowel disease (IBD) in a retrospective study (n = 525) (Brenner et al., 2020).

As sulfasalazine was found as a ferroptosis inducer in FerrDb (Sehm et al., 2016), this could strengthen

the evidence of a role of ferroptosis in COVID-19 severity. It also illustrates the need for a careful assess-

ment of the toxicity of the predicted drugs in follow-up in vitro and in vivo studies as well as a patient or

group of patient-tailored approaches.

Methionine, cysteine, and pyrimidine metabolism are enriched in a multi-omics study

To discover which lung essential pathways might be shared with other infected organs, we also compared

our identified pathways with a multi-omics study on three cell types: megakaryocytes, erythroid cells, and

plasmablasts (Bernardes et al., 2020). In this longitudinal study of COVID-19 severity, cell-/tissue-specific

metabolic models were reconstructed from single-cell/bulk RNA-seq, respectively (Bernardes et al.,
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2020). The goal of the metabolic reconstruction in this study was to find cell-specific metabolic pathways

associated with different disease progression and recovery time points (Bernardes et al., 2020). The essen-

tiality of genes and reactions in these pathways across the three cell types are unknown as single-gene or

reaction deletions were not applied. Many identified metabolic pathways in this multi-omics study across

megakaryocytes, erythroid cells, and plasmablasts were also shared with our essential pathways on the

lung such as pyrimidine metabolism and cysteine and methionine metabolism. Also, our lung essential

metabolic pathways such as inositol phosphate metabolism and sphingolipid metabolism have been iden-

tified as both erythroid cells- and plasmablasts-specific. Meanwhile, the lung-essential fatty acid oxidation

and non-essential pyruvate metabolism have been identified as megakaryocytes-specific. Interestingly, a

high upregulation of pyruvate kinase M in PI3K/Akt signaling was found in critical patients in megakaryo-

cytes (Bernardes et al., 2020), that participate in the dysregulated chondroitin sulfate metabolism (Cañas

et al., 2007). Furthermore, serum sphingosine-1-phosphate, a metabolite in the lung-essential sphingolipid

metabolism, was found to significantly decrease with COVID-19 severity in a small study (n = 111) (Marfia

et al., 2020). Moreover, clofazimine, an inhibitor to the acid sphingomyelinase in the sphingolipid meta-

bolism pathway, was found to have antiviral activity in the golden Syrian hamster model against MERS &

SARS-CoV-2 (Yuan et al., 2021). Taken together, the shared metabolic pathways between the different

studies such as pyrimidine metabolism and methionine and cysteine metabolism across different tissues

might represent core viral-specific pathways that could harbor efficient drug targets that would eliminate

or slow down the virus regardless of the infected tissue.

Some candidate drugs have antiviral, immunomodulatory, and angiotensin I-converting

enzyme inhibitor actions

To prioritize drug and drug combinations and as many conditions in the time-series study were lacking

mock samples, we relied for the present work rather on the essentiality score of each gene identified in

terms of reducing the viral proliferation rather than the predicted toxicity on control tissue models (safety

score). In total, SARS-COV-2-specific essential genes and gene pairs were predicted by rFASTCORMICS-

based lung models that can be targeted by 85 single repositionable drugs and 52 drug combinations. The

safety of the drugs was assessed by simulation knockouts on the biomass of the counterpart mock sample.

This strategy allows estimating which drugs might be potential candidates for not having too drastic side

effects. Although the drug candidates are all FDA-approved drugs, some treatments are associated with

severe side effects, and combining two drugs can have additional unexpected side effects. Hence, further

tests would be required on other tissues and using other optimization functions as well as in vitro and in vivo

validations before considering any predictions as potential drug candidates.

Among the 85 predicted single drugs, five are broad-spectrum antivirals (lamivudine, methotrexate, sofos-

buvir, valaciclovir, zalcitabine) (Coronavirus Data Download - Targeting COVID-19 Portal, 2020). Also, five

drugs in the candidate drug combinations have broad-spectrum antivirals (ezetimibe, lamivudine, metho-

trexate, sofosbuvir, valaciclovir). In a small clinical trial (n = 62), the combination of sofosbuvir-daclatasvir

decreased the COVID-19 mortality rate (6%) in comparison to ribavirin (33%) (Eslami et al., 2020). Of the

predicted drugs, two drugs (acyclovir, valaciclovir) target the GUK1 gene, which shows relative essentiality

and safety. Acetylcysteine, another predicted drug by our workflow, is mucolytic and antioxidant in high

doses through regenerating glutathione. Acetylcysteine alone or with bromelain was able in vitro to frag-

ment the recombinant spike and envelope SARS-CoV-2 proteins (Akhter et al., 2020). Moreover, gemcita-

bine has been shown to have antiviral activity against SARS-CoV-2 in the Vero-E6 cell line (Zhang et al.,

2020b). Methotrexate shows antiviral activity against SARS-CoV-2 in Vero-E and Calu-3 cell lines (Stegmann

et al., 2020). This antiviral activity was better than the only authorized antiviral for emergency use for

COVID-19 remdesivir. Till 29 July 2021, out of the 85 single drugs, nine drugs are being tested currently

in clinical trials (acetylcysteine, liothyronine, melphalan, methotrexate, moexipril, quinapril, ramipril, rosu-

vastatin, sofosbuvir, trandolapril) according to DrugBank COVID-19 Clinical Trial Summary (Wishart et al.,

2018).

Among the single drugs targeting gene pairs, nine were drugs belonging to angiotensin-converting

enzyme inhibitors (ACEIs) such as ramipril, affecting the gene-pair SLC15A1-SLC15A2 through targeting

the extracellular transport pathway. Interestingly, in a prospective study of COVID-19 (n = 19,486), patients

taking ACEIs have a reduced risk of COVID-19, with differences according to ethnicity (Hippisley-Cox et al.,

2020). Meanwhile, ACEIs did not reduce the risk of receiving ICU care (Hippisley-Cox et al., 2020). Further-

more, statins, lipid-lowering drugs that were enriched among the predicted drugs were debated for their
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efficacy in reducing COVID-19 severity at the onset of the pandemic and their usefulness for COVID-19 is

still unclear (Subir et al., 2020). Also, a retrospective study (n = 13,981) has shown an association between

statins and reduced COVID-19 mortality from 9.4% in patients not taking statins to 5.2% with statins (Zhang

et al., 2020a). Owing to the relative number of the different statin recipients, this study couldn’t rank the

different statin types. But, a recent in vitro study of different statins showed an antiviral effect on SARS-

CoV-2 (Moeller et al., 2020), where rosuvastatin was ranked second in the antiviral activity (Moeller et al.,

2020). In the candidate drug combinations, immunomodulators appear such as mercaptopurine, azathio-

prine, pemetrexed, and methotrexate. Also, three predicted nucleoside analogs (azathioprine, mercapto-

purine, gemcitabine), were among 16 nucleoside analogs and 122 drugs validated in vitro against Calu-3

(Schultz et al., 2021).

In conclusion, unlike drug repositioning using expression reversal or drug docking that lack targets’ iden-

tification or genome-scale multi-targeting, respectively, constraint-based metabolic modeling is a power-

ful in silico tool for drug repositioning with genome-scale information and producing known targets. These

powerful advantages come from gene essentiality prediction. In this work, context-specific models from

expression data from infected lung cell lines were built, then constrained by both viral and host biomass.

In silico gene deletion identified 23 single essential genes and 598 essential gene pairs. Drug repositioning

using approved drugs in DrugBank V5 identified 85 single drugs and 52 drug combinations, of which 47

single drugs are targeting both genes in the gene-pair. Pathway analysis of the essential genes identifies

ferroptosis as a candidate biomarker pathway of COVID-19 severity. Gemcitabine was predicted to target

two single essential genes in the nucleotide interconversion pathway and three gene pairs in drugs iden-

tified by both single and double gene deletion, respectively. Finally, we predicted the GUK1 gene as both

relatively safe and essential against SARS-CoV2 as reported by a previous in silico modeling.

Limitations of study

Although this study predicts some interesting drug candidates and drug combinations, the work is limited

by the modeled lung cell lines (A549, Calu-3, H1299, NHBE). Another limitation to this work is that the iden-

tified drug and drug pairs are based on targets identified by network effects on the host metabolome (as

the virus is only modeled through its biomass function) rather than direct docking on the viral proteome.

Thus, further in vitro single- and double-gene deletion studies are needed to determine the essentiality

of the identified single genes and gene pairs. These could, for example, involve some selected drug

and drug combinations on the different cell lines at various concentrations in order to obtain drug response

curves and landscapes, respectively, to identify IC-50 and synergy scores for the drug combinations. These

experiments would be more beneficial for genes with predicted essentiality across different cell lines such

as (CRLS1, SGMS1, SLC27A4) which were essential in the four lung cell lines.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for code or datasets should be directed to and will be fulfilled by the lead

contact, Prof. Thomas Sauter (Thomas.Sauter@uni.lu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

This paper analyses existing, publicly available data. The source of the data is listed in the key resources

table.

The models and code generated during this study are available at GitHub (https://github.com/sysbiolux/

DCcov).

METHODS DETAILS

A. SARS-CoV-2 essentiality analysis in lung

A.1 Differentially expressed genes analysis

A.1.1 Data preprocessing. At the onset of the pandemic, two datasets were available, focusing mainly

on the effects of the virus on lung tissues. These two bulk RNA seq datasets GSE147507 (Blanco-Melo et al.,

2020) and GSE148729 (Emanuel et al., 2020) of human cell lines hosting SARS-CoV-2, as well as of mock

samples, were downloaded from the NCBI Gene Expression Omnibus (GEO) (Clough and Barrett, 2016)

data repository on April 23, and May 15, 2020, respectively. The GSE147507 dataset, which focuses on

the expression changes at various severity levels of Infection (severity study), contains 36 samples

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

FPKM for the time-series study (GSE148729) MDC-berlin https://filetransfer.mdc-berlin.de/?u=CVXckugR&p=MACT6Xw9

Read counts of the severity study (GSE147507) NCBI GEO https://ftp.ncbi.nlm.nih.gov/geo/series/GSE147nnn/GSE147507/suppl/

GSE147507_RawReadCounts_Human.tsv.gz

Formulation of the viral biomass function BioModels https://www.ebi.ac.uk/biomodels/MODEL2003020001#Files

DrugBank V5 DrugBank https://go.drugbank.com/releases/latest

Drug repurposing hub mode of actions Clue.io https://s3.amazonaws.com/data.clue.io/repurposing/downloads/

repurposing_drugs_20200324.txt

GHDDI broad-spectrum antiviral agents GHDDI https://ghddiai.oss-cn-zhangjiakou.aliyuncs.com/file/Antivirus_Drug_

Profile_k2.csvv

Recon 2 VMH https://www.vmh.life/#downloadview

Recon3D VMH https://www.vmh.life/#downloadview

Software and algorithms

rFASTCORMICS Pacheco et al. (2019) https://github.com/sysbiolux/rFASTCORMICS

COBRA Toolbox GitHub https://github.com/opencobra/cobratoolbox/tree/master/src

IBM CPLEX solver https://www.ibm.com/products/ilog-cplex-optimization-studio

RStudio https://www.rstudio.com/

R CRAN (FactoMineR, networkD3, ggplot2 &

dependencies)

https://cran.r-project.org/

Bioconductor (edgeR, DESeq2 & dependencies) https://www.bioconductor.org/
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originating from healthy epithelial, A549, and Calu-3 cells infected by SARS-CoV-2 at three different viral

loads, as well as control samples with a mock infection. As the level of plasma ACE2 is a potential predictor

of COVID-19 severity (Kragstrup et al., 2021), the comparison between conditions with different levels of

ACE2 and viral load would allow identifying essential genes, and hence drug targets for different stages

and severity levels of COVID-19. Using drugs associated with severe effects would not be beneficial for

milder forms of COVID-19, but could be crucial for the cure of more severe forms. The A549 cell line was

found to express ACE2 at a lower level than Calu-3, which doesn’t allow the cell entry of SARS-CoV-2

(Blanco-Melo et al., 2020). For this reason, the A549 cell line was transfected with a vector expressing

ACE2 (Table 1). Conditions with two replicates only or subjected to drug perturbations were not consid-

ered for the analysis. Raw counts were converted to the Reads Per Kilobase of transcript (RPKM) using

an in-house Python script.

For the GSE148729 dataset, which monitors how expression changes at different points after the infection

(time-series study), the normalized Fragments Per Kilobase of transcript per Million (FPKM) values of Calu-3

and H1299 cell lines infected by SARS-CoV-2, as well as controls were retrieved from GEO.

A.1.2 Differentially expressed genes analysis. The differential gene expression analysis was only applied

to the severity study, as the time-series has either missing mock samples or two samples in some conditions.

First, a principal component analysis was first performed using FactoMineR (Lê et al., 2008) to identify and if

necessary, remove outliers by visual inspection. Then, genes with low expression values were filtered out using

edgeR’s filterByExpr function (Version 3.30.3). This function keeps genes based on aminimum count-per-million

in at least k samples, determined by the lowest sample size between all conditions (Robinson et al., 2009).

DESeq2 identifies the significant DEGs using the Wald test and adjusted for multiple testing by Benjamini

and Hochberg yielding adjusted p-values. DESeq2 (Version 1.28.1) (Love et al., 2014) via R (Version 4.0.1) was

run on the preprocessed data to identify differentially expressed genes (DEG) between the infected and the

mock samples applying an adjusted p-value threshold of 0.05, and an absolute log fold change threshold of

1. To assess if the gene expression changes observed after ACE2 transfection were caused by the transfection

itself, rather than the overexpression of ACE2, a DEG analysis was performed to compare two conditions

(A549_2_ACE2 against A549_2), using first themock samples only (ACE2_Mock), then only the infected samples

(ACE2_Infected). DEGsweremapped to the genes of the generic model Recon3D_01 (Brunk et al., 2018) via the

GPR rules to retrieve differentially expressed reactions (DERs) as well as their associated pathways. For each

pathway with at least three reactions, the ratio of up-and down-regulated reactions over all reactions was

computed. To improve the readability of the plot, only pathways with more than 5% of DERs were depicted.

A.2 Essentiality analysis

A.2.1 Condition-specific model building. To further elucidate, the metabolic alteration provoked by

the virus, metabolic models for the infected samples and mock samples were built. Therefore, the VBOF

from the infected alveolar macrophage model iAB_AM O 1410_SARS-CoV-2 (BioModels:

MODEL2003020001) (Renz et al., 2020) was added to both the generic reconstructions Recon2.04 (Thiele

et al., 2013) and Recon3D_01 (Brunk et al., 2018) using the addReaction function of the COBRA Toolbox

v.3.0 (Heirendt et al., 2019). The identifiers of metabolites included in the biomass had first to be modified

to match the ones of the generic reconstruction. Then, FASTCC (Vlassis et al., 2014) was run to remove

blocked reactions. For each condition, the RPKM values and the modified consistent generic reconstruc-

tion were used as input for the rFASTCORMICS (Pacheco et al., 2019) to get condition-specific models.

COBRA Toolbox v.3.0 and FASTCC were used via MATLAB (R2019a).

A.2.2: Single gene knockout. The metabolic models were then used to identify viral-specific vulnerabil-

ities, using a single gene deletion approach on the mock and infected models. For the infected model, to

ensure that both host and viral biomass’s objective functions can carry simultaneously a flux in the infected

models, the objective coefficients were set to 100 and 1, respectively, and the upper bound of the host

biomass was fixed to 10% of its maximal flux. This setting constrains the model to guarantee cell homeosta-

sis and protein turnover in the host model while diverting all non-essential resources for viral reproduction.

model.c(viral biomass) =1

model.c(host biomass) = 100

model.ub(host biomass) = 10% of max flux determined by FBA
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In silico single-gene knockouts (SKO) were performed on the infected models using a corrected version of

the singleGeneDeletion function of the COBRA Toolbox v.3.0 (Heirendt et al., 2019) to assess the impact of

the knockout of each gene on the viral biomasses. The 0.2 threshold was used as a cutoff for gene growth

rate Ratio (grRatio) to identify essential genes.

A.2.3 Double gene knockout. To identify potential targets for drug combinations, double gene knock-

outs (DKO) for all gene-pair combinations were simulated using the doubleGeneDeletion function on the

infected models. From the analysis, we obtained two lists of synergistic gene-pairs: non-essential gene-

pairs that allow reducing the growth rate below the specified thresholds when simultaneously knocked

out and pairs of essential and non-essential genes that induced a stronger reduction of the growth than

the knockout of the essential gene alone. Both non-essential and essential gene-pairs were concatenated

as DKO outputs for further drug repositioning.

A.2.4 Essentiality and safety scoring. To test the knockout impact of SARS-CoV-2- infected host-spe-

cific predicted essential genes and gene-pairs on the healthy counterpart tissue, SKO, and DKO of these

genes were performed on the healthy models. Genes or gene-pairs that cause a reduction of biomass only

in the infected models are considered safe, whereas those that cause also a reduction of biomass in the

healthy models are regarded as potentially toxic. The essentiality score of an essential gene is the sum

of infected models that show this gene as essential. The safety score of an essential gene is the sum of

healthy models that show this gene as safe. A healthy model, SKO and DKO of a gene was applied only

if the gene is determined as essential in its respective infected model. A scatterplot of essentiality scores

against safety scores was plotted (see Figure 3).

B. Gene enrichment of the potential targets

The identifiers of the essential genes and synergetic genes were translated into HGNC gene symbols using

GSEApy (Version 0.9.17, https://github.com/zqfang/GSEApy/) Python package (3.7.4) and then uploaded

to Enrichr API (Kuleshov et al., 2016) to identify enrichment of these genes in KEGG pathways (KEGG2019

human (Kanehisa and Goto, 2000) database with 0.05 p-value cutoff). Fisher exact test (default hypothesis

test) was performed for calculating the p-value based on the assumption of the binomial distribution of the

input gene set. All enrichment results based on only one gene were discarded. Then, the enrichment

percentage was calculated (related to STAR Methods A.1.2). Metabolic pathway analysis was also applied

using the Recon3D_01 subSystem as background instead of KEGG pathways on the essential genes

(related to STAR Methods A.1.2) without further filtering of the pathways. Comparison of pathways of

Calu-3 and NHBE cell lines were excluded from the analysis of the effect of viral load and ACE2 vector

in the severity study because these cell lines didn’t have ACE2 vector conditions.

C. Drug repositioning of the essential genes

To identify drugs targeting the predicted viral-specific essential genes, drug-target interactions were

downloaded from DrugBank V5 (Wishart et al., 2018) on April 23, 2020. Drugs that were withdrawn, nutra-

ceutical, or experimental were discarded from the analysis. Drugs that are described as having any effect on

the potential targets were selected as candidate drugs (Table S3) and drug combinations (Tables S4 and

S5). To determine which drugs, have a multi-target effect, tripartite networks of the drug-gene-pathway in-

teractions were constructed for the single and double knockout drugs using Recon3D_01 subSystems as

pathways (Figures 3B and 5). The tripartite networks were constructed using the sankeyNetwork function

in networkD3 (Allaire et al., 2017, p. 3) (version 0.4) package in R.

D. Relationship with ferroptosis

As SKO targets were enriched for many pathways related to ferroptosis, the potential targets and SKO

drugs were searched in a curated database (FerrDb) (Zhou and Bao, 2020) for ferroptosis genes, and related

drugs. FerrDb classifies genes into driver, suppressor, and marker, while it classifies drugs into inducer and

inhibitor. These classes were also used to identify the role of the potential targets and SKO drugs in the

ferroptosis pathway.
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