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TigarB Causes Mitochondrial Dysfunction
and Neuronal Loss in PINK1 Deficiency
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Objective: Loss of function mutations in PINK1 typically lead to early onset Parkinson disease (PD). Zebrafish (Danio
rerio) are emerging as a powerful new vertebrate model to study neurodegenerative diseases. We used a pink1
mutant (pink2=2) zebrafish line with a premature stop mutation (Y431*) in the PINK1 kinase domain to identify molec-
ular mechanisms leading to mitochondrial dysfunction and loss of dopaminergic neurons in PINK1 deficiency.
Methods: The effect of PINK1 deficiency on the number of dopaminergic neurons, mitochondrial function, and mor-
phology was assessed in both zebrafish embryos and adults. Genome-wide gene expression studies were undertaken
to identify novel pathogenic mechanisms. Functional experiments were carried out to further investigate the effect of
PINK1 deficiency on early neurodevelopmental mechanisms and microglial activation.
Results: PINK1 deficiency results in loss of dopaminergic neurons as well as early impairment of mitochondrial func-
tion and morphology in Danio rerio. Expression of TigarB, the zebrafish orthologue of the human, TP53-induced gly-
colysis and apoptosis regulator TIGAR, was markedly increased in pink2=2 larvae. Antisense-mediated inactivation of
TigarB gave rise to complete normalization of mitochondrial function, with resulting rescue of dopaminergic neurons
in pink2=2 larvae. There was also marked microglial activation in pink2=2 larvae, but depletion of microglia failed to
rescue the dopaminergic neuron loss, arguing against microglial activation being a key factor in the pathogenesis.
Interpretation: Pink12=2 zebrafish are the first vertebrate model of PINK1 deficiency with loss of dopaminergic neu-
rons. Our study also identifies TIGAR as a promising novel target for disease-modifying therapy in PINK1-related PD.
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Autosomal recessively inherited, loss of function

mutations in PTEN-induced kinase 1 (PINK1) typi-

cally lead to early onset Parkinson disease (EOPD).1 The

PINK1 protein is expressed ubiquitously throughout the

human brain.2 Impaired mitochondrial function and

morphology have been described in both human PINK1
mutant patient tissue and different PINK1-deficient in

vitro or in vivo model systems.3,4 PINK1 has also been

implicated in oxidative stress defense, mitophagy, and the

regulation of mitochondrial calcium homeostasis.3–5
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However, the precise mechanisms leading to neuronal

cell death remain unclear. Pink1 knockout mice do not

develop loss of dopamine (DA) neurons in the substantia

nigra and can therefore only be of limited use in investi-

gating the mechanisms leading to neuronal cell death in

human Parkinson disease (PD).6

Zebrafish are increasingly being used to model neu-

rodegenerative diseases.7 As vertebrates, they are closer to

humans than other genetically tractable model organisms

such as Drosophila or Caenorhabditis elegans. Zebrafish

embryos develop externally, are transparent, and have a

well-characterized DA nervous system.8 To date, investi-

gations of the functional consequences of PD gene dys-

function in zebrafish have relied on the injection of

morpholino antisense oligonucleotides (MOs).7 A major

limitation of this approach is that MOs injected into the

fertilized egg lose their effect within 3 to 5 days postferti-

lization, thus precluding investigation of the morphologi-

cal, biochemical, or behavioral effects of gene

dysfunction at larval and adult stages. In addition, mor-

pholinos are frequently associated with nonspecific, off-

target effects.9 Previous studies using the MO strategy to

investigate the effects of PINK1 deficiency in zebrafish

have led to conflicting results.10–12

Using the targeting induced local lesions in

genomes (TILLING) approach, we have now established

a stable line carrying a premature stop mutation in the

kinase-encoding domain of pink1 (Y431*), the zebrafish

orthologue of human PINK1. We provide confirmation

that this mutation leads to inactivation of PINK1 cata-

lytic activity and decreased mRNA stability. We further

demonstrate that PINK1 deficiency in Danio rerio results

in highly specific abnormalities in early development,

which closely match the biochemical and morphological

manifestations of the human disease, with persisting loss

of dopaminergic neurons in adulthood and also persist-

ing mitochondrial impairment. Genome-wide gene

expression studies identified upregulation of TigarB, the

zebrafish homologue of the TP53-induced glycolysis and

apoptosis regulator (TIGAR).13 Remarkably, TigarB
knockdown resulted in normalization of mitochondrial

function and complete rescue of ascending dopaminergic

neurons. Modulation of TIGAR-related mechanisms may

therefore be a promising novel strategy to develop

disease-modifying therapy for PINK1-related PD.

Materials and Methods

All zebrafish husbandry and experimental procedures were per-

formed in accordance with the UK Home Office Animals (Sci-

entific Procedures) Act (project license PPL 40=3402). Details

of animal maintenance, mutagenesis, and identification of the

described pink1 mutation are summarized in the Supplementary

Materials and Methods.

In Vitro Kinase Assay of PINK1 and mRNA
Stability
All PINK1 enzymes used in this study were expressed in Esche-

richia coli as full-length maltose-binding protein fusion proteins

as previously described.14 Briefly, BL21 codon1 transformants

were grown at 37�C then shifted to 16�C and induced with

250lM isopropyl b-D-thiogalactoside at OD600 5 0.5. Cul-

tures were then grown for a further 15 to 16 hours at 16�C.

Cells were lysed by sonication, and lysates were clarified by cen-

trifugation at 30,000 3 g for 30 minutes at 4�C followed by

incubation with 1ml per liter of culture of amylose resin for

1.5 hours at 4�C. The resin was washed thoroughly, and pro-

teins were then eluted and dialyzed overnight at 4�C into stor-

age buffer. Kinase assays were set up in a volume of 40ll, with

substrates at 2lM and all kinases at 1lg in 50mM Tris-HCl

(pH 7.5), 0.1mM ethyleneglycoltetraacetic acid, 10mM MgCl2,

2mM dithiothreitol, and 0.1mM [c-32P]adenosine triphosphate

(ATP). Assays were incubated at 30�C with shaking at

1,200rpm and terminated after 30 minutes by addition of

sodium dodecyl sulfate (SDS) sample buffer. Reaction mixtures

were resolved by SDS–polyacrylamide gel electrophoresis. Pro-

teins were detected by Coomassie staining, and incorporation

of [c-32P]ATP into substrates was analyzed by autoradiography.

RNA was extracted from wt and pink12=2 embryos at 3

days postfertilization (dpf). A Verso cDNA synthesis kit

(Thermo Scientific, Waltham, MA) was used to generate the

cDNA. Transcript levels of pink1 were quantified by quantita-

tive polymerase chain reaction (qPCR) using primers R (50-

CTGATGACGTTCAGCTGGTG) and L (50-CCACAGACT-

GATGTGCAGGA) at an annealing temperature of 60�C.

Quantification of Dopaminergic Neurons
in Zebrafish Larvae and Adult Brains
Whole mount tyrosine hydroxylase (TH) and DA transport

protein (DAT) in situ hybridization was undertaken as previ-

ously described.15 The mean number of these diencephalic

dopaminergic neurons for wt and pink12=2 was calculated over

3 independent experiments (n 5 10 of embryos per genotype

and experiment). Nine adult pink12=2 and a further 9 wild-

type controls (wild-type siblings) were sacrificed at the age of

18 months. The number of dopaminergic neurons in these

adult brains was determined by counting the number of TH-

positive neurons in axial sections within the DC3 and DC4

cluster (see Supplementary Materials and Methods for further

details).

Mitochondrial Respiratory Chain Assays and
Analysis of Mitochondrial Morphology
Mitochondrial respiratory chain assays were undertaken as pre-

viously described.16 Larvae were harvested at 5 dpf (�30 per

sample) for initial assessment of mitochondrial function and at

3 dpf to determine the effect of TigarB knockdown on mito-

chondrial function (see below). Mitochondrial respiratory
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complexes were measured in adult muscle tissue of 24-month-

old pink12=2 and wt zebrafish. Mitochondrial morphology was

assessed at 5 dpf in larvae and at 18 months in adult muscle

tissue (see Supplementary Materials and Methods for further

details).

Neurodevelopmental Markers
In situ hybridization was undertaken using probes for Emx1,

sonic hedgehog (shh), Pax2.1, Krox20, and Otpa=Otpb.

Embryos were fixed at 24 hours postfertilization (hpf ),

mounted in glycerol, and photographed using a Zeiss Axio-

plan microscope (Carl Zeiss, Oberkochen, Germany). All

experiments were done in triplicate; a minimum of 10

embryos were used for each genotype per experiment. Islet-1

antibody staining was carried out at 24 hpf as described

previously.16

mRNA Microarray Expression Analysis
RNA was extracted from pink12=2 and wt at 5 dpf. RNA sam-

ples were labeled and hybridized to Agilent Danio rerio 4 3

44K arrays following the manufacturer’s protocols (Agilent

Technologies, Santa Clara, CA). These data were then analyzed

using GeneSpring GX (Agilent), and significant differentially

expressed probes were defined as those with a probability value

< 0.01 (determined by a t test against zero, using the Benja-

mini–Hochberg correction for multiple comparisons) as well as

fold-change between wt and mutant > 2.0 (see Supplementary

Materials and Methods for further details).

qPCR, In Situ Hybridization, and Knockdown
of TigarB
A detailed description of the TigarB qPCR and in situ hybrid-

ization and MO-mediated TigarB knockdown is provided in

the Supplementary Materials and Methods. The sequence of

the TigarB MO (TBMO2) was 50-TAGAGTGTTTATCTACC

TTGCAGCA. The efficacy of the MO was determined by

reverse transcriptase PCR (RT-PCR; forward: 50-GACCAGTA

TTATGCTCACATTTGC-30 and reverse 50-TCTACAGGCTT

GACCTGCTG-30) and gel electrophoresis (see Supplementary

Fig 1). For confirmatory experiments, a pink1 MO was

designed to the exon–intron boundary of exon 5, referred to as

PINK5 (PINK5 sequence: 50-AGAGTCTCTGAGCTCTTAC

TGTTGT). Efficacy was determined using primers forward

50-CTGACTTTGAACGGGCACTT and reverse 50-TCAGGT

GCCATTAGACAGGA. RT-PCR was always performed at 3

dpf on cDNA from control MO-injected, PINK5-injected, and

coinjected PINK5 1 TBMO2 to confirm the knockdown effect

of PINK5. For the coinjection, 7.5ng PINK5 and 7.5ng

TBMO2 were injected simultaneously at single cell stage. RT-

PCR was performed during every technical replicate to deter-

mine the efficacy for both MOs (see also Supplementary Fig 2).

Detection and Inactivation of Microglia
Microglial cells were stained using an in situ probe for apolipo-

protein E (ApoE) as previously described.17 The microglial cells

were then counted in pink2=2 zebrafish larvae and wt controls

at 72 hpf, using a Zeiss Axioplan microscope.

An MO against the myeloid transcription factor pu.1 was

injected at single cell stage to inhibit macrophage maturation

and thus inactivate microglial cells as previously described.18

The number of activated microglial cells was then counted in

anti-pu.1 MO-injected and uninjected pink12=2 larvae as

described above.

Statistical Analysis
All experiments were undertaken in triplicate unless specifically

stated otherwise. Data represent the mean 6 standard error of

the mean. A minimum of 10 embryos were used per genotype

for each replicate experiment. Each treatment group was nor-

malized to the appropriate wild-type control group, and results

were expressed as a percentage of control group mean. One-

way analysis of variance and t tests of significance were used

unless stated otherwise as measures of significance (Prism, ver-

sion 5.0; GraphPad Software, La Jolla, CA).

Results

TILLING Identifies a Truncating Mutation in
pink1 (Y431*)
An N-ethyl-N-nitrosourea (ENU) mutagenized library was

screened for mutations in exons 3, 4, 5, 6, and 7, encoding

the kinase domain of the zebrafish pink1 homologue. A het-

erozygous male was identified from the SM0604 library with

a T to G change at position 1,405 in NM_001008628

(chr23:37574658) in exon 7 (Fig 1A), resulting in a change

from tyrosine to a stop codon at position 431 (Y431*) toward

the end of the kinase domain (see Fig 1B). The mutation was

confirmed with a second, independent method (DdeI restric-

tion digest, data not shown). All experiments and results

reported in this publication were performed on Y431*

mutant fish from the F4 or subsequent generations.

Y431X Mutation Leads to Loss of PINK1
Catalytic Activity and Decreased mRNA Stability
We next investigated the effect of the identified Y431X

truncating mutation on PINK1 kinase activity. We ini-

tially analyzed this mutation in zebrafish PINK1; how-

ever, we were unable to detect any kinase activity of full-

length wild-type zebrafish PINK1 in vitro (Supplemen-

tary Fig 3). It has previously been demonstrated that an

insect orthologue, Tribolium castaneum PINK1

(TcPINK1), exhibits robust kinase activity in vitro as

judged by phosphorylation of substrates including myelin

basic protein (MBP) and the ubiquitinlike (Ubl) domain

of parkin at serine 65.14,19 We therefore modeled the

zebrafish Y431X into TcPINK1 (equivalent to Y419X)

and determined the effect on kinase activity. We found

that the Y419X mutation abolished TcPINK1 activity

against the parkin Ubl domain (see Fig 1C) and MBP

(Supplementary Fig 4). This is consistent with a previous

study that showed that the C terminus of PINK1 is

essential for kinase activity.14 We also hypothesized that

Flinn et al: TigarB and PINK1 Deficiency

December 2013 839



the Y431X mutation results in decreased mRNA stability

due to nonsense-mediated decay. As predicted, compari-

son of pink1 transcript levels in wt and pink12=2

embryos revealed a marked decrease of the pink12=2

transcript by approximately 65% (p < 0.0001) compared

to pink1 transcript levels in wt embryos (see Fig 1D).

Pink12=2 Mutants Have Persistent Loss
of Dopaminergic Neurons
Using in situ hybridization with an antisense RNA probe

for TH, we analyzed the effect of loss of pink1 on dience-

phalic dopaminergic neurons at 5 dpf. The analysis con-

centrated on particular subgroups of dopaminergic neurons

within the diencephalon, namely populations 1, 2, 4, and

5 in the Rink–Wullimann terminology, which are thought

to contain ascending dopaminergic neurons analogous to

those in the mammalian substantia nigra.20,21 The number

of such ascending diencephalic dopaminergic neurons was

reduced by approximately 25% in pink12=2 larvae (p <

0.05; Fig 2). To confirm that the loss of TH positivity was

due specifically to cell loss and not only a reduction of

TH gene expression, we also performed in situ hybridiza-

tion using another marker of dopaminergic neurons,

namely DAT. At 5 dpf, the number of DAT1 diencephalic

neurons in pink12=2 larvae was reduced by approximately

30% when compared to wt (p < 0.01; see Fig 2D), pro-

viding supporting evidence for loss of diencephalic dopa-

minergic neurons in pink12=2 larvae. We next determined

whether this reduction in dopaminergic neurons persists to

adulthood. Two different clusters of dopaminergic neurons

were analyzed, namely the DC3 and DC4 clusters. TH1

neurons in the DC3 cluster are located in the hypothala-

mus and project locally; TH1 neurons in the DC4 cluster

are located in the posterior tuberculum and have long axo-

nal projections to different regions in the brain and spinal

cord, including the telencephalon.22 There was a marked

reduction in the number of ascending dopaminergic neu-

rons in the DC4 cluster (wt 21.9 6 5.9 cells, pink12=2

12.0 6 6.3 cells, p < 0.01; Fig 3); the reduction in the

DC3 cluster failed to reach statistical significance (wt 28.2

6 4.5 cells, pink12=2 17.7 6 4.5 cells, p > 0.05). The

FIGURE 1:

FIGURE 1: Gene and mutation profile of PINK1Y431* zebra-
fish. (A) Chromatograms of wild-type (WT) zebrafish pink1
sequence (upper panel) and homozygous Y431* pink1
sequence (lower panel), with T>G change at position 1,405
in NM_001008628, highlighted in purple. (B) Comparison of
the human PINK1 (top, MTS 5 mitochondrial target
sequence) and WT zebrafish (middle) PINK1 protein struc-
ture as well as the truncated PINK1Y431* protein (bottom).
(C) TcPINK1 Y419X mutation (equivalent to zebrafish
Y431X) leads to loss of kinase activity against parkin ubiqui-
tinlike (Ubl) domain. Y419X TcPINK1 (TcY419X) was assayed
in parallel with WT TcPINK1 (TcWT) and kinase-inactive
TcPINK1 (TcKI). (D) Quantitative polymerase chain reaction
of pink1 transcript levels in wt and pink12=2 embryos; wt
levels were normalized to 100%, whereas those from
pink12=2 embryos were expressed as a percentage of this.
In pink12=2 embryos, the pink1 transcript was reduced by
approximately 65% (65%, ****p < 0.0001) compared to wt.
This suggests that the Y431* mutation causes nonsense-
mediated decay of pink1 mRNA, thus further confirming
that the Y431* mutation results in loss of function of PINK1.
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decline in the number of ascending dopaminergic neurons

from �25% reduction at 5 dpf to �50% in 18-month-

old adults could indicate a progressive loss of these ascend-

ing dopaminergic neurons in pink1 mutants from early

development to adulthood, but additional experiments

determining the number of dopaminergic neurons at mul-

tiple time points throughout development and adulthood

are necessary to confirm or refute a progressive nature of

the observed neuronal cell loss.

The Effect of PINK1 Deficiency Is Highly
Specific
Anichtchik et al previously reported that morpholino

antisense mediate knockdown of pink1 in zebrafish

embryos resulted in a “severe developmental phenotype”

with major generalized neurodevelopmental abnormal-

ities.10 In contrast, our pink12=2 embryos did not dis-

play any overt morphological abnormalities. To

investigate further the effect of PINK1 deficiency on cru-

cial neurodevelopmental pathways, detailed in situ

expression analysis was performed, using a panel of neu-

rodevelopmental markers that included Emx1 (expression

predominantly in ventricular zone and mantle of telen-

cephalon), shh (ventral diencephalon, hypothalamus,

basal plate, and floor plate), Pax2.1 (midbrain–hindbrain

boundary), Krox20 (rhombomeres 3 and 5), and Otpa-
Otpb (dopaminergic neurons in the diencephalon).23–28

Both the spatiotemporal expression patterns and the

intensities were identical for all neurodevelopmental

markers in pink2=2 and wt embryos (Supplementary

Fig 5). These data imply that the loss of PINK1 activity

caused by mutational inactivation of the endogenous

gene product does not cause widespread and nonspecific

early neurodevelopmental abnormalities. Additional Islet-1

staining of motor neurons was identical in wt and

pink2=2 embryos, further supporting our assumption that

PINK1 deficiency predominantly exerts its effect on dopa-

minergic neurons (Supplementary Fig 6).

Pink12=2 Mutants Have Reduced Mitochondrial
Complex I and III Activity
Because mitochondrial dysfunction is a key factor in the

pathogenesis of human PINK1-linked PD, we assayed

mitochondrial activity in pink12=2 larvae. Complex I

FIGURE 2: Loss of dopaminergic neurons in pink12=2 larvae.
Representative examples of wt (A) and pink12=2 larvae (B)
after in situ hybridization with a tyrosine hydroxylase (TH)
probe at 5 days postfertilization. Purple coloration indicates
TH1 cells in the brain. Pink12=2 larvae had a lower number
of dopaminergic neurons in Rink–Wullimann groups 1,2, 4,
and 5 (C; *p < 0.05, 2-tailed, unpaired t test using Welch’s
correction). The loss of dopaminergic neurons was confirmed
using a dopamine transport protein (DAT) probe as a further
in situ marker for dopaminergic neurons (D; **p < 0.01).

FIGURE 3: Marked loss of dopaminergic neurons in
pink12=2 adult brain. Representative axial sections of the
DC4 cluster in wt (A) and pink12=2 (B) adult brains are
shown stained with anti–tyrosine hydroxylase antibody.
(C, D) Enlarged images of A and B (area within yellow box),
respectively. There is marked reduction in the number of
dopaminergic neurons in the DC4 cluster of pink12=2 brains
(p < 0.01, 2-way analysis of variance). Scale bars 5 200lm
(A, B) and 50lm (C, D).
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activity was reduced by 78% in pink12=2 larvae com-

pared to wt siblings (p < 0.05; mean 6 standard devia-

tion: wt 2.17 6 0.5, pink12=2 0.49 6 0.1). Complex

III activity was also reduced by 50% (p < 0.05; wt

695.2 6 125, pink12=2 342.4 6 51.2). In contrast,

complex II activity (wt 0.55 6 0.12, pink12=2 0.51 6

0.13, p > 0.05) and complex IV activity (wt 537.1 6

81.9, pink12=2 471.1 6 74.6, p > 0.05) were similar in

wt and pink12=2 larvae (Fig 4).

We next investigated whether mitochondrial dys-

function might increase with ageing by assessing mito-

chondrial respiratory chain activity in muscle tissue of 2-

year-old pink2=2 zebrafish. Neither complex I nor com-

plex III activity showed a further decrease (complex I: wt

3.44 6 0.75, pink12=2 1.47 6 0.5; complex III: wt
296.74 6 67.1, pink12=2 140.5 6 43.3, p < 0.05

when compared to adult wt, p > 0.05 when compared

to pink2=2 larvae; see Fig 4). Similarly, complex II and

complex IV activity remained at comparable levels in

pink2=2 and wt adults (complex II: wt 2.5 6 0.7,

pink12=2 2.6 6 0.6; complex IV: wt 247.3 6 53.2,

pink12=2 258.6 6 82.9).

Mitochondrial Morphology
At 5 dpf, the density or number of mitochondria per

area did not differ significantly between pink12=2 and

wt (ratio 0.52 6 0.13 for mitochondrial area=total area

in pink12=2 vs 0.58 6 0.09 for wt). However, individual

mitochondria were on average 40% larger compared to

wt (pink12=2 0.69lm2, n 5 175, per mitochondrial sec-

tion vs wt 0.49lm2, n 5 174, p < 0.05; Fig 5A, B). We

also observed an increase (�47%) in the average mito-

chondrial area per section in pink12=2 mutant adults

(pink12=2 1.37lm2 per mitochondrial section [n 5

228] vs wt 0.93lm2 [n 5 231], p < 0.05; see Fig 5C,

D). Taking these data together, we conclude that PINK1

deficiency results in moderate yet significant alterations

in mitochondrial ultrastructure. Similar to the changes in

mitochondrial function, the increase in mitochondrial

size is already present during early development and is

not further exacerbated through adulthood.

TigarB Upregulation in Pink12=2 Larvae
We next hypothesized that the observed mitochondrial

dysfunction and loss of dopaminergic neurons in

pink12=2 larvae might be influenced by changes in gene

expression. Using an unbiased, array-based, genome-wide

gene expression analysis approach, we identified 274

probes with >2-fold change and p < 0.01 (when cor-

rected for multiple comparisons). One hundred sixteen

probes=108 genes were upregulated (higher in pink12=2

than wt), and 158 probes=146 genes were downregulated

(lower in pink12=2 than in wt; Supplementary Table).

TigarB (ENSDARG00000045858), an orthologue

of TIGAR (ENST00000179259), shares 40% protein

homology and 62% transcript homology to the human

gene and was upregulated more than 12-fold in

pink12=2 embryos in the initial gene array experiments.

TigarB mRNA levels were also increased in pink12=2

embryos in the confirmatory qPCR experiments when

compared to wt after normalization to the housekeeping

gene EF1alpha (2.5-fold upregulation, p 5 0.0003).

Whole mount in situ hybridization analysis revealed a

FIGURE 4: Pink12=2 zebrafish have similar complex I and III
deficiency in early development and adult tissue. Activity of
individual mitochondrial complexes measured relative to the
mitochondrial marker enzyme citrate synthase and
expressed as percentage wild type (%WT), in wt (white
bars) and pink12=2 (black bars) embryos at 5 days postferti-
lization as well as wt and pink12=2 adult muscle tissue.
Complex I and complex III activity in pink12=2 embryos is
significantly lowered (*p < 0.05); this defect is still present
in adult pink12=2 muscle (*p < 0.05). However, the magni-
tude of the defect does not change when comparison is
made between pink12=2 embryos and pink12=2 adult zebra-
fish (complex I, p 5 0.09; complex III, p 5 0.7). Complex II
and IV activity remain unchanged in both pink12=2 embryos
and pink12=2 mutant adults.
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marked upregulation of TigarB in pink12=2 brains as

early as 24 hpf (Fig 6). Zebrafish possess an additional

TIGAR orthologue, TigarA (ENSDARG00000051749),

which shares 40% protein homology with the human

TIGAR gene, but this transcript did not show a change

in the microarray experiments (data not shown).

To investigate the functional significance of TigarB

upregulation, an MO (TBMO2) designed to disrupt

TigarB splicing was injected into single cell stage

pink12=2 embryos and wt controls (see Supplementary

Fig 1). This MO-mediated inactivation of TigarB

resulted in complete rescue of dopaminergic neurons in

pink12=2 larvae at 3 dpf (Fig 7, top). To further validate

the rescue effect of TigarB knockdown in PINK1 defi-

ciency, confirmatory double-knockdown experiments

were undertaken in wt zebrafish embryos. Coinjections

were undertaken with PINK5, an MO directed against

the exon–intron boundary of exon 5, and the TigarB

MO TBMO2. PINK5 MO-mediated pink1 knockdown

led to a reduction of the dopaminergic neurons by

approximately 20% at 3 dpf (p 5 0.01), similar to the

observed reduction of dopaminergic neurons in the stable

pink1 mutant line. Coinjection of the MOs PINK5 and

TBMO2 again completely rescued the dopaminergic

neurons (see Fig 7, bottom).

We hypothesized that this rescue may be due to

normalization of mitochondrial function after TigarB
inactivation and therefore assessed the activity of the

individual complexes of the mitochondrial respiratory

chain in pink12=2 larvae. As predicted, both complex I

activity and complex III activity were normalized in

pink12=2 larvae after TigarB inactivation (Fig 8).

Microglial Activation
Abnormal expression of innate immunity genes precedes

dopaminergic deficits in PINK1-deficient mice.29 Moderate

microgliosis was reported in the only postmortem report

on a brain of a PD patient with 2 PINK1 mutations.30 Of

note, several of the markedly upregulated genes in our

gene expression analysis (see see Supplementary Table),

such as complement factor H and calpain, are involved in

immune mechanisms and activation of microglial cells.31

Using an ApoE in situ probe as a microglial marker, we

compared the number of microglial cells in wt and

pink12=2 zebrafish larvae.17 There was a marked increase

in microglial activation in the pink12=2 embryos at 3 dpf

(pink12=2 32.3 6 4.7 microglial cells per embryo, wt
20.0 6 0.82, p < 0.05; Fig 9). Microglial development

can be completely abolished in zebrafish embryos using an

MO targeting the transcription factor pu.1 (Supplementary

Fig 7).32 We postulated that inactivation of microglia

resulting from MO-mediated pu.1 knockdown might have

a protective effect on the dopaminergic neurons in the

pink12=2 embryos. However, there was no difference in

the number of dopaminergic neurons between uninjected

and pu.1 MO-injected pink12=2 larvae (number of dopa-

minergic neurons in pu.1 MO-injected pink12=2 embryos:

26.5 6 1.36; number of dopaminergic neurons in unin-

jected pink12=2 embryos: 25.0 6 1.55, p > 0.05). This

suggests that the observed microglial activation may be a

downstream mechanism involved in clearing already dam-

aged or dead dopaminergic neurons, rather than a crucial

upstream mechanism leading to the loss of dopaminergic

neurons in PINK1 deficiency.

Discussion

Genetic research has provided crucial new insight into the

pathogenesis of PD, but the precise mechanisms leading

FIGURE 6: TigarB is expressed in brain tissue and upregu-
lated in pink12=2. Whole mount in situ hybridization was
performed using a riboprobe specific for TigarB expression.
TigarB expression was largely limited to the brain. Pink12=2

embryos show a marked increase in TigarB expression (bot-
tom panels) compared to wt (top panels) throughout devel-
opment. hpf 5 hours postfertilization.

FIGURE 5: Mitochondria are enlarged in both larval (B) and
adult (D) pink12=2 tissue compared to larval (A) or adult (C)
wt control tissue. Electron microscopy sections of muscle
tissue in 5-day-old zebrafish larvae and 2-year-old adult
zebrafish are shown. The average size of the mitochondria
was larger in both pink12=2 larvae and adult tissue (p <
0.01; 2-sided Student t test). In adult pink12=2 tissue, some
mitochondria had considerably higher electron density than
others (D).
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to neuronal cell death remain to be elucidated.33 Recessive

loss of function mutations in autosomal genes such as par-

kin, PINK1, or DJ-1 are associated with inherited forms

of EOPD. Conditional knockout of parkin in adult

rodents leads to progressive loss of dopaminergic neurons,

but classical parkin, Pink1, or DJ-1 knockout mice do not

develop loss of dopaminergic neurons, hampering investi-

gation of their pathogenic effects especially in early stages

of brain development.6,34 By contrast, our pink2=2 zebra-

fish display loss of dopaminergic neurons as well as other

key features of the disease, such as impaired mitochondrial

function and morphology as early as 5 dpf, thus providing

a tractable vertebrate genetic model for EOPD. The

FIGURE 7: Morpholino antisense oligonucleotide (MO)-medi-
ated knockdown of TigarB results in rescue of dopaminergic
neurons. Tyrosine hydroxylase neurons were counted at 3
days postfertilization (dpf) and expressed as a percentage
of wt uninjected mean. TigarB knockdown in wt embryos
(30 6 2.92, WT TBMO2) resulted in a small increase of 5%
compared to wt uninjected (28 6 1.21, WT), but this did
not reach statistical significance (p > 0.05). The pink12=2

uninjected embryos displayed a similar decrease in the num-
ber of dopaminergic neurons (22.8 6 1.3, PINK12=2) as
observed at 5 dpf (see Fig 2) of approximately 20% (*p 5

0.04, PINK12=2), but MO knockdown of TigarB in pink12=2

embryos completely rescued the dopaminergic neurons
(29.2 6 2.6, **p 5 0.01, PINK1 TBMO2, top panel). In con-
firmatory experiments, coinjections of an MO directed
against pink1 (PINK5) and Tigar (TBMO2) again completely
rescued the dopaminergic neurons in pink1-deficient zebra-
fish embryos (bottom, **p < 0.01).

FIGURE 8: Spectrophotometric measurement of complex I
activity was lower by 55% in pink12=2 zebrafish (black bars)
compared to wt sibling embryos (white bars) at 3 days post-
fertilization, and recovered to normal levels in pink12=2

zebrafish with TigarB knockdown (gray bars; wt 8.07 6

0.25, wt with TigarB knockdown [second white bar] 8.618 6

1.11, pink12=2 3.67 6 0.99, pink12=2 TigarB morpholino
antisense oligonucleotide 10.98 6 1.67, *p < 0.05). Com-
plex III activity was similarly reduced by 55% in pink12=2

zebrafish compared to wt sibling embryos, and recovered
to normal levels in pink12=2 zebrafish with TigarB knock-
down (wt 796 6 52, wt with TigarB knockdown 695 6 29,
pink12=2 351 6 106, pink12=2 with TigarB knockdown 749
6 228, *p < 0.05).
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precise projection of the dopaminergic neurons in the pos-

terior tuberculum is still a matter of debate.20,35,36 How-

ever, all studies using zebrafish as an animal model for PD

have universally observed a loss of dopaminergic neurons

in the posterior tuberculum after PD toxin exposure such

as treatment with MPP1 and frequently also after MO-

mediated transient PD gene knockdown.11,37 The func-

tional relevance of the Y431X mutation was confirmed in

kinase activity assays but also by studying the effect of this

Y431X mutation on pink1 transcript levels.

Importantly, our data also suggest that both mito-

chondrial dysfunction and changes in mitochondrial

morphology are early, specific consequences of PINK1

deficiency that do not progress further with age.

TIGAR is a bisphosphatase that lowers fructose-2,6-

biphosphate (Fru-2,6-P2) levels in cells, resulting in an

inhibition of glycolysis and an overall decrease in intracel-

lular reactive oxygen species via increased production of

nicotinamide adenine dinucleotide phosphate through the

pentose phosphate shunt.13 Recombinant human and

zebrafish TIGAR have similar catalytic activity.38

Increased substrate provision normalizes impaired mito-

chondrial respiration in PINK1 deficiency.39 Further

studies are needed to determine whether decreased sub-

strate provision for mitochondrial respiration via TIGAR-

mediated inhibition of glycolysis may contribute to this

relative substrate deficiency in the absence of PINK func-

tion. More recently, TIGAR has also been identified as a

negative regulator of mitophagy.40 TIGAR upregulation

results in an increased number of enlarged mitochondria

in mice, comparable to the mitochondrial enlargement

identified in our pink12=2 zebrafish.40 Impaired mitoph-

agy is currently considered to be a crucial mechanism in

the pathogenesis of early onset PD.41 The observed

TigarB upregulation in pink12=2 zebrafish now suggests

that additional mechanisms other than impaired PINK1-

mediated recruitment of parkin to damaged mitochondria

may contribute to impaired mitophagy in PD.42 The res-

cue of dopaminergic neurons in pink12=2 zebrafish after

TigarB inactivation was confirmed using a complemen-

tary, MO-mediated pink1 knockdown approach.

The complete normalization of mitochondrial func-

tion and resulting rescue of ascending dopaminergic neu-

rons after antisense-mediated TigarB inactivation suggests

that modulation of TIGAR-mediated mechanisms may

be a promising strategy for disease-modifying therapy.

TIGAR is typically activated by p53. Our data therefore

provide a further intriguing link between neurodegenera-

tion and cancer-related mechanisms.43,44

Both the extent of microglial activation and the

lack of a protective effect of microglia on the loss of the

dopaminergic neurons in pink12=2 embryos were some-

what surprising. Our data suggest that microglial activa-

tion is—at least in this model—more likely to reflect

either nonspecific activation or a limited role for micro-

glia in the clearing of cell debris.

Acknowledgment

Financial support from Parkinson’s UK (G-0608; G-

0901) BBSRC/Lilly (PhD CASE studentship, BB/

I532553/1) and Sheffield Hospitals Charitable Trust

(7884) for O.B. and from the Medical Research Council

(MRC) to P.W.I. is gratefully acknowledged. This work

was also supported by the Cluster of Excellence Frankfurt

Macromolecular Complexes at the Goethe University

FIGURE 9: Marked microglial activation in pink12=2

embryos. Whole mount in situ hybridization using a ribop-
robe specific for apolipoprotein E revealed marked increase
of activated microglia in pink12=2 compared to wt at 5 days
postfertilization (A: wt; B: pink12=2; C: quantitative analysis,
*p < 0.05, t test; please note that A and B were contrast-
enhanced for illustrative purposes).

Flinn et al: TigarB and PINK1 Deficiency

December 2013 845



Frankfurt DFG project EXC 115, the DFG grant

RE1575-1=1 (A.S.R.), and the Humboldt Association

(R.W.K.). M.M.K.M. is funded by a Wellcome Interme-

diate Clinical Fellowship (083601=Z=07=Z); Parkinson’s

UK; the Michael J. Fox Foundation for Parkinson’s

Research; a Wellcome=MRC PD consortium grant to the

University College London Institute of Neurology, Uni-

versity of Sheffield, and MRC Protein Phosphorylation

and Ubiquitylation Unit of the University of Dundee;

and the pharmaceutical companies supporting the Divi-

sion of Signal Transduction Therapy Unit (AstraZeneca,

Boehringer Ingelheim, GlaxoSmithKline, Merck, Janssen

Pharmaceutica, and Pfizer).

The sequence analysis that led to the identification of

the pink1Y431* mutation was undertaken at the Wellcome

Sanger Institute, Cambridge by Drs R. Kettleborough

and D. Stemple.

We thank Drs W Driever, F Peri, KB Rohr, and G De

Rienzo for sharing in situ probes with us; L. Jennen for

preparing electron microscopy sections and recordings;

the aquarium staff at the MRC Centre for Developmen-

tal and Medical Genetics, University of Sheffield; and Dr

M. Peggie for generating plasmid cDNA clones for

expression of zebrafish and Tribolium castaneum PINK1.

We would also like to acknowledge technical assistance

by Dr Huw Jones.

Authorship

L.J.F. and M.K. contributed equally to this article.

Potential Conflicts of Interest

Nothing to report.

References

1. Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-
onset Parkinson’s disease caused by mutations in PINK1. Science
2004;21: 304:1158–1160.

2. Gandhi S, Muqit MM, Stanyer L, et al. PINK1 protein in normal
human brain and Parkinson’s disease. Brain 2006;129:1720–1731.

3. Hoepken HH, Gispert S, Morales B, et al. Mitochondrial dysfunc-
tion, peroxidation damage and changes in glutathione metabo-
lism in PARK6. Neurobiol Dis 2007;25:401–411.

4. Morais VA, Verstreken P, Roethig A, et al. Parkinson’s disease
mutations in PINK1 result in decreased Complex I activity and
deficient synaptic function. EMBO Mol Med 2009;1:99–111.

5. Gautier CA, Kitada T, Shen J. Loss of PINK1 causes mitochondrial
functional defects and increased sensitivity to oxidative stress.
Proc Natl Acad Sci U S A 2008;105:11364–11369.

6. Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkin-
son’s disease. Neuron 2010;66:646–661.

7. Bandmann O, Burton EA. Genetic zebrafish models of neurodege-
nerative diseases. Neurobiol Dis 2010;40:58–65.

8. Panula P, Chen YC, Priyadarshini M, et al. The comparative neuro-
anatomy and neurochemistry of zebrafish CNS systems of rele-
vance to human neuropsychiatric diseases. Neurobiol Dis 2010;40:
46–57.

9. Bill BR, Petzold AM, Clark KJ, et al. A primer for morpholino use
in zebrafish. Zebrafish 2009;6:69–77.

10. Anichtchik O, Diekmann H, Fleming A, et al. Loss of PINK1 func-
tion affects development and results in neurodegeneration in
zebrafish. J Neurosci 2008;28:8199–8207.

11. Sallinen V, Kolehmainen J, Priyadarshini M, et al. Dopaminergic
cell damage and vulnerability to MPTP in Pink1 knockdown zebra-
fish. Neurobiol Dis 2010;40:93–101.

12. Xi Y, Ryan J, Noble S, et al. Impaired dopaminergic neuron devel-
opment and locomotor function in zebrafish with loss of pink1
function. Eur J Neurosci 2010;31:623–633.

13. Bensaad K, Tsuruta A, Selak MA, et al. TIGAR, a p53-inducible
regulator of glycolysis and apoptosis. Cell 2006;126:107–120.

14. Woodroof HI, Pogson JH, Begley M, et al. Discovery of catalyti-
cally active orthologues of the Parkinson’s disease kinase PINK1:
analysis of substrate specificity and impact of mutations. Open
Biol 2011;1:110012.

15. Thisse C, Thisse B. High-resolution in situ hybridization to whole-
mount zebrafish embryos. Nat Protoc 2008;3:59–69.

16. Flinn L, Mortiboys H, Volkmann K, et al. Complex I deficiency and
dopaminergic neuronal cell loss in parkin-deficient zebrafish
(Danio rerio). Brain 2009;132:1613–1623.

17. Peri F, Nusslein-Volhard C. Live imaging of neuronal degradation
by microglia reveals a role for v0-ATPase a1 in phagosomal fusion
in vivo. Cell 2008;133:916–927.

18. Su F, Juarez MA, Cooke CL, et al. Differential regulation of primi-
tive myelopoiesis in the zebrafish by Spi-1=Pu.1 and C=ebp1.
Zebrafish 2007;4:187–199.

19. Kondapalli C, Kazlauskaite A, Zhang N, et al. PINK1 is activated
by mitochondrial membrane potential depolarization and stimu-
lates Parkin E3 ligase activity by phosphorylating Serine 65. Open
Biol 2012;2:120080.

20. Rink E, Wullimann MF. The teleostean (zebrafish) dopaminergic sys-
tem ascending to the subpallium (striatum) is located in the basal
diencephalon (posterior tuberculum). Brain Res 2001;889:316–330.

21. Rink E, Wullimann MF. Connections of the ventral telencephalon
and tyrosine hydroxylase distribution in the zebrafish brain (Danio
rerio) lead to identification of an ascending dopaminergic system
in a teleost. Brain Res Bull 2002;57:385–387.

22. Schweitzer J, Lohr H, Filippi A, Driever W. Dopaminergic and nor-
adrenergic circuit development in zebrafish. Dev Neurobiol 2012;
72:256–268.

23. Del Giacco L, Sordino P, Pistocchi A, et al. Differential regulation
of the zebrafish orthopedia 1 gene during fate determination of
diencephalic neurons. BMC Dev Biol 2006;6:50.

24. Pfeffer PL, Gerster T, Lun K, et al. Characterization of three novel
members of the zebrafish Pax2=5=8 family: dependency of Pax5
and Pax8 expression on the Pax2.1 (noi) function. Development
1998;125:3063–3074.

25. Ryu S, Mahler J, Acampora D, et al. Orthopedia homeodomain
protein is essential for diencephalic dopaminergic neuron devel-
opment. Curr Biol 2007;17:873–880.

26. Scholpp S, Wolf O, Brand M, Lumsden A. Hedgehog signalling
from the zona limitans intrathalamica orchestrates patterning of
the zebrafish diencephalon. Development 2006;133:855–864.

27. Viktorin G, Chiuchitu C, Rissler M, et al. Emx3 is required for the
differentiation of dorsal telencephalic neurons. Dev Dyn 2009;238:
1984–1998.

ANNALS of Neurology

846 Volume 74, No. 6



28. Voiculescu O, Taillebourg E, Pujades C, et al. Hindbrain pattern-
ing: Krox20 couples segmentation and specification of regional
identity. Development 2001;128:4967–4978.

29. Akundi RS, Huang Z, Eason J, et al. Increased mitochondrial cal-
cium sensitivity and abnormal expression of innate immunity
genes precede dopaminergic defects in Pink1-deficient mice.
PLoS One 2011;6:e16038.

30. Samaranch L, Lorenzo-Betancor O, Arbelo JM, et al. PINK1-linked
parkinsonism is associated with Lewy body pathology. Brain 2010;
133(pt 4):1128–1142.

31. Levesque S, Wilson B, Gregoria V, et al. Reactive microgliosis:
extracellular micro-calpain and microglia-mediated dopaminergic
neurotoxicity. Brain 2010;133(pt 3):808–821.

32. Rhodes J, Hagen A, Hsu K, et al. Interplay of pu.1 and gata1
determines myelo-erythroid progenitor cell fate in zebrafish. Dev
Cell 2005;8:97–108.

33. Hardy J. Genetic analysis of pathways to Parkinson disease. Neu-
ron 2010;68:201–206.

34. Shin JH, Ko HS, Kang H, et al. PARIS (ZNF746) repression of
PGC-1alpha contributes to neurodegeneration in Parkinson’s dis-
ease. Cell 2011;144:689–702.

35. Rink E, Wullimann MF. Development of the catecholaminergic sys-
tem in the early zebrafish brain: an immunohistochemical study.
Brain Res Dev Brain Res 2002;137:89–100.

36. Tay TL, Ronneberger O, Ryu S, et al. Comprehensive catecholami-
nergic projectome analysis reveals single-neuron integration of

zebrafish ascending and descending dopaminergic systems. Nat
Commun 2011;25: 2:171.

37. Bretaud S, Lee S, Guo S. Sensitivity of zebrafish to environmental
toxins implicated in Parkinson’s disease. Neurotoxicol Teratol
2004;26:857–864.

38. Li H, Jogl G. Structural and biochemical studies of TIGAR (TP53-
induced glycolysis and apoptosis regulator). J Biol Chem 2009;
284:1748–1754.

39. Gandhi S, Wood-Kaczmar A, Yao Z, et al. PINK1-associated Par-
kinson’s disease is caused by neuronal vulnerability to calcium-
induced cell death. Mol Cell 2009;33:627–638.

40. Hoshino A, Matoba S, Iwai-Kanai E, et al. p53-TIGAR axis attenu-
ates mitophagy to exacerbate cardiac damage after ischemia. J
Mol Cell Cardiol 2012;52:175–184.

41. Vives-Bauza C, Przedborski S. Mitophagy: the latest problem for
Parkinson’s disease. Trends Mol Med 2011;17:158–165.

42. Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabi-
lized on impaired mitochondria to activate Parkin. PLoS Biol 2010;
8:e1000298.

43. Green DR, Chipuk JE. p53 and metabolism: inside the TIGAR.
Cell 2006;126:30–32.

44. Plun-Favreau H, Lewis PA, Hardy J, et al. Cancer and neurodegen-
eration: between the devil and the deep blue sea. PLoS Genet
2010;6:e1001257.

Flinn et al: TigarB and PINK1 Deficiency

December 2013 847


