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The ubiquitin-proteasome system (UPS) mediated protein degradation is crucial
to maintain quantitive and functional homeostasis of diverse proteins. Balanced
cellular protein homeostasis controlled by UPS is fundamental to normal neurological
functions while impairment of UPS can also lead to some neurodevelopmental and
neurodegenerative disorders. Functioning as the substrate recognition component
of the SCF-type E3 ubiquitin ligase, FBXW7 is essential to multiple aspects of
cellular processes via targeting a wide range of substrates for proteasome-mediated
degradation. Accumulated evidence shows that FBXW7 is fundamental to neurological
functions and especially implicated in neurodevelopment and the nosogenesis of
neurodegeneration. In this review, we describe general features of FBXW7 gene and
proteins, and mainly present recent findings that highlight the vital roles and molecular
mechanisms of FBXW7 in neurodevelopment such as neurogenesis, myelination and
cerebral vasculogenesis and in the pathogenesis of some typical neurodegenerative
disorders such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease.
Additionally, we also provide a prospect on focusing FBXW7 as a potential therapeutic
target to rescue neurodevelopmental and neurodegenerative impairment.

Keywords: FBXW7, E3 ubiquitin ligase, neurodevelopment, neurodegenerative disorders, therapeutic approach

INTRODUCTION

Proteolysis plays critical roles in diverse cellular processes including cell division, growth,
differentiation and senescence. The ubiquitin–proteasome system (UPS) spatially and temporally
controls a vast majority of protein degradation (Pohl and Dikic, 2019). Proteasomal degradation
pathway is regulated by targeted ubiquitylation which undergoes a multi-step process participated
by three key enzymes: an ubiquitin-activating enzyme (E1), an ubiquitin-conjugating enzyme (E2)
and an ubiquitin ligase (E3). Ubiquitin, an evolutionally conserved protein of 76 amino acids is
firstly activated by E1 with ATP causing a thioester bond between E1 and ubiquitin. Then, the
ubiquitin is transferred to E2, and sequentially covalently binds to the ε-amino group of specific
lysine residue on target protein by E3 (Li et al., 2018). E3 ligase determines the specificity of the
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ubiquitylation to target protein, and estimated over 600 E3 ligase
genes are identified in human genome (Li et al., 2008).

UPS play vital roles in maintaining neurological functions
while dysregulation and dysfunction of UPS components are
involved in several neurodevelopmental and neurodegenerative
disorders. For example, mutations, deletions, and duplications
of UBE3A E3 ligase gene can lead to three human
neurodevelopmental disorders: Prader-Willi syndrome (PWS),
Angelman syndrome (AS) and Dup15q syndrome (LaSalle
et al., 2015). E3 ligase HERC1 (regulator of chromosome
condensation 1-like domain-containing protein 1) deficiency
presents with delayed and abnormal brain development in
mouse model (Bachiller et al., 2015), and patients with HERC1
mutations present with thicker corpus callosum, seizures,
intellectual disability, and other autism-resembling clinical
symptoms (Ortega-Recalde et al., 2015; Aggarwal et al., 2016;
Utine et al., 2017). Meanwhile, neurodegenerative diseases
which can be commonly featured with aberrant aggregation of
neurotoxic proteins in the central nervous system (CNS) have
also been widely recognized to be associated with impairment
of ubiquitin-proteasome system (McKinnon and Tabrizi, 2014;
Harrigan et al., 2018). These evidence highlight the possibility
that UPS components especially specific E3 ligases may be valid
therapeutic targets for the treatment of neurodevelopmental and
neurodegenerative disorders.

Broadly, E3 ligases are typically grouped into three major
classes: the homologous to the E6AP carboxyl terminus (HECT)
domain containing E3s, the really interesting new gene (RING)
domain containing E3s and RING-between-RING (RBR) family
E3s (Berndsen and Wolberger, 2014). Cullin-RING ubiquitin
ligases (CRLs) belong to RING type E3 ligases. CRL1, also
termed as the Skp1-Cullin 1-F-box protein (SCF) complex, is
the most studied member among CRLs. The SCF complex
consists of the S-phase kinase-associated protein 1 (Skp1), ring-
box 1 (Rbx1), and Cullin 1 (Cul1), as well as a variable F-box
protein which is responsible for substrate recognition (Figure 1).
F-box and WD repeat domain containing 7 (FBXW7), also
known as FBW7, AGO, hCDC4, and SEL-10, is one of the
F-box proteins composing SCF type of E3 ubiquitin ligases
(Shimizu et al., 2018). FBXW7 has been well studied for
its crucial suppressive roles in tumorigenesis (Yumimoto and
Nakayama, 2020). Meanwhile, mounting studies have focused on
its functional roles in nervous system, especially suggesting that
FBXW7 is crucial to neurodevelopment and neurodegeneration.
In this review, we present evidence on the functional implications
of FBXW7 in crucial neurodevelopmental processes and in
the pathogenesis of some neurodegenerative disorders and
also discuss the critical issues for drug development by
targeting FBXW7, aiming to propose the therapeutic potential
of targeting FBXW7 to ameliorate neurodevelopmental and
neurodegenerative impairments.

THE FBXW7 GENE AND PROTEINS

The FBXW7 gene, spanning 216,330 bp of genomic DNA
is located on chromosome 4q31.3. Alternative transcriptional

initiations from different promoters and selective splicing
generate three distinct FBXW7 transcripts (Spruck et al., 2002).
These transcripts share 10 common exons which are responsible
for the encoding of conserved C-terminal region of FBXW7
proteins (FBXW7α, FBXW7β, and FBXW7γ). Alternative
transcription determines the distinguished distribution of the
three subtypes in tissues: FBXW7α widely expresses in almost
all tissues, FBXW7β only exists in the brain and testes, and
FBXW7γ is mainly detected in the heart and skeletal muscle
(Jin et al., 2004; Matsumoto et al., 2006). All these isoforms
share three crucial functional domains: a D domain mediating
FBXW7 dimerization, a F-box domain interacting with the SKP1-
CUL1 complex, and a tryptophan-aspartic acid 40 (WD40)-
repeat domain which is responsible for substrate recognition
and binding (Figure 1). The distinct N-terminal sequence of
each isoform determines subcellular localization, with FBXW7α

primarily in the nucleoplasm, FBXW7β in cytoplasm (or
more precisely on the endoplasmic reticulum membrane), and
FBXW7γ in the nucleolus (Welcker et al., 2004; Matsumoto et al.,
2011b). As the result of wide distribution and dominant level of
FBXW7α, plenty of known functions of FBXW7 are attributable
to the α isoform while the β and γ subtypes may also irreplaceably
contribute distinct roles in some specific physiological processes
(Matsumoto et al., 2011b; Welcker et al., 2011; Xu et al., 2020).

REGULATION OF FBXW7 EXPRESSION

The expression of FBXW7 is regulated at transcriptional,
translational and post-translational levels. The CCAAT/enhancer
binding protein-δ (C/EBPδ), an inflammatory response
transcription factor, targets the FBXW7α promoter and
directly inhibits FBXW7α transcription (Balamurugan et al.,
2010). A functional p53-binding site was also identified in the
1st exon of β transcript of FBXW7 gene, and p53 was confirmed
to directly promote FBXW7β transcription (Kimura et al.,
2003). Similarly, bHLH transcription factor 5 (HES5), a member
of the HES family, was found to bind to FBXW7β promoter
and suppress the FBXW7β transcription, although the specific
binding sites have not been identified (Sancho et al., 2013; Chen
et al., 2021). Additionally, the CpG sequences in the promoter
region of FBXW7β were also proven to be methylated, leading to
FBXW7β transcriptional suppression (Gu et al., 2008).

Multiple non-coding microRNAs (miRNAs) can modulate
FBXW7 translation via interacting with the 3′ untranslated
region of the mRNA. miR-24 (Zhao et al., 2016), miR-25 (Xiang
et al., 2015; Hua et al., 2017; Peng et al., 2019), miR-27 (Wu
et al., 2015; Liu Z. et al., 2018), miR-32 (Hua et al., 2016; Xia
et al., 2017), miR-92 (Yang et al., 2015; Zhou et al., 2015),
miR-129-5p (Hasler et al., 2012), miR-155-3p (Cao et al., 2016;
Tang et al., 2016), miR-182 (Jeon et al., 2013; Li et al., 2014;
Chang et al., 2018), miR-195-5p (Wang et al., 2019), miR-223
(Xu et al., 2010; Mansour et al., 2013), miR-367 (Xiao et al.,
2017; Xu et al., 2017), miR-424 (miR-322 in mice) (Chen et al.,
2019), miR-503 (Li et al., 2014), miR-544a (Liu X. et al., 2018),
miR-586 (Zhang et al., 2016), and miR-1290 (Zhang et al., 2021)
were shown to reduce FBXW7 protein level in different cancer
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FIGURE 1 | Schematic illustration of the SCFFBXW7 E3 ubiquitin ligase complex (A) and FBXW7 gene (B) and proteins (C). (A) Functional model of FBXW7 involved
in SCF complex-mediated substrate ubiquitylation. Ubiquitin and phosphorylation is indicated with Ub and P with a circle, respectively. (B,C) Alternative
transcriptional initiations from different promoters generate three distinct FBXW7 transcripts and corresponding proteins with conserved D, F-box and WD40 repeat
domains. All three FBXW7 transcripts (or isoforms) share 10 common exons which were shown with gray rectangles.

cells. Adversely, some long non-coding RNAs (lncRNAs), such
as MIF, TINCR, CASC2, MALAT1, and MT1JP can block the
inhibition of FBXW7 expression acting as miRNA “sponges”
(Cao et al., 2016; Wang et al., 2017; Liu X. et al., 2018; Zhang
et al., 2018). Moreover, FBXW7 translation is also regulated by
mRNA modification. N6-methyladenosine (m6A) modification
mediated by METTL3 (methyltransferase-like 3) was proven to
enhance FBXW7 translation (Wu et al., 2021).

Post-translational regulation of FBXW7 includes
ubiquitination, phosphorylation and dimerization of the
proteins. First, ubiquitination and deubiquitination of FBXW7
regulate its proteasomal degradation. COP9 signalosome
complex subunit 6 promotes FBXW7 autoubiquitination
and proteasome-mediated degradation. Ubiquitin specific
peptidase 28 (USP28), a deubiquitinating enzyme can also
repress autocatalytic ubiquitination and degradation of FBXW7
(Diefenbacher et al., 2014; Schulein-Volk et al., 2014). Moreover,
the stability and function of FBXW7 are regulated by multiple
kinases. For example, extracellular signal–regulated kinase
(ERK) and Polo-like kinase 1 and 2 (PLK1 and PLK2) directly
interact and thereby mediate phosphorylation of FBXW7,
resulting in its ubiquitination and proteasomal degradation
(Cizmecioglu et al., 2012; Ji et al., 2015; Xiao et al., 2016). In
contrast, phosphorylation of FBXW7α by phosphoinositide
3-kinase (PI3K) and serumand glucocorticoid-regulated kinase 1
(SGK1) were demonstrated to inhibit its autocatalytic ubiquitin
transfer and stabilization (Mo et al., 2011; Schulein et al., 2011).
Besides, the dimerization mediated by the D domain in all
three FBXW7 isoforms also affects the stability of FBXW7.
Peptidylprolyl cis/trans isomerase NIMA-interacting 1 (Pin1)
has been demonstrated to destabilize FBXW7 by repressing
dimerization and thereby promoting FBXW7 autoubiquitination
(Min et al., 2012). Similarly, FBXW7 monomers were found to
be stable as dimerization could destabilize the protein because of
accelerated autoubiquitylation (Welcker et al., 2013).

FBXW7 IN NEURODEVELOPMENT

Mounting studies indicate the homeostasis of FBXW7 is crucial
for neurodevelopment. In this section, we will present evidence
of functional involvement of FBXW7 in neurodevelopment and
review the underlying mechanisms of FBXW7 in the processes
of neurogenesis, myelination, and cerebral vasculogenesis.
Additionally, potential therapeutic effect on neurodevelopmental
disorders treatment via targeting FBXW7 or its substrates
is also discussed.

Structural and Functional Abnormalities
in FBXW7-Deficient Mouse Brain
Mice with specific deletion of exon 5 of Fbxw7 in brain die
in a short while after birth with substantial changes and
morphological abnormities in brain structure. Neurogenesis
was found to be defective while astrogenesis was enhanced,
leading to the tendentious differentiation toward astrocytes
in these conditional Fbxw7-deficient brain. These newborn
Fbxw7-deficient mice also show defective suckling behavior
which may be associated with the hypoplasia of the brain
stem although the underlying cause of the defective behavior
remains to be explored (Matsumoto et al., 2011a). Similarly,
it was also reported that conditional inactivation of Fbxw7
in the nervous system resulted in severely defective stem
cell differentiation and anabatic progenitor cell death.
Neurospheres from Fbxw7 deficient embryos were generally
smaller in size, and significantly lower in number (Hoeck
et al., 2010). Moreover, conditional Fbxw7-knockout in the
cerebellar anlage of mouse leaded to reduced Purkinje cell
number, decreased cerebellar size and defects in axonal
arborization. Fbxw7-deficient cerebella presented with
reduced vermis size and aberrant migration of progenitor
cells (Jandke et al., 2011). Besides, primary cultures of neurons
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prepared from the mice only lacking β isoform of Fbxw7
were more vulnerable to oxidative stress although rare
morphological abnormalities exhibit in brain development
(Matsumoto et al., 2011b).

FBXW7 and Neurogenesis
Initial expansion of the progenitor cell by symmetrical division
and subsequent generation of differentiated cells such as neurons,
astrocytes, and oligodendrocytes through asymmetrical division
are crucial to brain development (de la Pompa et al., 1997; Lutolf
et al., 2002). The functional implication of FBXW7 in brain
development is crucially mediated by Notch and c-Jun, both of
which are substrates of FBXW7. The Notch signaling pathway
acts via a process of lateral inhibition to play a fundamental
role in neuronal and glial differentiation. Dll1, a ligand of
Notch can trigger Notch signaling and suppress the expression
of the proneural genes via inducing Hes1 expression and
thereby block neuronal differentiation (Kageyama et al., 2009).
Notch signaling inactivation promotes premature neurogenesis,
leading to exhaustion of the progenitor pool and decreased
number of mature neurons (de la Pompa et al., 1997; Lutolf
et al., 2002). FBXW7 regulates Notch protein stability in this
process, thereby controlling the maintenance and differentiation
orientation of neural stem cells. Notch accumulation caused by
FBXW7 deficiency results in aberrant activation of Notch target
genes, resulting to excessive proliferation of neural stem cells
and aberrant differentiation toward the astrocytes (Matsumoto
et al., 2011a). c-Jun is another important regulator of neuronal
viability. Restraining of c-Jun activation prominently rescued
the cellularity defect caused by Fbxw7 deletion in the mantle
layer of the midbrain tectum. Likewise, compared to Fbxw7
single mutant, Fbxw7/Jun mutant cells exhibited substantially
elevated neurosphere formation in vitro, accompanied by a
considerable reduction of apoptotic cells in neurospheres,
indicating that c-Jun–mediated cell death is functionally
implicated in defective neurosphere formation under Fbxw7
deficiency background (Hoeck et al., 2010). Besides, it was
also reported that deletion of c-Jun or specific abrogation of
c-Jun N-terminal phosphorylation could rescue Purkinje cell
numbers and arborization in the Fbxw7 knockout background
indicating phosphorylated c-Jun is an important substrate of
Fbxw7 in neurogenesis during cerebellar development (Jandke
et al., 2011). WD repeat domain 62 (WDR62) is crucial to
promoting c-Jun N-terminal kinase signaling in the control
of neurogenesis (Wasserman et al., 2010; Cohen-Katsenelson
et al., 2011). It was also reported that FBXW7 controls self-
renewal and differentiation of neural progenitor cells (NPCs)
during brain development by regulating WDR62 degradation
(Xu et al., 2018).

FBXW7 and Myelination
Myelin, a specialized proteolipid-rich membrane surrounding
neuronal axons, is crucial for axons protection and insulation.
Myelination is a sophisticated solution for efficient conduction
velocity of potential actions along axons. Myelin is formed by glial
cells which are oligodendrocytes and Schwann cells in the central
nervous system and peripheral nervous system, respectively.

During myelin development in central nervous system,
specified oligodendrocyte precursor cells (OPCs) migrate to
target axons before they begin to differentiate into premyelinating
oligodendrocytes which wrap axons and synthesize multiple
myelin proteins and lipids comprising the myelin sheath.
Consequently, oligodendrocytes can form multitudinous myelin
sheaths with substantial variability in lengths and thicknesses
(Kessaris et al., 2006; Hughes et al., 2013; Hughes and Appel,
2019). Notch signaling mediated by Notch protein and its
receptors plays a vital role in balancing development of neurons
and glia. Dysfunction of Notch pathway in vertebrate embryos
generally leads to reduced neural precursors, excessive early born
neurons and a deficit of glial cells, oligodendrocytes included
(Chitnis et al., 1995; de la Pompa et al., 1997; Park and Appel,
2003). It was reported that fbxw7 mutation leaded to excessive
differentiation of neural precursors toward oligodendrocyte
progenitor cells in zebrafish embryos nearly identical to that
of the mutant with constitutive activation of Notch (Park and
Appel, 2003). Hyperactive Notch signaling was found in fbxw7
mutant embryos while pharmacological inhibition of Notch
proteins under fbxw7 mutant background inhibited formation
of excess oligodendrocyte progenitors indicating that Notch
signaling are functional target of Fbxw7 in the process of
oligodendrocyte specification (Snyder et al., 2012). Similarly,
mTOR (mammalian target of rapamycin) is another target of
FBXW7 in regulating oligodendrocyte differentiation. mTOR
signaling is also promoted in oligodendrocyte lineage cells of
fbxw7 mutant zebrafish larvae. Both genetic and pharmacological
inhibition of mTOR signaling are beneficial to rescue aberrant
profiles of myelin genes caused by dysfunction of Fbxw7,
indicating that mTOR is a functional target of Fbxw7 in
oligodendrocytes (Kearns et al., 2015).

In peripheral nervous system, myelin is fundamentally
developed from Schwann cells (SCs). Neural crest precursor cells
initially proliferate and differentiate into SC precursors which
then differentiate into immature SCs. The maturation of SC
comes up around birth via the process of radial sorting, during
which the cytoplasmic components of individual SCs extend
into bundles of axons, progressively separates them into smaller
bundles, and finally surrounds a single larger diameter axon
(Martin and Webster, 1973; Webster et al., 1973; Chernousov
et al., 2008). Meanwhile non-myelinating SCs will form into
Remak bundles by ensheathing multiple small diameter axons
(Jessen and Mirsky, 2005). Conditional knockout of Fbxw7
specifically in SC precursors at approximately embryonic day (E)
12.5 results in thicker myelin sheaths and a higher proportion of
myelinated axons compared to control nerves. More intriguingly,
Fbxw7 mutant SCs sometimes appear to myelinate multiple
axons in a fashion reminiscent of oligodendrocytes. It is identified
that Fbxw7 regulates mTOR to control SC number, myelination,
and Remak bundle organization during myelination peripheral
nervous system. The activation of c-Jun is also found in Fbxw7
mutant SCs while the potential role of c-Jun in regulating
SCs needs further demonstration (Harty et al., 2019). These
evidences indicate that FBXW7 functionally regulate plasticity
of SCs during myelination and may be a beneficial target
for myelin repair.
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FBXW7 and Cerebral Vasculogenesis
FBXW7 also control vasculogenesis in brain. Apart from
metabolic functions of ensuring adequate supply of oxygen and
nutrients to maintain homeostasis of neuronal networks, vessels
have also been considered to serve as niches and scaffolds for
neuronal migration and expansion during brain development
and neurogenesis (Attwell et al., 2010; Segarra et al., 2015,
2018). Fbxw7-null mice (Fbxw7−/− with disruptions of all three
isoforms) die in utero at embryonic day around 10.5 as a result
of impaired vascular development in the brain and yolk sac.
Fbxw7−/−embryos shows defects of vessels along the entire
length of their neural tubes, indicating FBXW7 is potentially
fundamental for brain function by regulating construction of
neurovascular architecture during development (Tetzlaff et al.,
2004; Tsunematsu et al., 2004). However, the mechanism remains
elusive at present.

FBXW7 and Neurodevelopmental
Disorders
It is undoubted that FBXW7 and its substrates function in
different vital neurodevelopmental processes, but the potential
roles of FBXW7 in the pathogenesis of neurodevelopmental
disorders still remain to be investigated. There is no
FBXW7 mutation identified to be associated with any
neurodevelopmental disorders at present, however, functional
implications or mutations of its substrate have been widely
reported in relevant diseases. For example, c-Jun was aberrantly
increased in an autism mouse model (Engrailed-2 knockout)
(Tripathi et al., 2009), and c-Jun activation was possibly
involved in the autism via inducing disordered inflammatory
response in the brain (Shimoyama et al., 2019; Bjorklund et al.,
2020). Also, some neurodevelopmental disorders such as focal
cortical dysplasias, tuberous sclerosis complex and syndromic
autism spectrum disorder (ASD) are thought to arise due
to the effects of mTOR mutations during fetal development
(Sato, 2016; Iffland and Crino, 2017; Salussolia et al., 2019).
Similarly, mutations in Notch 3 can also lead to cerebral
autosomal dominant arteriopathy with subcortical infarcts
and leukoencephalopathy (Mizuno et al., 2020). Considering
functional implications of FBXW7 in neurodevelopment, it may
be beneficial to explore effective methods via targeting FBXW7
or its substrate for treatment of neurodevelopmental disorders.
For instance, everolimus, an inhibitor of mTOR which is used
for treatment of tumor manifestations in patients with tuberous
sclerosis complex also provide impressive therapeutic effect
on improving neuropsychiatric symptoms (Kilincaslan et al.,
2017). Rapamycin, another mTOR inhibitor was also reported
to prevent the pathological and behavioral deficits in ASD (Tsai
et al., 2012). These emerging evidence suggests mTOR inhibitors
could be a potential pharmacotherapy for ASD (Sato, 2016).

FBXW7 IN NEURODEGENERATION

Despite of dysgenopathy in nervous system, anabatic
neurodegeneration is another prominent characteristic caused
by FBXW7 dysfunction. A large body of evidence indicates

FBXW7 may be implicated in the pathogenesis of some typical
neurodegenerative diseases. Potential underlying pathways of
FBXW7 involved in Alzheimer’s disease, Parkinson’s disease and
Huntington’s disease are discussed in this part.

Alzheimer’s Disease
Alzheimer’s disease (AD), the most common form of dementia
especially in the old, affects more than 50 million people
worldwide. AD patients are typically characterized with amyloid
plaque and neurofibrillary tangles in the brain, both of which
are regarded as two hallmarks of this disease (Drew, 2018).
At present, dysregulation or dysfunction of FBXW7 has not
been reported in AD patients or animal models, but some
evidence may support the issue that FBXW7 is involved in the
pathogenesis of AD.

Firstly, FBXW7 potentially regulates amyloid-β (Aβ)
generation. Overexpression of FBXW7 in HEK293 cells could
alter APP metabolism and lead to an increase in the production
of Aβ (Li et al., 2002). However, the effect and mechanism of
FBXW7 on Aβ production remains elusive so far. It has been
widely recognized that the generation of Aβ, especially Aβ42,
which aggregates into bioactive conformational species, likely
initiates the toxicity in AD (O’Brien and Wong, 2011; Potter
et al., 2013; Szaruga et al., 2015; Selkoe and Hardy, 2016; Makin,
2018). Aβ is generated from APP, successively processed by
β-secretase and γ-secretase complex. BACE1 (β-site cleaving
enzyme 1), a membrane-located aspartyl peptidase, acts as the
dominated β-secretase which provides the first cleavage of APP
at β-site (Zhang et al., 2021). Hypoxia-inducible factor 1 subunit
α (HIF-1α), a factor induced by hypoxia, was reported to directly
regulate BACE1 transcription and is contributing to BACE1
upregulation in response to hypoxia in the pathogenesis of AD
(Sun et al., 2006; Zhang et al., 2007). It indicates that FBXW7
may be implicated in Aβ generation by regulating BACE1 level
in a HIF-1α dependent pathway. Moreover, Li et al. (2002)
also showed that FBXW7 interacted with Presenilin 1 (PS1), a
crucial component of γ-secretase, revealing FBXW7 may alter
γ-secretase activity by binding to PS1 protein, thus promoting
processing of APP and Aβ generation.

Furthermore, FBXW7 may regulate neuronal apoptosis which
seems to be inordinate in AD brain (Obulesu and Lakshmi,
2014; Fricker et al., 2018). FBXW7 is known to be implicated
in neuronal apoptosis. For example, FBXW7 can mitigate
neuronal apoptosis by mediating c-Jun proteolysis in response
to glutamate-induced excitotoxicity (Ko et al., 2019). c-Jun
is known as a substrate of SCFFBXW7 and plays a crucial
role in accelerating cell apoptosis (Bossy-Wetzel et al., 1997).
Consistently, FBXW7 has also been confirmed to bind parkin
in neurons and to collaborate with parkin to ubiquitylate
and destabilize the target cyclin E1 (Staropoli et al., 2003).
Excessive cyclin E1 accumulation in neurons can lead to
neuronal apoptosis (Padmanabhan et al., 1999), especially under
conditions of excitotoxicity, suggesting a neuroprotective role
for FBXW7. Besides, Ko et al. (2020) demonstrated that Fbxw7
was cleaved by activated calpain in the ipsilateral cortex in
the rat model with middle cerebral artery occlusion. Negative
regulation of Fbxw7 by calpain leaded to neuronal cell death
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FIGURE 2 | Functional implications of FBXW7 in neurodevelopment and three typical neurodegenerative diseases. The substrates of FBXW7 and other downstream
factors are presented by gray or blue ellipses, respectively.

while the preservation of Fbxw7 by the inhibition of calpain
or other strategies may provide a novel protective mechanism
against aberrant cell apoptosis in response to excitotoxicity
(Ko et al., 2020). Similarly, Fbxw7 level was significantly
reduced in mice spinal cord tissues in response to spinal
cord injury while enhanced Fbxw7 expression can effectively
moderate the progression of spinal cord injury by repressing
microglial inflammation and neuronal death (Chen et al., 2020).
Additionally, FBXW7 possibly mitigate neuronal apoptosis via
mediating proteasome-dependent degradation of regulator of
calcineurin 1 (RCAN1). RCAN1, a crucial endogenous regulator
of calcineurin (Wang S. et al., 2020), is highly expressed in human
brain and is particularly aberrantly elevated in the brains of
AD patients (Ermak et al., 2001; Harris et al., 2007). Several
lines of evidence suggest that RCAN1 functions in neuronal
apoptosis (Lee et al., 2007; Sun et al., 2011; Ermak et al.,
2012; Wu and Song, 2013) and the degradation of RCAN1
proteins is mediated by both UPS and the chaperone-mediated
autophagy pathways (Liu et al., 2009). RCAN1 is a specific target
of FBXW7 in the process of ubiquitin-proteasome-mediated
degradation (Lee et al., 2012; Hong et al., 2015). It suggests
that FBXW7 may be responsible for dysregulation of RCAN1
in AD but the mechanism needs to be further investigated.
However, the functional role of FBXW7 in neuronal apoptosis
remains controversial. For instance, FBXW7β was also reported

to promote neuronal apoptosis via mediating ubiquitylation-
dependent proteolysis of Mcl-1. Mcl-1, a specific SCFFbxw7 target
in neurons, functions as a mitochondrial prosurvival factor
in neuronal apoptosis (Ekholm-Reed et al., 2013). It suggests
that functional implication of FBXW7 in neuronal apoptosis
potentially depends on its subcellular localization and specific
target affinity.

In addition, FBXW7 may also be involved in AD by
modulating cell senescence. It is known that aging is the
dominated risk factor for AD. Cell senescence is irreversible
programed process which determines the aging process of
the body. Telomere shortening plays a crucial role in cell
senescence therefore telomere dysfunction is always associated
with aging-related diseases (Blackburn et al., 2015; Tian et al.,
2019). A recent work reported that FBXW7 mediated cell
senescence through telomere uncapping. FBXW7 interacts with
telomere protection protein 1 (TPP1), promotes TPP1 multisite
ubiquitylation and degradation, and thereby triggers telomere
uncapping and DNA damage response (Wang L. et al., 2020).
However, the potential role of FBXW7 in neuronal senescence
remains to be confirmed.

Parkinson Disease
Parkinson’s disease (PD) is another most common
neurodegenerative disorders, affecting over 1% of the population
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older than 60 years of age. PD is characterized by progressive
degeneration of nigrostriatal dopaminergic (DA) neurons in
the midbrain and clinically diagnosed as motor abnormalities
including bradykinesia, resting tremor, and cogwheel rigidity
(Duvoisin, 1992; Abou-Sleiman et al., 2006). Mutations in
the PARK2 gene are involved in a small portion of the cases
which is known as autosomal recessive juvenile parkinsonism
(ARJP) (Saito et al., 2000). It has been reported that FBXW7β

levels are elevated in the cortexes of PD patients with a
biallelic PARK2 mutation. Parkin, the product of PARK2
gene, is responsible for polyubiquitylating FBXW7β and
targeting it for proteasomal degradation. Parkin deficiency-
mediated FBXW7β elevation in some PD cases accelerates
Mcl-1 degradation, subsequently leading to aberrant neuronal
apoptosis (Ekholm-Reed et al., 2013). Intriguingly, it was
also reported that FBXW7β protein level did not change in
postmortem sporadic PD brains but FBXW7β was highly
oxidized with excessive carbonyl formation. Similarly in the
6-hyroxydopamine (6-OHDA) induced PD mouse model,
both of the total and oxidation level of FBXW7β decreased
in the substantia nigra compacta. 6-OHDA enhanced the
binding of FBXW7β with Hsc70, another fundamental regulator
of chaperone-mediated autophagy (CMA), enabling the
delivery of FBXW7β to LAMP2A and accelerating FBXW7β

degradation mediated by CMA. However, the functional
implication of oxidation-mediated FBXW7β reduction
in the pathogenesis of PD deserves further investigation
(Wang et al., 2018).

Huntington’s Disease
Huntington’s disease (HD) is an inherited autosomal dominant
neurodegenerative disorder caused by accumulated mutant
Huntingtin (Htt) protein with a poly-glutamine expansion
(encoded by CAG trinucleotide repeat) (Ross and Tabrizi,
2011). Mutant Htt upregulates CK2α kinase and FBXW7,
which phosphorylates and ubiquitylates heat shock transcription
factor 1 (HSF1), respectively, thus promoting its proteasome-
mediated degradation. Consistently, HSF1 was downregulated
in striatum and cortex from patients with HD, causally leading
to neuronal dysfunction. It indicates that blocking FBXW7-
mediated HSF1 degradation may effectively ameliorate defects
in neuronal function and promote survival in HD (Gomez-
Pastor et al., 2017). Moreover, FBXW7 is also implicated in
HD by targeting p53 for degradation. A potential causal role
of impaired mitochondrial fission caused by dysfunction of
dynamin-related protein 1 (Drp1) in neuronal damage of HD has
widely been suggested (Song et al., 2011; Shirendeb et al., 2012).
p53, a stress sensor involved in HD pathogenesis, interacts with
DRP1 to promote DRP1-induced mitochondrial and neuronal
damage (Guo et al., 2013). p53 can be phosphorylated by GSK3
and ATM at serine 33, then ubiquitylated by SCFFBXW7 and
degraded in the proteasomal pathway (Galindo-Moreno et al.,
2019; Cui et al., 2020). This suggests that targeting FBXW7
for inhibiting p53 may prevent the progression of HD by
suppressing DRP1-dependent excessive mitochondrial fission
and neuronal damage.

CHALLENGES AND PROSPECTS ON
DRUG DEVELOPMENT BY TARGETING
FBXW7

Considering the crucial roles of FBXW7 in neurodevelopment
and neurodegeneration, FBXW7 may be a potential therapeutic
target for neurodevelopmental and neurodegenerative disorders
treatment. However, drug development by targeting FBXW7
is also faced with several challenges which may result from
the following reasons. Firstly, FBXW7 functions in multiple
physiological processes by targeting a variety of substrates
therefore potential side effects of FBXW7 modulation should be
considered. For example, FBXW7 is also regarded as a tumor
suppressor and inactivation of FBXW7 can increase resistance
to anti-tubulin drugs and promote tumorigenesis (Yumimoto
and Nakayama, 2020). Moreover, a broad spectrum of the
tissue-specific regulatory mechanisms and substrate selectivity
of FBXW7 further increase the requirement for precise drug
development. Besides, the functional heterogeneity of FBXW7
isoforms remains elusive although it would be more precise
to target specific isoform of FBXW7 for amelioration of
neurodevelopmental and neurodegenerative impairments.

However, instead of directly modulating FBXW7 level or
activity, interventions on interactions between FBXW7 and
its targets may provide a more feasible therapeutic strategy.
For example, some specific oligopeptides which are designed
based on the degron motif within the substrate are confirmed
to effectively inhibit substrates degradation via competing
binding with FBXW7 (Yalla et al., 2018; Wang L. et al., 2020).
As a consequence, the development of chemical inhibitors
or oligopeptides targeting FBXW7 by inhibiting SCFFBXW7

mediated substrate degradation should shed light on the
therapeutic potential of targeting FBXW7-mediated degradation
for the treatment of neurodevelopmental and neurodegenerative
disorders. For example, blocking the FBXW7 mediated HSF1 and
Mcl-1 degradation may effectively ameliorate defects in neuronal
function in HD and PD, respectively, even though effective
acceleration of HIF-1α, PS-1 and RCAN1 by targeting FBXW7-
mediated degradation possibly provides curative effect on AD
treatment (Figure 2). Meanwhile, considering the therapeutic
effect of mTOR inhibitors on ameliorating autism-like symptoms,
appropriate induction of FBXW7-mediated degradation of
mTOR may also be beneficial for autism treatment but the effect
still remains to be demonstrated.

CONCLUSION

Accumulating evidence has shown that FBXW7 functions
in neurodevelopment and neurodegeneration. In summary,
FBXW7 is not only implicated in neurodevelopment by
regulating neurogenesis, myelin development and cerebral
vasculogenesis but also involved in the pathogenesis of some
neurodegenerative disorders, such as AD, PD, and HD (Figure 2).
Thus, targeting FBXW7 or FBXW7-substrate interaction
may offer the opportunities for drug development against
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neurodevelopmental and neurodegenerative impairments even
though some challenges also deserve further consideration.
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