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Abstract

Background: Methylation of DNA is associated with a variety of biological processes. With whole-genome studies
of DNA methylation, it became possible to determine a set of genomic sites where DNA methylation is associated
with a specific phenotype. A method is needed that allows detailed follow-up studies of the sites, including taking
into account genetic information. Bisulfite PCR is a natural choice for this kind of task, but multiplexing is one of the
most important problems impeding its implementation. To address this task, we took advantage of a recently
published method based on Pacbio sequencing of long bisulfite PCR products (single-molecule real-time bisulfite
sequencing, SMRT-BS) and tested the validity of the improved methodology with a smoking phenotype.

Results: Herein, we describe the “panhandle” modification of the method, which permits a more robust PCR with
multiple targets. We applied this technique to determine smoking by DNA methylation in 71 healthy people and
83 schizophrenia patients (n = 50 smokers and n = 104 non-smokers, Russians of the Moscow region). We used five
targets known to be influenced by smoking (regions of genes AHRR, ALPPL2, IER3, GNG12, and GFI1). We discovered
significant allele-specific methylation effects in the AHRR and IER3 regions and assessed how this information could
be exploited to improve the prediction of smoking based on the collected DNA methylation data. We found no
significant difference in the methylation profiles of selected targets in relation to schizophrenia suggesting that smoking
affects methylation at the studied genomic sites in healthy people and schizophrenia patients in a similar way.

Conclusions: We determined that SMRT-BS with “panhandle” modification performs well in the described setting.
Additional information regarding methylation and allele-specific effects could improve the predictive accuracy of DNA
methylation-based models, which could be valuable for both basic research and clinical applications.

Keywords: Allele-specific methylation, Clinical sequencing, DNA methylation, Single-molecule sequencing, Smoking,
Schizophrenia, Targeted sequencing

Background
Whole-genomic DNA methylation studies of different hu-
man phenotypes based on DNA microarrays are the most
common and cost-effective variant of epigenome-wide as-
sociation studies (EWAS). The goal of such studies is to de-
fine DNA methylation features of a particular phenotype.
This knowledge could be exploited further to understand
the biology of the trait and ultimately to make predictions
about phenotype by means of DNA methylation. There is a
range of phenotypes explored with EWAS, like, for in-
stance, autoimmune diseases [1–3], cancers [4–6] and

psychiatric conditions [7–11]. However, not all of EWAS
has resulted in the discovery of well-reproduced sets of
genomic targets. The examples of such successful EWAS
are those studies of ageing [12, 13], obesity [14], alcohol in-
take [15] and smoking [16].
There are many reasons why EWAS may fail. Under-

sampling, poor choice of cellular model, cell-type het-
erogeneity, unbalanced confounders and genetic effects
could be the main issues [17, 18]. Genetic factors are of
particular importance because allele-specific DNA
methylation (ASM) effects are known to affect around
10% of CpGs and account for a significant portion of
DNA methylation variability [19–22]. The ubiquitous
character of ASM means that a DNA methylation study
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is supposed to include genetic factors in its experimental
design. ASM impacts could be an independent subject
of research. For example, there is an expectation that
certain unexplained genetic effects, produced en masse
by genome-wide association studies (GWAS), could be
explained by ASM [22, 23].
If the methylation targets for a particular trait are

already established, it is possible to employ them as bio-
markers in clinical or forensic applications. The BLUE-
PRINT consortium has recently evaluated the possibility
of utilising DNA methylation biomarkers in clinical
practice through a large multicentre study and found
that the technology is ready for application in practical
terms. It has been concluded that targeted bisulfite
PCR-based methods followed by next-generation se-
quencing (NGS) outperform or are on par with alterna-
tives in terms of accuracy and robustness [24].
The existing EWAS-based DNA methylation bio-

markers are essentially sets of multiple genomic targets
where DNA methylation is linked to a specific pheno-
type. The number of targets in a single set varies for a
particular phenotype, but usually, it is quite large. The
accuracy of predictions based on less or more expansive
sets of targets is explored, for example, with DNA
methylation-based age prediction, with evidence strongly
favouring the latter [25]. The reasonable assumption is
that in the future, more powerful EWAS will provide
more signals for more accurate prediction. This creates
a demand for very multiplex yet targeted approaches for
the detection of DNA methylation.
Yang et al. reported that relatively long PCR products

(up to 2 Kbp) could be routinely amplified with genomic
DNA, which was bisulfite converted with certain specific
commercial kits [26]. As the conventional Illumina se-
quencing is not able to read through such long ampli-
cons, the Pacbio sequencing platform was used [27]. The
method, dubbed “single-molecule real-time bisulfite se-
quencing” (SMRT-BS), is especially suitable for an
allele-specific methylation assessment. The longer reads
provide more detailed data for the estimation of local
methylation signal and are more likely to capture local
genetic context.
In the present study, we addressed the question of

how this additional methylation and genetic information
could enhance the accuracy of DNA methylation-based
biomarkers on a well-established set of smoking EWAS
hits [28, 29]. The PCR with bisulfite-converted DNA (bi-
sulfite PCR) is considered to be more difficult than con-
ventional PCR. This is often explained by the partial
degradation of DNA during the conversion [30]. In
addition, the converted DNA is basically in a three-letter
code (save the unconverted cytosines), which makes it
harder to produce a specific PCR product. Longer ampli-
cons are even more difficult to harvest because longer

fragments are less represented in converted DNA
samples and the converted DNA is a harder template
being AT-rich and containing uracils and
cytosine-5-methylenesulfonates instead of unmethylated
and 5-hydroxymethylated cytosines, respectively [31].
Though these problems for various amplicons can be
circumvented with careful primer design and
optimization of PCR parameters, it seems like an insur-
mountable obstacle for the multiplex bisulfite PCR, es-
pecially for the longer PCR products. We made use of a
modified (“panhandle”) SMRT-BS method with the ob-
jective of resolving those problems, making it more ro-
bust and multiplex-friendly.
We validated this approach by studying the interaction

between smoking and schizophrenia. It has been shown
that smoking is a major covariate that needs to be con-
trolled for in schizophrenia EWAS. In particular, gen-
omic signals within the regions of AHRR, IER3, and
GFI1 genes have been found in raw uncontrolled EWAS
[32]. It is possible that the smoking exposure manifests
itself differently in smoking-related targets of patients
with schizophrenia. We applied the “panhandle”
SMRT-BS method to assess whether methylation in
smoking-associated regions depends on the disease.

Methods
Sample
Participants were selected from a database of the
Mental Health Research Center (MHRC) in Moscow.
There were 83 schizophrenia patients from the
MHRC or Moscow Psychiatric Hospital No. 1 and 71
healthy controls. All the participants provided written
informed consent and donated blood samples for
DNA extraction. Smoking was assessed through oral
interviews, and the smoking status of patients was
double-checked with their psychiatrists. Current
smokers and never smokers, hereinafter referred to as
smokers and non-smokers, respectively, participated
in this study. The sample consisted of 50 smokers
(mean age 28.0 ± 7.5 years, 40% women, 54% patients)
and 104 non-smokers (mean age 26.0 ± 5.9 years, 54%
women, 54% patients).

DNA extraction and bisulfite conversion
Genomic DNA was extracted with the DNeasy Blood
and Tissue Kit (Qiagen, USA) according to the manu-
facturer’s instructions. The bisulfite-converted DNA
samples were obtained with the EpiGentek Methy-
lamp DNA Modification Kit (Epigentek Group Inc.,
USA) in agreement with the manufacturer’s protocol.
We did support the original Yang et al. [26] conclu-
sion that this particular kit worked better with the
long bisulfite PCR compared to the Epitect Fast DNA
Bisulfite Kit (Qiagen, USA).
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Bisulfite primer design
Primers were designed with the primer3 software [33] to
amplify approximately 1.3 Kbp PCR products of con-
verted genome sequences. Primers were designed to be
of 25–35 bp length, Tm = 60 °C and no CpGs allowed.
The designed primer sequences are listed in the
Additional file 1: Table S1. The summary information
surrounding the amplicons is found in Table 1.

Bisulfite PCR
For the bisulfite PCR, we utilised 20 ng of the converted
DNA, 1 μM of the “panhandle” 5′-phosphorylated pri-
mer “U1” GCAGTCGAACATGTAGCTGACTCAGGT
CAC, 5 nM of each of the specific primer with the iden-
tical U1 sequence on the 5′ end and 200 nM dNTP,
1 mg/ml BSA, 2.5 U HotTaq polymerase with the corre-
sponding buffer (Sileks, Russia) in a total volume of
12.5 μl. The choice of polymerase is important—the
polymerase should be a simple hot-start polymerase that,
unlike specialised high-fidelity polymerases, is not cap-
able of overcoming the suppression effect. We have rou-
tinely verified the PCR kinetics with the 20× EVA Green
DNA intercalating dye (Biotium Inc., USA), which ap-
parently did not affect the reaction. The PCR
programme was as follows: (1) initial denaturation, 94 °
C, 10 min; (2) 5 cycles of specific PCR (94 °C, 20 s; 55 °
C, 1 min; 64 °C, 4 min); (3) 37 cycles of “panhandle”
PCR (94 °C, 20 s; 64 °C, 2 min); and (4) final incubation,
64 °C, 10 min.

Barcoding
For the creation of the Y-adapters, we employed 96 unique
combinations of two sets of oligonucleotides: a first set of
eight oligonucleotides CGAGTAGTGTTC-unique 5-letter
sequence-CAAGGCACACAGGGGATAGG and a second
set of 12 oligonucleotides 5′-CCATCTCATCCCTG
CGTGTC-unique five-letter sequence-CTACACTAC
TCGT. A combination of two oligonucleotides from both
sets could be used to create 96 unique Y-adapters. The oli-
gonucleotides from the first set were 5′-phosphorylated.
The sequences of oligonucleotides bearing molecular bar-
codes are found in Additional file 1: Table S2. Each
Y-adapter was formed by pairing of 10 nM of a single

oligonucleotide from each of these two sets in an anneal-
ing reaction within 25 μl of the annealing buffer AB
(10 mM Tris-HCl (pH 8.0), 50mМ NaCl, 0.1 mM EDTA).
The annealing reactions were set in the PCR thermal cy-
cler with the following programme: incubation 98 °C,
1 min; cooling down to 70 °C (1.6 °C/s); and cooling down
to 10 °C (0.1 °C/s). The reactions were then diluted five-
fold with AB, stored at − 20 °C and utilised as a stock solu-
tion. Immediately prior to ligation, these stocks were
diluted 10-fold with 1× T4 ligase buffer with 5% PEG
4000. The ligation reactions were set in 10 μl: 2 μl diluted
Y-adapters stock solution, 2 μl of PCR products and 6 μl
of the ligation master mix (1.33× T4 ligase buffer with
6.67% PEG 4000, 1.2 w.u. T4 DNA ligase, Thermo, USA).
The ligation reactions were performed at 20 °C for 2.5 h
followed by incubation at 65 °C for 10 min. Then, the re-
actions were mixed in libraries (two libraries, up to 96
samples per library). The libraries (500 μl) were washed
twice with 10 mM Tris-HCl (pH 8.0) and concentrated
down to 50 μl by Amicon Ultra-0.5 30K Device columns
(Merck, USA). Next, the libraries were washed twice to
eliminate the primers, unligated Y-adapters, etc., with 0.7
volume of AMPure XP magnet beads (Beckman Coulter
Inc., USA). The purified DNA solution was employed for
amplification of the libraries with additional PCR. The
PCR was performed with 250 nM primers, specific to the
end of the Y-adapters: “emPCR_A” 5′-CCATCTCAT
CCCTGCGTGTC and “emPCR_B” 5′-CCTATCCCC
TGTGTGCCTTG with the HiFi HotStart Uracil+ 2×
master mix (Kapa Biosystems, Republic of South Africa).
The PCR was performed with the following programme:
initial denaturation 95 °C, 5 min; 20 cycles: 98 °C, 20 s;
60 °C, 15 s; and 72 °C, 2 min. The PCR product was then
length-selected through agarose electrophoresis and puri-
fied with the QIAquick Gel Extraction Kit (Qiagen, USA).

CCS library preparation and sequencing
The CCS library preparation (ligation of “SMRTBell”
adapters with SMRTbell Template Prep Kit, Pacbio,
USA) and sequencing was performed with Pacbio RSII
(P6/C4 chemistry) in the facility of the Washington Uni-
versity Pacbio Sequencing Services. The final volume of

Table 1 Amplicons utilised in the study

Reference (index)
CpG, Illumina ID

The closest gene
to the reference CpG

Genome coordinate
(hg19) of the amplicon

DNA strand
of the amplicon

Length of the
amplicon, bp

Amount of CpGs
in the amplicon

Reference

cg05575921 AHRR chr5:372478-373819 + 1342 44 [28, 29, 63–70]

cg21566642 ALPPL2 chr2:233283630-233284930 − 1301 114 [28, 29, 63–66, 68, 70]

cg06126421 IER3 chr6:30719327-30720645 + 1319 19 [28, 29, 65, 66, 68, 70]

cg25189904 GNG12 chr1:68298855-68300158 − 1304 85 [28, 29, 64, 68, 69]

cg09935388 GFI1 chr1:92947265-92948622 + 1358 73 [28, 29, 67, 68, 70]

cg15417641 CACNA1D chr3:53699512-53700811 − 1300 17 [28, 29, 68]
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raw data used in this paper is approximately equal to a
single SMRT cell of the Pacbio RSII device.

Post-sequencing data preparation
Only reads with a quality score of no less than Q30
(average quality score was Q40) were utilised in the fol-
lowing analysis. After adapter trimming, we obtained
56,581 reads with correct adapters and primer se-
quences. The reads were demultiplexed with no errors
in the barcode sequences allowed, discarding 11% of the
reads. The median amount of reads per barcode was 202
(Q1:128, Q3:315). Adapter trimming and barcode
demultiplexing were performed with the cutadapt
programme [34]. The alignment of the filtered reads to
the reference human genome (hg19) was obtained using
the bismark programme with 88% mapping efficiency
[35] (together with bowtie2 [36]). Filtration of
under-converted DNA (threshold of unconverted CpH
< 5%, H = A/C/T) and de-duplication were performed
with the perl script (see Additional file 1: Supplementary
Note 2 on de-duplication procedure). The final conver-
sion rate was no less than 0.98 for each of the analysed
targets. The number of reads for each target with the
different stages of data preparation is presented in Add-
itional file 1: Table S5.

ASM data
Each read in the data (files in SAM format) was sorted
with perl script based on CIGAR string parsing by alleles
of easily identifiable polymorphisms in each target. The
list of used polymorphisms is presented in Additional file 1:
Table S3. The rate of methylation of individual CpGs per
haplotype for each sample was defined by the bismark
software. Only samples with the minimum 5× read depth
per haplotype were used, leading to discarding of the
CACNA1D target owing to insufficient amounts of data.
Missing values were mean imputed. Methylation signals in
sites of known CpG-SNPs were not employed in the fol-
lowing analysis. The methylation rate for each of the CpGs
was logit-transformed according to the equation.

Statistical analysis
Three smoking status predictive models were tested on
the prepared ASM dataset, hereinafter referred as
“index”, “boruta” and “boruta.adjusted”. Age, gender and
diagnosis were regressed out for subsequent analysis.
The regression residuals were employed for subsequent
analysis. For the “boruta.adjusted” model, the haplotype
information was also used. The Boruta algorithm was
used to determine important CpGs (“important” in the
sense of the Boruta algorithm) inside each of the targets
for the “boruta” and “boruta.adjusted” models. Original
CpGs from smoking EWAS were selected for the “index”
model (Table 1). The dataset was randomly split 1:1 into

a train and test sets. The logistic model with selected
CpGs was trained on the train set. The combined pre-
diction logistic model was built on top of prediction
values of individual target models. In the case of hetero-
zygous samples, the prediction values were averaged.
The performance of the combined models was evaluated
on the test set. The analysis was conducted with the R
statistical software programme with the “Boruta” pack-
age [37].

Results
Our computer simulations demonstrated that typical oli-
gonucleotides for bisulfite PCR tend to form approxi-
mately three times tighter primer-dimers and are 14
times more likely to anneal to non-specific genomic sites
than primers for conventional PCR (Fig. 1a). To resolve
these problems, we used a suppressive hybridization
(“panhandle”) variant of PCR [38, 39]. The idea was to
run PCR with primers with identical sequences on the
5′-ends that produce molecules capable of annealing
with themselves and create pan-like structures. The
shorter the molecule, the more probable it is that it
forms pan-like structures and skips the ongoing PCR
cycle. This gives longer amplicons a competitive advan-
tage over primer-dimers and short non-specific PCR
products. To achieve the effect, three primers needed to
be included in the PCR mixture. They were a pair of
primers with a specific 3′-part and “panhandle” 5′-tails
that could be primed with the common “panhandle” pri-
mer and the “panhandle” primer itself. The “panhandle”
primer has significantly higher annealing temperature,
making it possible to employ a temperature switch to-
ward “panhandle” annealing away from the specific
primers annealing during the run of the PCR
programme. We made use of this method in a long bi-
sulfite PCR context and found that it allowed achieving
much more stable PCR products than conventional bi-
sulfite PCR (Fig. 1b). The concentration of specific
primers in the reaction and the annealing temperature
of the “panhandle” primer seems to be the key parame-
ters for the optimisation (Additional file 1: Figure S1).
The original barcoding strategy for the SMRT-BS [26]
does not work well with PCR products with identical se-
quences on its ends. To address this, we used barcoding
with ligation of Y-adapters [40] (Fig. 1c).
We employed this improved “panhandle” SMRT-BS

with a set of six smoking-related targets, which had
already been established in a number of EWAS (Table 1)
on DNA samples from the peripheral blood of 83
schizophrenia patients (27 smokers, 56 non-smokers)
and 71 healthy controls (23 smokers, 48 non-smokers).
After the sequencing, we were able to obtain enough
data for five of them for analysis—AHRR, ALPPL2,
IER3, GNG12 and GFI1 (named here in accord with a
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gene closest to the reference CpG). The absolute methy-
lation signals for the reference CpGs (Additional file 1:
Figure S2) and regional methylation profiles (Fig. 2 and
Additional file 1: Figures. S3–6) were in agreement with
other reports (Additional file 1: Figure S8).
To evaluate genetic-methylation interactions, we first di-

vided methylation data according to identified haplotypes
for each target and then adjusted them for age, gender,
schizophrenia and local genetic factors. We found that
ASM effects were present for the AHRR and IER3 targets
(with minimum p-levels: p = 1.99E−05 for the AHRR tar-
get, CpG at chr5:373651 and p = 0.0098 for the IER3
target, CpG at chr6:30719450, “two-tailed” t test,
Benjamini-Hochberg adjusted; Fig. 3 and Additional file 1:
Figure S4). We found gender-specific methylation effects
at a number of CpG sites within the ALPPL2 target (with
minimum p = 0.037 for CpG at chr1:233284152; Add-
itional file 1: Figure S3). Of note, methylation in the same
region was already found to be the most affected by gen-
der in EWAS [28]. No significant effects were found for
either age or schizophrenia. The CpGs with significant ef-
fects are listed in Additional file 1: Table S4.

The ability to predict smoking status by methylation
in those five targets was checked with three logistic re-
gression models. First, the “index” model was the default
model based on five CpGs identified in EWAS, one per
target. The second model (“boruta”) was based on CpGs
which were selected for each target by Boruta, a random
forest-based feature selection algorithm [37]. The third
model was the same as the second, but the data were
additionally adjusted for genetic variations. The ROC
curves for these models are presented in Fig. 4. We
observed an improvement in the performance of the
“boruta.adjusted” model (AUC = 0.861) over the “bor-
uta” model (AUC = 0.836) and the “index” model
(AUC = 0.796).

Discussion
Here we describe an improved SMRT-BS method (“pan-
handle” SMRT-BS). The stable multiplex ability is the
major improvement of the method. The most molecular
events in the “panhandle” bisulfite PCR take place with
the same “panhandle” primer, and undesirable products
of PCR are suppressed. Multiplex bisulfite PCR followed

Fig. 1 “Panhandle” SMRT-BS. a Computer simulation of primer performance in conventional and bisulfite PCR. The left panel shows the ability of
primers to form primer-dimers with P1 = PAIR_ANY_TH and P2 = SELF_ANY_TH parameters of the primer3 output. The right panel demonstrates
a tendency of the non-specific annealing by the log10 number of BLAST hits at 3′-ends of the primers. Further details are available in Additional file 1:
Supplementary Note 1. b Photography of agarose gel electrophoresis of different long bisulfite PCR products. The lanes are numbered as follows: 1–4
—conventional bisulfite PCR (with specific primers without the “panhandle”), 5–9—“panhandle” bisulfite PCR with the “panhandle” U1 primer as described
in the “Methods” section; 1–8 with bisulfite-converted DNA, 9—without the template; 1, 5—without specific primers; 2, 6—the AHRR target; 3, 7—the
ALPPL2 target; 4, 8—six-target multiplex PCR. M—DNA ladder marker. c Scheme of the “panhandle” SMRT-BS approach
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by Pacbio sequencing (easily accessible via outsourcing)
could be advantageous in clinical practice, for two im-
portant reasons. First, it presents a cheaper alternative
to methylation arrays and could be easily implemented
because most laboratories already have the necessary
equipment, and secondly, it is potentially more precise
because of multiple informative CpGs per target and
explicit ASM effects.
In this work, we searched for important CpGs around

major signals of EWAS of smoking. Only the strongest
smoking EWAS signal (the AHRR target) coincided with
CpGs detected by Boruta. When genetic variations were
considered, another CpG (hg19 chr5:373494) was identified
as the most relevant smoking predictor. Importantly, the
same CpG was identified in a recent whole-genome bisul-
fite sequencing (WGBS) study [41]. The minor allele fre-
quency of rs6869832 and other linked polymorphisms
around the AHRR region is low in the Japanese population.
This is probably the reason why methylation of this CpG
was identified as the most affected by smoking regardless of

genetic information. Therefore, we have shown that there is
a strong chance of finding a better predictive CpG nearby
an EWAS signal than the signal itself. This could potentially
help formulate or refine hypotheses surrounding biological
mechanisms behind the association. For example, in our
work, the most “important” CpG in the GNG12 region was
one particular CpG (hg19 chr1:68299400) located inside
the EGR1 transcription factor binding site near the pro-
moter of the GNG12 gene, suggesting a link between smok-
ing and EGR1-dependent regulation of the GNG12.
The long reads are especially useful for the study of the

ASM effects. To assess for ASM, one must obtain both al-
lelic and methylation signals on the same read. According
to our estimates, the median distance between a poly-
morphism with minor allele frequency is more than
5% and a methylation probe from the Illumina 450K
array is roughly 200 nucleotides for different popula-
tions (Additional file 1: Figure S7, top row), meaning
that the every second CpG-polymorphism pair lies beyond
the standard library size in methylation experiments. For

Fig. 2 Selected ASM effects in the AHRR and IER3 target regions. Boxplots for methylation level are shown, and boxplot whiskers represent the
25th and 75th percentiles. On the left are the reference CpGs, and on the right are the most important CpGs, selected by the “boruta.adjusted”
model. The stars above the brackets denote significant ASM effect (p < 0.05, “two-tailed” t test)
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studies of haplotype-specific methylation, this distance is
expected to be almost three times greater (Additional file 1:
Figure S7, bottom row). Additionally, thymines in C>T
SNPs on the plus strand of bisulfite-converted DNA and
guanines in G>A SNPs on the minus strand (apparently,
the most common types of genetic variation) are indistin-
guishable from converted cytosines. This further limits a
variety of potentially useful genetic information; however,
this problem could be alleviated if reads on the opposite
strand are available.
Though the long reads could provide additional infor-

mation for DNA methylation-based trait prediction, the

price for this is increased sequencing costs (compared
with conventional Illumina sequencing), which account
for most of the costs surrounding the described method.
The sequencing of a nucleotide with the “third-genera-
tion” NGS platforms (Pacbio, Oxford Nanopore, and
others) is yet more expensive than the same quality nu-
cleotide with the Illumina platform (2018).
It is possible that phenotype-DNA methylation associ-

ations with strong ASM effects are less likely to be a re-
sult of EWAS because EWAS does not imply correction
for genetic factors. Still, the ASM effects in our study
were modest, but significant, probably because the ASM

Fig. 3 Methylation and ASM effects in the AHRR amplicon. Top panel. Mean methylation signal is shown in red (smokers) and blue (non-smokers)
curves. Shaded areas of respective colour represent standard error. The symbols above the curves signify the reference CpG cg05575921 (star symbol)
or important CpGs, selected by the Boruta algorithm (circles). Empty circles relate to the “boruta” model and black to the “boruta.adjusted” model. The
size of a circle corresponds to the Boruta importance parameter. Bottom panel. Negative log10-transformed p-levels of “two-tailed” t test of different
covariates (Benjamini-Hochberg adjusted) for the individual CpGs are portrayed. The p-levels are shown on the same genomic scale as in the top
panel. Vertical dotted red lines on both panels indicate the location of the CpG-SNPs
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methodology is different and potentially more sensitive
than the standard methylation quantitative trait loci
(mQTL) analysis [22]. For example, Philibert et al. [42],
in contrast to our study, did not detect a significant
interaction between rs6869832 and methylation of the
“index” CpG in the AHRR region.
The most similar approach, which allows obtaining

methylation signal from multiple targeted genome lo-
cations, is the bisulfite padlock probe method [43].
The design of the probes is supposed to ensure spe-
cific binding, but nonspecific binding remains prob-
lematic [43]. The characteristic feature of the method
is that the design of the probes is automated to select
the most effective probes with a machine-learning al-
gorithm. The selection is based on the data of pre-
ceding experiments, which helps discard undesirable
probes including those prone to non-specific probe
annealing [44]. It is difficult to compare padlock
probes with SMRT-BS directly because the padlock
probe method is aimed at Illumina sequencing of
short stretches of the converted DNA. To the best of
our knowledge, nobody has attempted to use padlock
probes with increased length of targets, but it was
established that the length of target sequences was
highly correlated with capture efficiency of the target
[45].
The yet-to-be-determined characteristic of “panhan-

dle” SMRT-BS is the uniformity of methylation signal
through the tested targets. In this work, we sequenced

six targets and obtained a similar number of reads for all
of the targets except for the CACNA1D. At this point, it
is difficult to say why this happened to this particular
target. As for the padlock probe design, more experience
with massive multiplex experiments is necessary to elab-
orate the most effective primer design strategies. From a
practical point of view, one could design two primer
pairs on each of the strands of the target to avoid PCR
failure as they stop being complementary after bisulfite
conversion and do not interfere with each other.
Bisulfite PCR-based methods often suffer from PCR

bias, a phenomenon when the amplification rate of an
amplicon depends on its methylation status [46]. This
leads to a skewed measure of methylation signal. Methy-
lation profiles obtained in this work are similar to pub-
lished WGBS profiles (Additional file 1: Figure S8). In
fact, the long bisulfite PCR could be advantageous be-
cause longer amplicons have a more stable CpG/(CpG
+CpH) ratio, making methylation signal differences
within and between targets more relaxed.
The accurate measurement of methylation signal de-

pends on how many reads survive filtering of raw data.
The suggested approach could be improved to obtain
more meaningful reads from the raw data. First, the
10-bp-long barcode sequence seems to be a suboptimal
choice, especially if reads with lower quality scores are
included in the analysis. The barcoding bias, though, is
unavoidable because of the inefficient nature of the bi-
sulfite PCR and could possibly be reduced with another

Fig. 4 ROC plot for smoking prediction. The ROC curves for each of model based on combined five targets (“index”, “boruta” and “boruta.adjusted”)
with true positive rate (TPR) plotted against false positive rate (FPR)
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barcoding strategy [47]. For example, the simple
PCR-based solution could be to add a sequence for
step-out PCR with barcoded sequences between panhan-
dles and a specific sequence inside the primer sequence.
Finally, we had to rely on a potentially too conservative
de-duplication strategy to ensure that data contain no
clonal artefacts. The ultimate solution is to incorporate
the unique molecular identifiers (UMI) strategy [48] into
the bisulfite PCR step, which could be easily imple-
mented with, for example, the NOPE approach [49].
When building the prediction models, we assumed

that genetic factors and smoking affected methylation
independently. This seems to be a reasonable default as-
sumption for EWAS signals, in particular, for the
smoking-related regions, used in this study. However, it
could be interesting to search for situations where this
assumption does not hold and the ASM effects depend
on a studied phenotype. The tempting opportunity is to
explore this on a genomic scale with massive multiplex
SMRT-BS.
In this work, we described a method, which could be

utilised for creation of epigenetic clinical tests based on
results of various EWAS. The approach allows for multi-
plex bisulfite PCR amplification of multiple targets
followed by sequencing for evaluation of methylation
signal around those targets with a single-based reso-
lution. The use of long reads helps to correct for local
polymorphisms, which could improve the accuracy of
the test. The latter could be essential for a diagnosis of
traits with complex gene-environment interactions, such
as most of the common heritable diseases. We demon-
strated how “panhandle” SMRT-BS works with the num-
ber of smoking-related targets. Smoking was chosen as a
test phenotype for the method primarily because of a
magnitude of smoking-related DNA methylation effects.
The obtained results still may be useful by themselves as
a guide for the creation of an objective biomarker for
smoking exposure as people tend to under-report their
smoking habits, for example, during routine check-ups
[50, 51]. However, the clinical setting with more robust
pack-years measure is required to develop such a test,
which could be useful, for instance, for lung cancer pre-
vention [52] or second-hand smoking evaluation [53].
We chose to validate our approach in a sample of

schizophrenia patients and mentally healthy people. Based
on research on smoking among psychiatry patients, we
entertained the possibility that DNA methylation profiles
of smoking were different in schizophrenia patients,
which, if true, could be a diagnostic criterion for the dis-
ease itself. It is a well-established fact that schizophrenia
patients tend to smoke more than mentally healthy people
[54]. This suggests a link between the disease and smok-
ing. The increased prevalence of smoking among patients
is often perceived as self-medication [55, 56], but the issue

remains controversial [57, 58]. It seems not accidental that
the variability in the genes of cholinergic nicotinic recep-
tors is a constant theme of genetic studies of schizophre-
nia [59–62]. This could be interpreted as if schizophrenia
and smoking predisposition share the same biological
background [56]. Though we were able to find already re-
ported gender-specific differences in the methylation pro-
file of the ALPPL2 target, we did not detect any significant
difference in any of selected targets in relation to schizo-
phrenia, suggesting that at least for these genomic sites,
smoking methylation signatures were independent of a
schizophrenia diagnosis.

Conclusions
In this paper, we describe the “panhandle” modification of
Yang et al.’s SMRT-BS method [27], which allows for more
robust multiplex PCR of bisulfite-converted DNA. We ap-
plied this method to discriminate whole-blood DNA sam-
ples according to smoking exposure. We found that
allele-specific information could improve the prediction ac-
curacy of DNA methylation-based prediction models. In
summary, the “panhandle” SMRT-BS method seems to be
one of the plausible alternatives for studying targeted
allele-specific methylation.
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