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Abstract: Predicting driving behavior and crash risk in real-time is a problem that has been heavily
researched in the past years. Although in-vehicle interventions and gamification features in post-trip
dashboards have emerged, the connection between real-time driving behavior prediction and the
triggering of such interventions is yet to be realized. This is the focus of the European Horizon2020
project “i-DREAMS”, which aims at defining, developing, testing and validating a ‘Safety Tolerance
Zone’ (STZ) in order to prevent drivers from risky driving behaviors using interventions both in
real-time and post-trip. However, the data-driven conceptualization of STZ levels is a challenging
task, and data class imbalance might hinder this process. Following the project principles and taking
the aforementioned challenges into consideration, this paper proposes a framework to identify the
level of risky driving behavior as well as the duration of the time spent in each risk level by private car
drivers. This aim is accomplished by four classification algorithms, namely Support Vector Machines
(SVMs), Random Forest (RFs), AdaBoost, and Multilayer Perceptron (MLP) Neural Networks and
imbalanced learning using the Adaptive Synthetic technique (ADASYN) in order to deal with the
unbalanced distribution of the dataset in the STZ levels. Moreover, as an alternative approach of risk
prediction, three regression algorithms, namely Ridge, Lasso, and Elastic Net are used to predict time
duration. The results showed that RF and MLP outperformed the rest of the classifiers with 84% and
82% overall accuracy, respectively, and that the maximum speed of the vehicle during a 30 s interval,
is the most crucial predictor for identifying the driving time at each safety level.

Keywords: driving behavior analysis; driving behavior classification; imbalanced machine learning

1. Introduction

Road safety is a matter of major concern and significantly affects people worldwide.
According to the World Health Organization (WHO), road accidents are the 8th leading
cause of death for people of all ages and the 1st leading cause for people aged between
5 and 29 years old [1]. Worldwide, approximately 1.3 million human lives are lost each
year, with significant consequences for society. As a result, the European Union and World
Health Organization have set a goal of reducing fatal road accidents by 50% for the decade
2021–2030, with a special emphasis on the contribution of new technologies in the field of
road safety.

Generally, road safety is affected by many different risk factors such as the driver’s
state and environmental and traffic conditions [2]. However, human error still has a
major contribution to traffic collisions [3]. The continuous development in the field of
automatic vehicles aims to improve road safety, excluding the human element from the
task of driving [4]. In addition, the use of intelligent driving behavior monitoring systems
for real-time interventions proved to be particularly effective in improving road safety [5].

In recent years the research community has had a crucial role in the evolution of
Intelligent Transportation Systems (ITS) and specifically of Connected and Automated
Vehicles (CAVs). Several published studies focus on understanding the effect of different
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characteristics on dangerous driving to develop the right models for recognizing risky
driving behavior while setting the framework for in-vehicle interventions. Although a
variety of in-vehicle and post-trip interventions have been proposed [6,7], there is a lack of
intervention personalization and a direct link between real-time driving behavior and the
triggering of interventions. In recent years, driving behavior analysis by utilizing machine
learning techniques has been of high interest to the research community [8].

The objective of the European Commission Horizon2020 project i-DREAMS (https:
//idreamsproject.eu/) is to define, develop, test, and validate a ‘Safety Tolerance Zone’
(STZ) in order to ensure safe driving behavior [9]. Through real-time monitoring of risk
factors related to task complexity (e.g., traffic characteristics and weather) and coping
capacity (e.g., driver’s mental state, driving behavior and vehicle current state), i-DREAMS
aims to identify the level of STZ and to develop interventions in order to keep the driver
within acceptable boundaries of safe operation. The STZ is divided into three levels:
‘Normal’, ‘Dangerous’ and ‘Avoidable Accident’. ‘Normal’ refers to the scenario that a
crash is unlikely to occur, while ‘Dangerous’ concerns the increased possibility of crash
occurrence, however, the accident is not inevitable. Lastly the ‘Avoidable Accident’ level
of the STZ refers to a high possibility of crash occurrence but there is still time for the
drivers to intervene in order to avoid a crash. The difference between the ‘Dangerous’
and Avoidable Accident’ level is that the need for action is more urgent in the ‘Avoidable
Accident’ level.

However, linking driving characteristics to latent concept of risk or defining risk
through different levels of driving behavior is a demanding task for road safety experts.
Furthermore, the imbalance of road safety datasets is a well-documented problem and
poses another obstacle to the correct identification of safety levels from driving behavior
data. As a result, in the context of the present research, these challenges are attempted to
be efficiently tackled.

Based on the aforementioned gaps in recent literature on real-time interventions and
the prediction of driving behavior, this study aims to apply machine learning techniques
to identify the level of the STZ concerning dangerous driving behavior and predict the
duration of the time interval, which each driver spends at each level of risk, based on
significant driving behavior indicators. In summary, this research proposes a framework for
(a) defining the STZ levels, and (b) developing and evaluating machine learning algorithms
to classify driving behavior and predict the duration that each driver spends at each risk
level. This framework also exploits the most important features to identify driving behavior
and takes care of dataset imbalance, which is a common problem in road safety analyses [10].
The paper contributes to the current knowledge in a two-fold matter; initially by identifying
the level of safety of drivers in real-time, which is a real-time classification problem, and
consequently by predicting the duration of each safety level in real-time. In that way,
practitioners and OEMs based on driving behaviour characteristics, weather and driver’s
state could trigger the necessary real-time interventions according to the prevalent safety
level and its corresponding duration and bring drivers back to safe conditions. Furthermore,
the prediction of the duration at each STZ level is a new approach for real-time driving
behaviour assessment and has not been developed in previous research. Finally, in this
research, an extensive comparative analysis of the techniques used to deal with certain
challenges of the driving behaviour analysis studies was performed.

It should be mentioned here, that although the authors and the project partners within
i-DREAMS have already published papers on the project, and the use of imbalanced
learning, the majority of the papers are either literature reviews or concerned with the
single task of classifying driving conditions. The present paper is one of the first attempts
to exploit a data-driven approach to define the STZ and predict both the level and the
duration of each corresponding level.

The paper is structured as follows: after the introduction, an extensive literature
review is conducted on driving behavior analysis using machine learning techniques. This
is followed by the description of the research methodology, which includes the theoretical

https://idreamsproject.eu/
https://idreamsproject.eu/


Sensors 2022, 22, 5309 3 of 18

background of the models. Then, the collection and processing of the dataset are described.
Finally, the results of the analysis are presented, in order to draw conclusions, related to
road safety.

2. Literature Review

In recent years, the two main approaches that are widely used to analyze danger-
ous driving behavior are simulator studies and naturalistic driving studies (NDS) [11].
According to [12], the severity of dangerous driving is related to certain traffic, driving,
vehicle, and environmental factors. Furthermore, recent studies focus on identifying driv-
ing behavior and classifying it as dangerous or safe since the real-time prediction of the
safety level can trigger interventions and consequently improve road safety [13]. In a more
anthropocentric approach, studies have developed models to evaluate dangerous driving
behavior based on the driver’s state [14] and based on certain characteristics of the driver,
such as demographics [15]. Other studies have developed models of recognizing dangerous
driving based on driving behavior parameters such as speed, time to collision, and time to
headway [13,16,17].

Risky driving behavior prediction models based on machine learning algorithms have
become extremely popular, due to their high scoring accuracy. In relevant studies, the
most utilized models with high performances were Random Forest (RFs; [15]), Multilayer
Perceptron (MLP; [16]), Support Vector Machines (SVMs; [13]) and eXtreme Gradient
boosting (XGBoost; [17]). For instance, [16] proposed a methodology to predict and evaluate
the risk of the driver in real-time, based on four safety levels of driving behavior. In this
study, the proposed methodology includes feature extraction, clustering techniques, feature
importance, and the development and evaluation of four machine learning algorithms
(i.e., RF, XGBoost, SVM, and MLP) where accuracy is higher than 85%. [13] applied a
methodology to classify and evaluate different risk levels of driving behavior by analyzing
a driving simulator dataset, developing clustering techniques in order to distinguish
the different levels, and applying two classification algorithms (i.e., SVM and Decision
Tree) with the highest accuracy to be 95%. Moreover, [17] proposed a framework for
risk prediction which includes applying feature selection techniques, risk levels labeling,
developing methods to deal with imbalanced datasets, and evaluating a classification
model (i.e., XGBoost) with an overall accuracy of 89%.

Labeling and distinguishing safety levels is a topic that has become of interest for
many researchers in the past as it is a demanding process and an important one for the
development of Advanced Driver Assistance Systems (ADAS). In previous studies, deter-
mination and evaluation of different risk levels of driving behavior have been accomplished
based on several safety indicators, such as time to collision [18]. However, it is difficult to
set the right thresholds for different risk indicators making the process of defining safety
levels problematic [17]. As an alternative, some researchers have proposed a framework
for determining the different risk levels by utilizing several clustering techniques, such as
k-means and hierarchical clustering [13,16,19].

Furthermore, since the analysis of driving behavior is based on a real-world dataset,
there is a data imbalance problem in all previous studies in terms of their distribution in each
class (i.e., safe and dangerous conditions). Specifically, in the relevant studies, dangerous
behavior and the possibility of an accident are rarer in relation to safe driving behavior and
non-accident, respectively. The class with the most data is called the majority class while the
one with the least data is called the minority class. In real-time collision analysis problems,
the ratio of the crash and non-crash ranges from 1:5 [20] to 1:20 [21]. The most common
sampling techniques in the literature are the Synthetic Minority Oversampling Technique
(SMOTE) [16,22–24] and Adaptive Synthetic (ADASYN) [24]. In addition, based on the
literature review in the field of road safety as well as different scientific areas, additional
sampling techniques tend to be efficient methods such as the combination of SMOTE and
Edited Nearest Neighbors (SMOTE-ENN) [10], Random Oversampling, SVM-SMOTE and
SMOTE-Tomek [25].
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In general, most previous studies on driving behavior analysis have focused on
developing a specific framework for identifying risky driving behavior. An alternative
approach is to predict the duration of driving at the different safety levels. In the framework
of the research project i-DREAMS, [9] propose the prediction of continuous indicators of
risk such as the time spent at each safety level in order to tune the frequency of warnings
triggered to the driver in real-time. Although to our knowledge, a similar development of
the above approach has not been found in research, a similar methodology is applied to
short-term traffic prediction problems [26–28].

3. Methodology
3.1. Definition of STZ Level

As the primary aim of this research is to identify the risk level of driving behavior,
i.e., the level of the STZ, it is important to identify the best way to define these different
safety levels. After a brief literature review, the number of different driving safety levels
was determined to be three, with labels ‘Normal’, ‘Dangerous’, and ‘Avoidable Accident’.
The above three levels are defined using two groups of methods: (i) clustering methods
(e.g., K-means, Hierarchical, etc.) and (ii) threshold-based methods (e.g., a threshold of
Speed, Time to Collision, Time Headway, etc).

The main limitation is that the distribution of the dataset must comply with the
available literature, in which dangerous driving behavior occurs less frequently. Specifically,
the ‘Normal’ level must be the major class with the highest percentage of samples, while
the ‘Dangerous’ and ‘Avoidable Accident’ levels must be the minority class with the lowest
percentage of samples.

3.2. Feature Selection

An important step in the classification process is to perform a feature selection. Fea-
ture selection refers to the process of reducing the number of input variables to reduce
computational complexity and prediction errors [22]. Based on the literature review, two
approaches are proposed, (i) correlation-based feature selection [29], and (ii) permutation
importance-based feature selection [30].

The first approach concerns the determination of the correlation between the indepen-
dent variables based on the Pearson correlation coefficient r. The values of the coefficient
range between −1 and 1, where r = 0 refers to zero correlation, r = 1 to full positive correla-
tion, and r = −1 to full negative correlation. The optimal subset consists of characteristics
quite correlated with the predicted class but having minimal correlation between them [29].

The second approach attempts to measure the importance of input variables in the
classification process by permuting the feature and calculating the increase in the model’s
prediction error.

3.3. Imbalanced Learning

As indicated in the literature review, dangerous driving behavior is a rarer phe-
nomenon than normal driving behavior. In addition, the fact that classification algorithms
work by considering the equal distribution of samples in different classes; the research has
some limitations. In this study, the methods of improving the performance of the models
will be discussed and analyzed in order to deal with the bias of algorithms towards the
majority class.

After the brief literature review, many resampling methods were examined, such as
SMOTE, SMOTE-ENN, etc. However, the Adaptive Synthetic (ADASYN) technique, an im-
proved version of the Synthetic Minority Oversampling Technique (SMOTE), is considered
the most suitable for handling imbalanced datasets and avoiding overfitting [24,31,32]. The
main idea behind the ADASYN algorithm is the use of difficulty in learning for different
minority examples as a criterion to determine the appropriate number of synthetic samples
that need to be generated for each minority data example [33]. In addition, after examining
individual resampling techniques, ADASYN contributed to the highest performance in



Sensors 2022, 22, 5309 5 of 18

the classification process compared to the rest (i.e., SMOTE, SMOTE-ENN, SVM-SMOTE,
SMOTE-Tomek and Random Oversampling).

3.4. Multiclass Classification

As the objective of this study is to identify the driving behavior risk level between
three classes (i.e., Normal, Dangerous, Avoidable Accident), the problem is a multi-class
classification. The proposed method is based on certain risk-driving indicators as predictor
variables and four different machine learning classification algorithms: (i) Support Vector
Machines, (ii) Random Forest, (iii) AdaBoost, and (iv) Multilayer Perceptron.

The four classification algorithms were proposed due to their high performance and
common use on literature for dangerous driving behavior identification, for real-time crash
prediction and for other real-world problems.

To train and evaluate the performance of classification algorithms, the dataset is
divided into a training dataset and a testing dataset. The form of a training dataset is
Xtraining = {(xn, yn), n = 1, N}, where xn is a predictor variable and yn = {0,1,2} is the target
variable. By training the model, it is given the ability to classify new data correctly. The
performance of the classification model is easily illustrated through a confusion matrix,
where one axis represents the actual class while the other the predicted class. The results
demonstrated in this paper, were obtained after utilizing 10-fold cross validation.

The classification algorithms are evaluated using the accuracy, precision, recall, f1-
score, and false alarm rate defined by Equation (1) to Equation (5).

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

f1− score =
2× (Precision)× (Recall)
(Precision) + (Recall)

(4)

False Alarm Rate =
FP

FP + TN
(5)

where: True Positive (TP) represents the instances which belong to class i and were correctly
classified in it; True Negative (TN) represents the instances which do not belong to class
i and were not classified in it; False Positive (FP) represents the instances which do not
belong to class i but were incorrectly classified in it; False Negative (FN) represents the
instances which belong to class i but were not classified in it.

The accuracy metric calculates the percentage of instances which were correctly classi-
fied. In problems with an imbalanced dataset, the ‘Accuracy Paradox’ is observed where the
calculated accuracy is affected by the major class without reflecting the actual situation [34].
The precision metric shows the percentage of data that actually belongs to class i of all the
data that the model classified in class i., while recall describes the percentage of data that
actually belongs to class i and the algorithm was able to classify them correctly in class i.
In this study, the effects of incorrectly classifying a risk class as less risky or safe would
have significant consequences on road safety, making recall a powerful evaluation metric.
Lastly, f1-score represents the harmonic measure between precision and recall while the
false alarm rate resembles the probability of false detection.

3.5. Classification Algorithms

The four classification algorithms as described in Section 3.4 are (i) Support Vector
Machines, (ii) Random Forest, (iii) AdaBoost, and (iv) Multilayer Perceptron.
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3.5.1. Support Vector Machines (SVM)

SVM are supervised learning models that can be useful for classification and regression
problems [35]. The key idea is that SVM tries to find the maximum margin hyperplane
while minimizing the distance between misclassified instances and decision boundaries [36].
Also using the kernel method, SVM can manage nonlinearly separable data. Based on
literature, SVM algorithm has been used extensively in road safety studies and has been
shown to achieve high performance [13]. Furthermore, SVMs have the advantage to handle
high-dimensionality datasets [37].

Utilizing the hyperparameter tuning technique Grid Search, the optimal values of the
SVM’s hyperparameters were obtained. The most important SVM’s hyperparameters emerged
through GridSearchCV from scikit-learn python’s library, were: (a) kernel type = ‘rbf’; (b) reg-
ularization parameter C = 50 and (c) kernel coefficient gamma = ‘scale’.

3.5.2. Random Forest (RF)

RF classifier is an ensemble method, which trains multiple decision trees in parallel
utilizing the bootstrapping and aggregation methods, commonly known as the bagging
technique [38]. The bootstrapping technique is described as the parallel training of multiple
decision trees using different subsets of datasets. The final decision results from the
aggregation of the decisions of the individual decision trees. RF classifier tends to perform
efficiently on classification tasks and more specifically on identifying risky driving behavior.
Furthermore, RF benefits from the fact that can overcome overfitting problem of decision
trees [16] and thus RF algorithm is considered a good choice for identification of risky
driving behavior.

Grid Search was also used for the RF model, and the optimal hyperparameters that it
obtained were: (a) the number of estimators/trees of the forest = 200 and (b) the function to
measure the quality of a split (criterion) = ‘entropy’.

3.5.3. AdaBoost

AdaBoost model is an ensemble method, which trains several decision trees in series.
A set of weak classifiers are connected in series where each weak classifier tries to improve
the classification of the samples that were incorrectly classified from the previous one; the
method is known as boosting [38]. The weight of misclassified instances by the previous
tree is boosted for the subsequent tree to classify them correctly. Based on the literature,
AdaBoost is suitable for most types of data, and more specifically has high performance
for imbalanced datasets avoiding overfitting issues. Furthermore, the training of multiple
weak classifiers in order to form a synthetic classifier with high efficiency is much easier
compared to the training of one strong classifier [39]. Therefore, since the present study
concerns imbalanced dataset, it makes AdaBoost a good alternative.

Through GridSearchCV the optimal of maximum number of estimators was set to
be 500.

3.5.4. Multilayer Perceptron (MLP)

MLPs are neural network models and more specifically are a supplement of feedfor-
ward neural networks. Multilayer perceptron consists of three categories of layers: (i) the
input layer which receives the input data that need to be processed, (ii) the hidden layers
that are the computational power of the model and (iii) the output layer which perform
the prediction of the classification process. MLP classifier is commonly used for pattern
classification, recognition, prediction and approximation [40] and as stated previously has
proven to be effective algorithm in driving behavior analysis studies [16].

The optimal hyperparameters that emerged from the Grid Search optimization for
the MLP model were: (a) number of hidden layers = (500, 500, 500); (b) activation
function = ‘relu’; and (c) alpha parameter of regularization term = 0.0001.



Sensors 2022, 22, 5309 7 of 18

3.6. Multiple Linear Regression

After defining the driver’s behavior risk level for each time frame of 30 s, the duration
that each driver spends in each risk level was calculated by summing these time frames.
In multiple linear regression, the purpose is to estimate the statistical significance and the
relationship between a dependent variable (y) and multiple independent variables (xi) [41].
The effect of each independent variable on the dependent is expressed through coefficients
of regression. In this study, an attempt is made to develop regression models to predict the
duration that a driver spends at each safety level using certain driving behavior factors as
the dependent variables.

In order to evaluate the regression models, the coefficient of determination R2 (Equation (6))
is used, which calculates the percentage of the variance of the dependent variable (y) inter-
preted by the independent variables (xi). The coefficient of determination (R2) measures
the ability of features to interpret a phenomenon and its values range from 0 to 1.

R2 =
∑n

i=1(ŷ− y)2

∑n
i=1(yi− y)2 (6)

Note: n is the number of samples; yi is the actual values of dependent variable y; y is
the mean value of dependent variable y; ŷi is the predicted values of dependent variable y.

To evaluate the effect of the independent variables, the logical explanation of the
coefficients as well as the statistical significance of the variables were examined. When
the null hypothesis is rejected at a significance level (a), the sample is characterized as
statistically significant and suggests that the influence on the occurrence of the phenomenon
is not due to chance. The statistical significance is evaluated by using p-value and t-value.
For a p-value lower than the significance level (a) and for a t-value greater than the t-student
distribution, the null hypothesis is rejected.

It is also important to note, that the selection of independent variables is made based
on their correlation as well as their statistical significance in the development of the models.

3.7. Regression Algorithms

This study is based on three regression algorithms: (i) Ridge Regression, (ii) Lasso
Regression, and (iii) Elastic Net Regression. These models benefit from their ability to
deal with multicollinearity and their ability to perform a type of feature selection. The key
idea behind these models is the regularization of least-squares by utilizing a regularization
parameter λ [42]. The choice of the specific algorithms over machine learning regressors,
such as Support Vector Regressor, was based on the need to investigate the influence of
independent variables in the prediction process through coefficients.

3.7.1. Ridge Regression

Ridge Regression is a regularization model which can deal high multicollinearity of
independent variables. As stated previously, a regularization parameter λ is introduced to
minimize the weight of regression coefficients (b) towards zero, reducing the variability
of estimates. Through λ parameter Ridge Regression model can reduce the impact of
non-important features in the prediction process. The regularization technique that Ridge
Regression utilizes is called L2 regularization. The estimated coefficients (b) of Ridge
Regression minimize the function Equation (7) [43]:

n

∑
i=1

(
yi − b0 −

P

∑
j=1

bixij

)2

+ λ
P

∑
j=1

b2.
J

(7)

3.7.2. Lasso Regression

Lasso Regression (Least Absolute Shrinkage and Selection Operator) has many similar-
ities with Ridge Regression since it also regularizes the cost function using a regularization
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parameter λ. However, Lasso Regression has the ability to select the most important inde-
pendent variables ignoring those with minimal effect on the dependent variable. Using
the L1 regularization technique, the coefficients of the least important variables tend to
zero performing a selection of the most important features and dealing with model’s over-
fitting [44]. The estimated coefficients (b) of the Lasso regression minimize the function
Equation (8) [43]:

n

∑
i=1

(
yi − b0 −

P

∑
j=1

bixij

)2

+ λ
P

∑
j=1
|bj| (8)

3.7.3. Elastic Net Regression

Elastic Net Regression [45] is the combination of Ridge and Lasso regression. It is a
highly efficient algorithm as it combines the abilities and the benefits of both Ridge and
Lasso by utilizing two regularization parameters. The estimated coefficients (b) of the Lasso
regression minimize the function Equation (9):

∑n
i=1

(
yi − b0 −∑P

j=1 bixij

)2
+ λ1 ∑P

j=1|bj|+ λ2 ∑P
j=1 b2.

J
(9)

4. Data Collection and Processing
4.1. Data Collection

The study is based on the hypothesis that driving behavior is affected by different
risk factors. As part of the i-DREAMS research project, 36 drivers participated in a driving
simulator experiment to collect important data on various risk factors. The experiment
was conducted from December 2020 to January 2021, using the DSS driving simulator of
Figure 1 which was designed and built for the i-DREAMS project.

Figure 1. DSS Car Simulator.

Three different driving scenarios were implemented. These scenarios aim to assess the
impact of interventions on road safety in real-time. The simulator trials in i-DREAMS were
designed based on several principles derived from previous literature [46,47] including
definition of outcomes, predictors and hypotheses, selection of sample size and statistical
power, selection of design type, distribution of risk scenarios among participants, selection
of drive durations to avoid simulator sickness, avoidance of order and learning effects,
and consideration of confounding effects. Of course there are limitless alternatives for
designing simulator trials, but the details described in Table 1 were deemed the best from
project partners with regards to the outcomes of the project.
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Table 1. Different scenarios applied during the driving simulator experiment.

Scenario Road Section Number of Lanes Speed Limits

A
0–6300 m 1 × 1 70 km/h

6300–11,300 m 2 × 2 90 km/h
11,300–16,500 m 2 × 2 120 km/h

B
0–6100 m 2 × 2 90 km/h

6100–12,000 m 2 × 2 120 km/h
12,000–18,200 m 1 × 1 70 km/h

C
0–6000 m 2 × 2 120 km/h

6000–11,000 m 2 × 2 90 km/h
11,000–17,200 m 1 × 1 70 km/h

Each participant performed three separate drives.

• Drive 1: No interventions
• Drive 2: Interventions
• Drive 3: Interventions with modifying condition

The variables collected from the driving simulator experiment are described in Table 2.
The collected variables are important risk factors for driving behavior related to traffic
conditions and the driver’s state.

Table 2. Description of variables collected by the driving simulator experiment.

Variable Description Units Type

TTC Time to collision with the vehicle ahead Seconds Numeric
Headway Time headway to the vehicle ahead in the same lane Seconds Numeric

Speed Vehicle speed Kilometers per hour Numeric
Distance_travelled Distance driving Meters Numeric

BSAV_SpeedLimitKPH Current speed limit Kilometers per hour Numeric
HandsOnEvent Whether hands are on the steering wheel None/both Discrete

FatigueEvent KSS score 32–35–39 Discrete

4.2. Data Processing

To simplify the process, the data were aggregated in 30 s intervals. More specifically,
for every 30 s interval, descriptive statistics of each variable such as mean value, standard
deviation, minimum value, maximum value, and median were calculated.

4.2.1. Definition of Driving Behavior Risk Level

An initial step before developing classification and regression models is to determine
the different safety levels of driving behavior. For the identification of driver’s behavior
level, it was important to determine the level of road safety. As it is stated in Section 3.1 and
based on the literature review the three clusters are defined examining the two following
groups of methodologies: (i) clustering methods (e.g., K-means, Hierarchical, etc.) and
(ii) threshold-based methods (e.g., a threshold of Speed, Time to Collision, Time Headway,
etc.). Regarding the first group, by examining some clustering techniques, the results were
not satisfactory. The distribution of the samples in the different classes (i.e., ‘Normal’,
‘Dangerous’ and ‘Avoidable Accident’ level) was not in line with the literature, considering
the ‘Avoidable Accident’ safety level as the major class while the ‘Normal’ safety level as
the minority class. As stated previously, in relevant studies, risky driving behavior is a
rarer phenomenon compared to safe driving behavior, and therefore should represent the
class with the minority of samples.
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So, in order the study analysis to be consistent with the literature, meaning the
samples of dangerous driving to be a minority class, threshold-based methods (e.g., a
threshold of Speed, Time to Collision, Time Headway, etc.) were examined. Table 3 shows
the distribution of samples in different classes based on different techniques of safety
level determination.

Table 3. Comparison of results of different methods for determining safety levels.

Technique Risk Level of Driving Behavior

Normal Dangerous Avoidable Accident

K-means Clustering 239 1483 1599
Hierarchical Clustering 368 1204 1749

Threshold of the variable TTC_mean 3150 35 136
Threshold of the variable Speed_mean 3320 1 0

Threshold of the variable Headway_min 2820 338 163

Therefore, the threshold method for the variable Headway_min provided the most
desired results. According to previous research, a time of headway of 1.1 to 1.7 s is
considered a tolerable margin [48]. However, when the time headway is less than 2 s
driving becomes more difficult and more dangerous [49]. In addition, several driver
training programs state that 2 s is the minimum time distance from the vehicle in front in
order to maintain a safe follow-up and avoid accidents [50]. Based on the above conclusions,
for each level, the value range of the Headway_min variable is:

• ‘Normal’ Level: Headway_min > 2 s
• ‘Dangerous’ Level: Headway_min > 1.4 sec and Headway_min < 2 s
• ‘Avoidable Accident’ Level: Headway_min < 1.4 s

To avoid bias, the variables of Headway and TTC were excluded in the development
of classification models.

4.2.2. Feature Selection

As stated in Section 3.2, to minimize the computational cost and improve the pre-
dictive performance of the classification models, a feature selection was performed in
which the number of input variables was reduced. The selection of input variables was
made based on the correlation between variables and the influence of each variable in the
classification process.

As it appears in Figure 2, a high correlation was observed between descriptive statistics
of the same variable. Furthermore, Speed and Speed Limits (BSAV_SpeedLimit) were
moderately correlated while HandsOnEvent, FatigueEvent, Distance travelled and all other
variables were slightly correlated.

To identify the importance of the variables in the classification process, the permutation
feature importance technique was used. As stated previously, the Permutation Feature
Importance procedure calculates the prediction error after permuting the value of the
feature. This technique breaks the relationship between the feature and the target; therefore
the model’s prediction error after permutation of the feature’s value indicates whether
or not the model depends on the feature [51]. An advantage of Permutation Feature
Importance is the fact that there is no need for retraining the model which can save
significant amounts of time. Also, a benefit of this technique is the fact that it takes into
account all interactions with other features [52]. Based on Figure 3, the distance travelled,
the speed and the speed limits have the greatest influence on the process of recognizing the
safety level where the driver is. In contrast, the variables HandsOnEvent and FatigueEvent
have the lowest impact on the classification process.
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Figure 2. Correlation heatmap of the examined variables.

Figure 3. Permutation feature importance.

Based on the correlation and the feature importance that emerged, the input variables in the
classification models are Distance travelled_sum, Speed_max, and BSAV_SpeedLimitKPH_max.
Table 4 provides some descriptive statistics (i.e., mean value, standard deviation, maximum,
minimum value, and maximum value) for input variables in the classification process.

Table 4. Descriptive statistics for input variables.

Variable Description Mean St. Dev. Min Max

Speed_max
Maximum value of

Speed variable for an
interval of 30 s (km/h)

75.45 3.00 64.00 100.00

Distance travelled_sum
Sum of Distance

travelled variable for an
interval of 30 s (m.)

7,006,041.28 4,176,949.80 363.50 20,023,055.37

BSAV_SpeedLimitKPH_max

Maximum value of
BSAV_SpeedLimitKPH
variable for an interval

of 30 sec (km/h)

95.94 20.96 75.50 125.50
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5. Results
5.1. Evaluation of Identification Models of Risky Driving Behavior

As mentioned previously the four developed classification models to identify the
driver’s safety level were, Support Vector Machines (SVM), Random Forest (RF), AdaBoost,
and Multilayer Perceptron (MLP). Due to the imbalanced dataset and based on the literature
for metrics in imbalanced learning problems [34], the accuracy would provide misleading
results. Accuracy is influenced by the majority class and fails to reflect the real situation
resulting in the phenomenon called “accuracy paradox”. For this reason, as shown in
Table 5, additional evaluation metrics are considered such as Precision, Recall, f1-score, and
False Alarm Rate.

Table 5. Classification metrics for the developed classifiers.

Classifier Accuracy Precision Recall False Alarm Rate f1-Score

SVM 68.67% 51.35% 74.72% 12.47% 53.22%
RF 84.00% 59.41% 70.27% 11.47% 63.42%

AdaBoost 75.08% 52.31% 70.71% 11.30% 55.87%
MLP 81.28% 57.51% 72.04% 11.37% 61.79%

Observing Figure 4 the four algorithms score high accuracy and recall compared to
precision and f1-score. However, as stated before for the current study, the recall metric is
more important than precision as the incorrect identification of risky driving behavior into
less risky would have serious implications for road safety. Especially for the “Avoidable
Accident” safety level, the high recall combined with a lower precision rate implies a high
ability to recognize the actual dangerous level but also implies a higher percentage of
incorrect classification of the “Normal” and “Dangerous” levels as “Avoidable Accident”.
In the context of the specific issue examined by this study, the above scenario is acceptable.
In case of opposite results, there would be serious problems concerning road safety.

Figure 4. Classification metrics of the four machine learning models.

Based on the Accuracy, Recall, and False Alarm Rate of the four models, the best
results are offered by the RF and MLP classifiers. Nevertheless, the RF model performs
slightly better than MLP, according to the f1-score of Table 5. As shown in the ROC curve of
Random Forest classifier in Figure 5, the model seems to have high ability (approximately
90%), to distinguish between positive class and negative class for all three classes (i.e.,
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safety levels). However, as found in the literature review [53], the interpretation of the ROC
curves can be misleading especially in imbalanced classification problems. Precision-Recall
curves, on the other hand, can provide a more realistic interpretation of the predictive
power of the model. As shown in the Figure 6, for the different thresholds the Random
Forest classifier seems to have better predictive ability for ‘Normal’ class comparing with
the two other classes.

Figure 5. ROC curve of RF classifier.

Figure 6. Precision-Recall curve of RF classifier.

Based on similar driving behavior studies, the results of this research were realistically
close with those found in the literature. Specifically, comparing the evaluation metrics
of the RF classifier with those in the literature, it turns out that the performance of the
model in this study had similar results. For example, [54] reached 71% of the actual conflict
prediction, with 10% false alarm rate, whereas in this paper, the RF classifier reached 70%
with 11% of false alarms. The only exception is the research of [15], where the percentage
of correct classifications for the RF classifier was 90%, performing significantly better than
the respective results of this research. The difference in the performance of the RF model
between the present research and the [15] research may be due to the different nature
of the characteristics considered as input variables, where the former takes into account
characteristics of driving behavior while the latter analyzes characteristics such as gender,
age and perception of the driver. Furthermore, as this study exploited data from a simulator,
the identification of safety-critical levels might not be as clear as in real-life situations or
naturalistic driving conditions. Additionally, the layers of the STZ were defined based on
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pre-defined threshold and not according to a data-driven method. As a result, the difficulty
of classifiers on identifying correctly both safe and dangerous driving behavior might be
hindered by that fact. A larger dataset and the utilization of more sophisticated clustering
approaches (e.g., t-SNE) could overcome this limitation. Regarding the SVM classifier,
the literature results outperformed those in this study, with the research of [13] achieving
95% accuracy. Furthermore, regarding the MLP classifier, this study had similar results
concerning the accuracy metric compared to the research of [16]. However, the developed
MLP classifier in the literature outperformed the one in this research, since the f1-score
between the two studies had a significant difference of 20%. Lastly, although the application
of AdaBoost was not found in the literature on the topic of driving behavior analysis, it
had a satisfactory performance compared to the other classifiers found in the literature.

Although, the developed models might lack the utilization of more sophisticated
models such as deep learning, they can be exploited by researchers and practitioners
working in real-time crash risk assessment due to the fact that they were found to work
well with the imbalance of the dataset and the use of highly disaggregated (i.e., 30 s) data.

5.2. Evaluation of Prediction Models of Driving Duration in Each Safety Level

As stated in Section 3.7, based on the identification of the driver’s safety level for
every 30 s interval, the total duration spent in each level is calculated by summing the time
frames. Aiming to correlate the various variables with duration, their average value was
calculated for each driver at each safety level.

Evaluating the performance of the models, the statistical significance, and the corre-
lation between the variables, ‘Speed_max’ and ‘Distance travelled_sum’ were selected as
independent variables. In contrast to the classification process, the variables of time to
collision and time headway were also examined. The main aim was to develop regression
models with statistically significant variables. Three regression algorithms were devel-
oped, Ridge Regression, Lasso Regression, and Elastic Net Regression and their results are
demonstrated in Tables 6–8.

Table 6. Summary of Ridge Regression model.

Summary of Ridge Regression Model

Coefficients:

Estimate Std. Error t Value p-Value

Intercept 9966.72 472.91 21.08 0.00
Speed_max −112.01 2.18 −51.44 0.00

Distance
travelled_sum 0.01 0.00 8.90 0.00

R2 = 0.85 Adjusted R2 = 0.85

Table 7. Summary of Lasso Regression model.

Summary of Lasso Regression Model

Coefficients:

Estimate Std. Error t Value p-Value

Intercept 9966.36 472.91 21.08 0.00
Speed_max −112.02 2.18 −51.45 0.00

Distance
travelled_sum 0.01 0.00 8.90 0.00

R2 = 0.85 Adjusted R2 = 0.85
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Table 8. Summary of Elastic Net Regression model.

Summary of Elastic Net Regression Model

Coefficients:

Estimate Std. Error t Value p-Value

Intercept 9697.04 472.98 20.46 0.00
Speed_max −108.84 2.18 −49.87 0.00

Distance
travelled_sum 0.01 0.00 8.96 0.00

R2 = 0.85 Adjusted R2 = 0.85

Based on the results of regression models, it is evident that the models record high
values of R2, meaning the independent variables have a high ability to interpret the variance
of the dependent variable. Taking into account the regression coefficients and the fact that
the three models perform some kind of feature selection by minimizing the coefficient of
the non-significant variables, it appears that the ‘Speed_max’ factor has the highest effect
on the driving duration at each safety level. The negative coefficient of the ‘Speed_max’
variable indicates the fact that the higher the maximum speed, the shorter the duration is
at each risk level of driving behavior. This is an expected result, because drivers that were
included in the experiment are experienced drivers and thus can handle higher speeds
adequately to reduce their safety level [55]. On the contrary, the positive coefficient of the
‘Distance travelled_sum’ variable indicates that the longer the distance travelled, the longer
the duration is at each safety level. However, as described in previous sections regarding
the attributes of the models, the minimum value of Distance travelled_sum indicates a
non-significant contribution of this variable to the prediction process. Nevertheless, the
fact that with longer distance travelled, the safety level remains intact denotes the impact
of driver fatigue on driving risk.

As stated in the literature review, to our knowledge, a similar development of the
above approach has not been found in research. However, a similar methodology is
applied to short-term traffic prediction problems. Comparing the results of this study
with other findings in the literature, it appears that in general Elastic Net model [27]
and Lasso model [26] both have high performance as the coefficient of determination R2

in this research, and those in the literature are relatively similar. However, in order to
be able to examine the in-depth performance of the regression models, it is necessary to
consider additional measures such as the mean absolute error (MAE) and the mean absolute
percentage error (MAPE) [56] in the future.

6. Conclusions

This paper aimed to propose a framework for identifying the risk level of driving
behavior and predicting the duration of driving at each safety level. An important step
was the definition of driving behavior risk levels. Among the techniques examined, the
definition of levels based on specific thresholds of time headway provides results relevant
to the literature regarding the distribution of samples in the classes. To avoid bias in the
models, the variables of time headway and time to collision were not taken into account
during the classification process, excluding two very important risk factors. In the future,
it is necessary to examine alternative methods of determining the risk levels of driving
behavior to examine more risk factors.

Through the identification of risky driving behavior level processes, four classification
algorithms were developed of which the Random Forest and Multilayer Perceptron out-
performed the Support Vector Machines and AdaBoost classifiers. The two models (RF &
MLP) were found to have a high capability of identifying all risk levels of driving behavior.

In the effort of improving the performance of the models, a feature selection was
performed utilizing the feature importance as well as their correlation. Through the process
of calculating the feature importance, it emerged that distance travelled, speed, and the



Sensors 2022, 22, 5309 16 of 18

speed limit are significant in identifying the risk level of driving behavior. In contrast, the
variables FatigueEvent and HandsOnEvent were not particularly important during the
classification process. However, the driver’s condition and interaction with the steering
wheel are directly related to other driving factors such as speed or distance traveled.

In addition to the development of classification models, this research also deals with
the unequal distribution of samples in the classes using the ADASYN resampling method.
The main advantage of ADASYN is that the algorithm doesn’t copy the same minority data;
instead, more data is generated for examples that are harder to learn. This is the first time
that ADASYN is combined with a variety of machine learning classifiers for the real-time
safety assessment of highly disaggregated driving behavior data.

In the second part of the study, three regression algorithms were developed to predict
the duration that each driver spends at each safety level. Through regression process, it
was found that among all the examined variables, the maximum speed and total distance
travelled provided statistically significant results. Based on the coefficients, maximum
speed has the main, negative effect on driving duration at different safety levels. Ridge,
Lasso, and Elastic Net Regression are using L1 and L2 regularization, reducing the size
of coefficients for not useful variables, and performing some kind of ‘Feature Selection’.
Therefore, maximum speed is particularly important in predicting driving duration at
each level. It should also be mentioned that to the best of the knowledge of the authors, a
combined approach for detecting not only the safety level of a driver but also the duration of
each level, has not been published yet. This fact forms another novelty of the current study.

Nevertheless, future studies could examine deep learning models (such as Convolu-
tional Neural Networks [56,57] and Long Short-Term Memory (LSTM) [56,58]) which, based
on relevant research, tend to perform better. Furthermore, a larger dataset and naturalistic
driving data would also enhance the study results. However, due to processing power and
time limitations, these analyses could not be performed at the time of this research.
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