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Abstract: Aiming to implement image segmentation precisely and efficiently, we exploit new ways
to encode images and achieve the optimal thresholding on quantum state space. Firstly, the state
vector and density matrix are adopted for the representation of pixel intensities and their probability
distribution, respectively. Then, the method based on global quantum entropy maximization (GQEM)
is proposed, which has an equivalent object function to Otsu’s, but gives a more explicit physical
interpretation of image thresholding in the language of quantum mechanics. To reduce the time
consumption for searching for optimal thresholds, the method of quantum lossy-encoding-based
entropy maximization (QLEEM) is presented, in which the eigenvalues of density matrices can give
direct clues for thresholding, and then, the process of optimal searching can be avoided. Meanwhile,
the QLEEM algorithm achieves two additional effects: (1) the upper bound of the thresholding
level can be implicitly determined according to the eigenvalues; and (2) the proposed approaches
ensure that the local information in images is retained as much as possible, and simultaneously,
the inter-class separability is maximized in the segmented images. Both of them contribute to the
structural characteristics of images, which the human visual system is highly adapted to extract.
Experimental results show that the proposed methods are able to achieve a competitive quality of
thresholding and the fastest computation speed compared with the state-of-the-art methods.

Keywords: image segmentation; thresholding; von Neumann entropy; density matrix

1. Introduction

Image segmentation is the task of dividing the image into different regions, each one of which
ideally belongs to the same object or content. As a key step from image processing to computer vision,
image segmentation is the target expression and has an important effect on the feature measurement,
high-level image analysis and understanding [1,2]. Examples of image segmentation applications
include medical imaging [3,4], document image analysis [5], object recognition [6,7] and quality
inspection of materials [8,9]. In the last two decades, a wide variety of segmentation techniques have
been developed, which conventionally fall into the following two categories [2]: layer-based and
block-based segmentation methods [10,11]. Among all these techniques, the thresholding methods
offer numerous advantages such as smaller storage space, fast processing and ease in manipulation.

In general, thresholding methods can be classified into parametric and nonparametric
approaches [12]. Parametric approaches assume that the intensity distributions of images obey the
Gaussian mixture (GM) model, which means the number and parameters of Gaussians in the mixture
(the model selection) must be determined [13]. Although these problems have been traditionally solved
by considering the expectation maximization (EM) algorithm [14] or gradient-based methods [15,16],
the methods are time consuming. Nonparametric approaches find the thresholds that separate
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regions of an image in an optimal manner based on discriminating criteria such as the between-class
variance [17], cluster distance [18], entropy [19–22], etc. Nonparametric methods have shown the
advantage of dispensing with the modeling thresholding. However, they still suffer from the problem
of high time consumption, although many techniques based on intelligent optimization algorithms
(IOAs) [23–25] have been used to speed up the thresholding procedure.

Quantum computation and quantum information processing techniques have shown an immense
potential and a revolutionary impact on the field of computer science, due to their remarkable resources:
quantum parallelism, quantum interference and entanglement of quantum states. Information
representing and processing in the framework of quantum theory is powerful for solving complex
problems that are difficult or currently even impossible for conventional methods. The most significant
works include Shor’s quantum integer factoring algorithm, which can find the secret key encryption of
the RSA algorithm in polynomial time [26], and Grover’s quantum search algorithm for databases,
which could achieve quadratic speedup [27]. In the recent years, quantum approaches have been
introduced into the image processing field. Various quantum image representation models have
been proposed, such as qubit lattice [28] and flexible representation of quantum images (FRQI) [29].
Meanwhile, several applications of quantum image processing have been researched including quantum
image segmentation [30], quantum edge detection [31], quantum image recognition [32], quantum image
watermarking [33] and quantum image reconstruction [34]. Though the research in quantum image
processing still confronts fundamental aspects such as image representation on a quantum computer
and the definition of basic processing operations, we still could be inspired to completely exploit new
methods for some classical problems from a quantum information theoretical viewpoint.

In this paper, we address the thresholding problem on quantum state space. The proposed
methods relate to the details of image representation by utilizing the density matrix, optimal threshold
selection based on the criteria of the maximum von Neumann entropy, a novel image encoding scheme
and the corresponding segmentation approaches, which can totally avoid the process of optimal
solution searching. Specifically, the contributions of this paper mainly include the following aspects:

(1) We present an image thresholding method based on the criteria of global quantum entropy
maximization (GQEM), which has an equivalent object function to Otsu’s, but gives more explicit
physical interpretation of image thresholding in the language of quantum mechanics.

(2) The quantum lossy-encoding based entropy maximization (QLEEM) approach is proposed to deal
with the time consumption problem of thresholding. The QLEEM algorithm directly takes the
eigenvalues of density matrices of lossy-encoded images as segmenting clues and then avoids the
time-consuming process of searching for optimal thresholds. It can achieve the highest execution
speed compared with the state-of-the-art methods.

(3) Due to the physical meaning of the lossy-encoding scheme and the unique procedure of optimal
thresholding, a brand-new approach to determine the upper bound of the thresholding level
automatically is offered in the proposed QLEEM algorithm. For most of the existing methods, this
parameter is conventionally predetermined according to empirical knowledge.

(4) The QLEEM method provides the maximum inter-class separability with lower loss of intra-class
information; thus, segmented images could keep more structural information. This feature is
highly consistent with the way the human visual system (HVS) works.

The paper is organized as follows: Section 2 gives a brief description of the image thresholding
and introduces some state-of-the-art thresholding methods including Otsu’s between-class variance
method [17], Kapur’s entropy-criterion method [19], the quantum version of Kapur’s method [35], and
Tsallis entropy-based method [22]. Section 3 introduces the details of the proposed methods. Section 4
provides the experimental results and discussions about our method’s performance. The conclusions
of this study are drawn in the last part of this paper.
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2. Related Works

Thresholding is a process in which a group of thresholds is selected under some criteria, and then,
pixels of an image are divided into a series of sets or classes according to the rule of:

l → Ci i f thi−1 ≤ l < thi, (1)

where l ∈ [0, L− 1] represents the intensity level of image pixels, {thi | i = 1, 2, · · · , M− 1} is the set
of thresholds and {Ci | i = 1, 2, · · · , M} are classes labeling different groups of pixels.

Otsu’s between-class variance method [17] selects the optimal thresholds by maximizing the
following object function:

σ2c
= ∑

i,j
ωiωj(µi − µj)

2. (2)

Here, i and j index the intensity classes, and ωi and µi are the probability of occurrence and the
mean of a class, respectively. Such values are obtained as:

ωi =
thi

∑
j=thi−1+1

pj, µi =
thi

∑
j=thi−1+1

qj j. (3)

where pj denotes the probability distribution of pixels and qj = pj/ωi. As we know, Otsu’s method
can achieve the best segmenting results if no contextual or semantic information is considered, but it
suffers from the drawback of time-consuming searching for optimal thresholds.

Kapur presented another discriminant criterion based on maximum entropy [19]:

arg max
TH

M−1

∑
i=0

H(Ci). (4)

where H(Ci) is the Shannon entropy corresponding to a specific class, which is defined as:

H(Ci) = −
thi

∑
j=thi−1+1

qj log qj. (5)

Similarly, the quantum version of Kapur’s method [35] determines the optimal thresholds by
maximizing the von Neumann entropy:

arg max
TH

M−1

∑
i=0

S(ρi). (6)

where:

ρi = −
thi

∑
j=thi−1+1

qj
∣∣θj
〉 〈

θj
∣∣ (7)

is the density matrix representation of the i-th class and:

S(ρi) = −tr(ρi log ρi). (8)

Recently, the Tsallis entropy-based bi-level thresholding method was proposed [22], in which the
optimal threshold is given by:

t∗(q) = arg max
t

[
SA

T (t) + SB
T(t) + (1− q)SA

T (t)S
B
T(t)

]
. (9)
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Here, SA
T (t) and SB

T(t) represent the Tsallis entropy for object A and the background B, respectively,
and the entropic index q can be calculated through q-redundancy maximization.

The effectiveness of these entropy-based methods has been proven. However, similar to Otsu’s
method, they also have the drawback of high computational complexity, which will affect the efficiency
of the whole vision task.

3. Proposed Methods

In this section, we will start with a new method, which utilizes the criteria of global quantum
entropy maximization to achieve optimal thresholding, and then propose a novel encoding scheme.
Based on this scheme, the improved method for thresholding is derived, which can determine optimal
thresholds with linear time complexity.

3.1. Thresholding Based on Global Quantum Entropy Maximization

For an image, we can represent its histogram with the following entangled state of a composite
quantum system:

|I〉 =
L−1

∑
i=0

√
pi |θi〉 ⊗ |i〉 . (10)

where we encode the i-th intensity level to the vector |θi〉 = cosθi |0〉+ sinθi |1〉, which belongs to the
state space of the first one-qubit subsystem (labeled as “A”), by establishing a bijective relationship
between them, namely:

θi =
π

2
· i

L− 1
, i ∈ [0, L− 1], (11)

and |i〉 is the computational basis state of the second subsystem (labeled as “B”), which denotes
the indices of pixel intensities. Though |I〉 is a pure state, the subsystem A or B is in a mixed state.
Therefore, we describe these quantum systems in the language of the density matrix. Assuming |I〉 is
rewritten as ρAB, then the reduced density matrix for the subsystem A can be defined by:

ρ = trB(ρ
AB)

=
L−1

∑
i=0

pi |θi〉 〈θi| .
(12)

The density matrix ρ contains the information about the distance between any two intensities,
as well as their probability distribution. This property will be very useful for thresholding.

If pixels of an image are divided into M classes by using M-1 thresholds, we represent the
histogram of the segmented image with:

∣∣I′〉 = M−1

∑
i=0

(
√

ωi

∣∣∣θ̃i

〉
⊗

thi

∑
j=thi−1+1

√
qj |i〉), (13)

where θ̃i = π
2 ·

µi
L−1 , ωi and µi are defined in Equation (3). Then, the density matrix of the

subsystem A becomes:

ρ′ =
M−1

∑
i=0

ωi

∣∣∣θ̃i

〉 〈
θ̃i

∣∣∣ , (14)

and the von Neumann entropy of ρ′:

S(ρ′) = −tr(ρ′ log ρ′)

= −λ1 log λ1 − λ2 log λ2
(15)
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can quantify how much information is retained in the segmented image; where λ1 and λ2 are the
eigenvalues of ρ′. As a result, we maximize it to determine the optimal thresholds:

THop = arg max
TH

S(ρ′). (16)

According to Equations (14) and (15), the following equation is established through simple
algebraic computations:

λ1λ2 =
1
2

M−1

∑
i=0,j=0

ωiωjsin2(θ̃i − θ̃j), (17)

where λ1 + λ2 = 1, as the restriction must be held.
It is worthwhile to note that Equation (17) can also be used to evaluate thresholding: when

Equation (17) takes the maximum value, λ1 and λ2 will be most similar to each other, and then, S(ρ′)
also reaches its best value. Meanwhile, Equation (17) indicates that the distance between intensities
sin2(θ̃i − θ̃j), as well as the probability distribution (ωi, ωj) affect the thresholding results.

Different from Kapur’s entropy-based method and its quantum version, our method has more
explicit physical meaning for thresholding in terms of the following features:

(1) Encoding pixel intensities on the state space of a one-qubit system can be considered as a process
in which independent intensities are squeezed into a two-dimensional space. The similarity
between different state vectors, as well as its probability distribution, can be described with the
density matrix. Both factors contribute to thresholding.

(2) According to the fundamental principles of information theory, the image segmenting process
will causes the decrease of the information contained in images. Shannon entropy cannot directly
be used to measure the information losses because it quantifies the amount of information on
spaces with different dimensionality for original and segmented images. On the contrary, our
method encodes the histograms of original and segmented images on the same quantum state
space, which indicates that their entropies are comparable. As a result, the trivial solutions for
segmentation, for example the thresholds equally dividing intensities into clusters with the same
probability, could never appear since the entropy of the original image acts as the upper bound of
our object function for all possible solutions.

(3) From Equation (17), we find that the object function of our method is very similar to Otsu’s,
described in Equation (2). The following experimental results will prove that they both achieve
the best thresholding.

3.2. Quantum Lossy-Encoding-Based Entropy Maximization Method

As we have seen in Section 3.1, the proposed thresholding method derived from the viewpoint of
quantum principles can achieve the best segmenting results similar to Otsu’s. However, it still suffers
from the efficiency problem of searching for optimal thresholds. In this subsection, we present another
way for image thresholding on the quantum state space.

3.2.1. Quantum Lossy Encoding of Images

Different from the precedent method, we map the pixel intensities to quantum state vectors
according to the following rules:

(1) Multiple qubits should be required for encoding intensity levels in accordance with the
prospective number of thresholds. In other words, the state vectors are supposed to belong
to an M-dimensional space if we want the M-level segmentation.

(2) The angle parameter of state vectors ranges from zero to M ·π instead of π/2. Namely, θi = Mπi/L.
(3) After encoding, the terms contributing to density matrices should follow a π-periodic cyclical

pattern. Namely, |θ〉 〈θ| = |θ + π〉 〈θ + π|.
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Rule (1) provides the foundation for dividing pixel intensities into M classes, being linearly
independent of each other. Rules (2) and (3) indicate that all state vectors representing pixel intensities
are equally divided into M classes, and the corresponding density matrix:

ρ̃ =
N−1

∑
i=0

(
M−1

∑
j=0

pN·j+i) |θi〉 〈θi| , θi ∈ [0, π], N = L/M, (18)

only measures the information related to the local or intra-class uncertainty contributed by those
adjoining intensity levels, but removes the global or inter-class information provided by those
intensities far apart from each other.

According to the above rules, an alternative encoding scheme is given in the recursive form of:

|θi〉2 = cosθi |0〉+ sinθi |1〉 , θi = 2πi/L

|θi〉3 = cosθicos2θi |0〉+ cosθisin2θi |1〉+ sinθi |2〉 , θi = 3πi/L

· · ·

|θi〉M = cosθi |2θi〉M−1 + sinθi |M− 1〉 , θi = Mπi/L

(19)

where the superscript M is temporarily borrowed to label the dimensionality of state vectors and
i ∈ [0, L− 1] denote pixel intensities. As an example, the traces of encoded state vectors in the 2D and
3D case are shown in Figure 1.

 

|0>

|2>

|1>

 

2D trace

3D trace

Figure 1. Traces of encoded state vectors on 2D and 3D space.

Differing from ordinary encoding practices, the proposed scheme records local information of
images, but removes the global information. More precisely, the following evidence could be verified
in the 2D case: we divide intensity levels into two classes equally and equivalently quantify the amount
of information with the product of eigenvalues of ρ̃:

λ1λ2 =
1
2

L−1

∑
i=0,j=0

pi pjsin2(θi − θj)

=
1
2
(

L/2−1

∑
i=0,j=0

pi pjsin2(θi − θj) +
L−1

∑
i=L/2,j=L/2

pi pjsin2(θi − θj)) +
L/2−1

∑
i=0

L−1

∑
j=L/2

pi pjsin2(θi − θj).

(20)

We note that the first term on the right of Equation (20) measures the local information (intra-class
uncertainty) contributed by intensities in the same class, and the second term counts the global
information (inter-class uncertainty) provided by intensities in different classes. Meanwhile, it is easy
to verify that the values of the two terms will increase and decrease respectively when θ covers [0, 2π]

instead of [0, π/2].
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3.2.2. The QLEEM Method

Intuitively, the intensities far apart from each other and their probability distribution provide
the evidence of thresholding. Therefore, we rewrite the density matrix of the given histogram in
a decomposed form:

ρ = υ1ρ1 + υ2ρ2. (21)

where ρ1 and ρ2 describe the probability distributions of local and remote intensity levels (that is,
intra-class and inter-class uncertainty), respectively. Meanwhile, as there is no more knowledge about
υ1 and υ2 except υ1 + υ2 = 1, we assume υ1 = υ2 = 1/2 according to the foundational principle of the
entropy theory.

Now, we substitute ρ1 with ρ̃ given by the proposed lossy encoding scheme, since it contains the
information contributed by local uncertainty of intensity vectors, and maximize the von Neumann
entropy of Equation (21) for determining optimal thresholds:

THop = arg max S(
1
2

ρ̃ +
1
2

ρ̂). (22)

Here, we adopt orthogonal state vectors in M-dimensional space representing M classes after
thresholding, since we want these intensity classes to be as independent as possible. Let:

ρ̃ =
M−1

∑
i=0

λ1,i |θ1,i〉 〈θ1,i| , ρ̂ =
M−1

∑
i=0

λ2,i |θ2,i〉 〈θ2,i| (23)

be orthonormal decompositions for the states ρ̃ and ρ̂, then for any one eigenvector of ρ̃ denoted with
|θ1,j >, there must exist an eigenvector of ρ̂ named |θ2,i > satisfying the relationship of |θ2,i >= ±|θ1,j >

when S((ρ̃ + ρ̂)/2) takes the max value. Meanwhile, the eigenvalues of the state can be determined
according to the following equation:

λ2,i =
2
M
− λ1,j, i f |θ2,i〉 = ±

∣∣θ1,j
〉

. (24)

For the sake of representation, here we give the evidence of the above conclusion for the 2D
situation. Assuming λ1 and λ2 are eigenvalues of the state (ρ̃+ ρ̂)/2, its entropy will take the maximum
value if we equivalently maximize:

λ1λ2 =λ1,0λ2,0sin2(θ1,0 − θ2,0) + λ1,0λ2,1sin2(θ1,0 − θ2,1) + λ1,1λ2,0sin2(θ1,1 − θ2,0)

+ λ1,1λ2,1sin2(θ1,1 − θ2,1) + λ1,0λ1,1 + λ2,0λ2,1
(25)

Notice that 〈θ1,0|θ1,1〉 = 0 and 〈θ1,0|θ1,1〉 = 0 must hold. Then:

λ1λ2 =(λ1,0λ2,0 + λ1,1λ2,1)sin2(θ1,0 − θ2,0) + (λ1,0λ2,1 + λ1,1λ2,0)cos2(θ1,0 − θ2,0)

+ λ1,0λ1,1 + λ2,0λ2,1
(26)

will take the extremum when 〈θ1,0|θ1,1〉 = 0 or 1. In other words,{
|θ2,0〉 = ± |θ1,0〉
|θ2,1〉 = ± |θ1,1〉

or :

{
|θ2,0〉 = ± |θ1,1〉
|θ2,1〉 = ± |θ1,0〉

(27)

must hold. Without loss of generality, we adopt the first case of Equation (27) for the succeeding
discussions. Then:

λ1λ2 = λ1,0λ2,1 + λ1,1λ2,0) + λ1,0λ1,1 + λ2,0λ2,1

= −λ2
2,0 + (1 + λ1,0 − λ1,1)λ2,0 + λ1,0λ1,1 + λ1,1

(28)
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will reach its maximum value when:

λ2,0 = (1 + λ1,1 − λ1,0)/2

=
2
M
− λ1,2

= λ1,1

. (29)

The above conclusions have the instructive function for thresholding, which can be seen in two
aspects:

(1) Based on the proposed lossy-encoding scheme, we can directly calculate the eigenvalues of ρ̂

according to Equation (24), which represent the probability distribution of intensity classes after
thresholding, and then determine the optimal threshold values.

(2) As the probability with which any one intensity class occurs must be greater than zero, according
to Equation (24), all eigenvalues of the density matrix ρ̃ would satisfy the condition of λ1,i < 2/M.
Otherwise,λ1,i ≥ 2/M indicates that there exist meaningless and unnecessary classes for
segmentation. In summary, the upper bound of the thresholding level can be determined
using our method. This feature implies that our method is more feasible than the most of the
other existing ones, since the thresholding level, as a hyperparameter, is often predetermined
empirically.

Finally, the optimal thresholds TH = th1, th2, · · · , thM−1 can be determined according to the
following relationships: 

th1
∑

i=0
pi ≤ λ0 <

th1+1
∑

i=0
pi

. . .
thM−1

∑
i=thM−2+1

pi ≤ λM−1 <
thM−1+1

∑
i=thM−2+1

pi

(30)

where λ0, λ1, · · · , λM−1 is the sequence taken from the eigenvalue set of ρ̂, and the corresponding
sequence |θ0〉 , |θ1〉 , · · · , |θM−1〉 belongs to the circular permutation of all eigenvectors, which satisfy
the following rules: 

|θi〉 = arg max
j
|
〈
θj
∣∣0〉 |∣∣∣θ(i+1)modM

〉
= arg max

j
|
〈
θj
∣∣1〉 |

· · ·∣∣∣θ(i+M−1)modM

〉
= arg max

j
|
〈
θj
∣∣M− 1

〉
|

. (31)

According to the methods mentioned above, the framework of the QLEEM algorithm is given in
Algorithm 1.

Algorithm 1 The framework of the QLEEM algorithm
Input: The original image I, the thresholding level M
Output: The optimal thresholds
Init: Compute the histogram of the input image;
Step 1: Obtain density matrix ρ̃ by using the lossy-encoding scheme;
Step 2: Calculate the eigenvalues and eigenvectors of ρ̃ and then ρ̂
Step 3: Enumerate all possible M circular sequences of the eigenvalues of ρ̂, and then get M groups of
thresholds;
Step 4: loop over the M groups of thresholds, and select the optimal one based on which the entropy
denoted in Equation (15) takes the maximum value.
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3.2.3. Time Complexity of the QLEEM Algorithm

For the problem of M-level thresholding segmentation of images containing L-level intensities,
the time of calculating the density matrix ρ̃ is O(L); computing eigenvalues and eigenvectors of ρ̃ needs
O(M3); the time for performing Step 3 is O(M! + L); and the loop in Step 4 consumes O(M ∗ 23) time.
Since M << L is satisfied in general cases, the optimal performance time of the QLEEM algorithm is
achieved by T = O(L), which notably outperforms Otsu’s T = O(AM−1

L−1 /2M−2).

4. Experiments and Comparisons

4.1. Datasets and Settings

To evaluate the performance of the proposed methods, a set of standard test images was obtained
from the Berkeley segmentation dataset [36]. All of the test images are 8-bit in depth, with a size of
481 × 321 pixels. The algorithms used for comparison are Otsu’s between-class variance method [17],
Kapur’s entropy criterion method [19], the quantum version of Kapur’s [35] and our GQEM and
QLEEM methods. These algorithms are implemented with MathWorks MATLAB 2014a on a Thinkpad
notebook with an Intel Core-i5 2.2-GHz processor, 16 GB RAM and Ubuntu 14.04.

Threshold levels, quality of segmented images and time complexity are the most important
indicators for evaluating the performance of image thresholding algorithms. Here, we evaluate the
quality of segmented images by using the peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM). In addition, four measures: the Dice similarity coefficient (DICE) [37], the probabilistic rand
index (PRI) [38], the global consistency error (GCE) [36] and the variation of information (VI) [39],
are used to assess segmentations against ground truth data. Time complexity is measured by the
execution time required in these methods. In particular, except for the proposed QLEEM, all the
other exhaustive-search-based methods used in our experiments are sped up with the harmony search
multithresholding algorithm (HSMA) [25].

4.2. Experimental Results and Comparisons

We applied these algorithms to all 300 pictures contained in the standard test dataset for assessing
their performance. For the sake of representation, only five images, which are presented in Figure 2,
have been used to show the bi-level segmented results. In Figure 3, the thresholding quality of the
outcomes is analyzed considering the complete set, where the PSNR and SSIM scores are calculated
under different thresholding levels, and we take the average values on the whole dataset.

(a) (b) (c) (d) (e) (f)

Figure 2. Visual comparison of (a) original images and bi-level segmented ones by using the (b) Otsu,
(c) Kapur, (d) quantum version of Kapur’s method (QKapur), (e) global quantum entropy maximization
(GQEM) and (f) quantum lossy-encoding-based entropy maximization (QLEEM) methods, respectively.
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Figure 3. Quality assessment of the segmented images in terms of (a) peak signal-to-noise ratio (PSNR)
and (b) structural similarity (SSIM).

Meanwhile, we recorded the CPU time consumed by these algorithms, and the average values
for all the test images under different thresholding levels are depicted in Figure 4. As an example,
the experimental results in terms of thresholding level, thresholds and CPU time are tabulated in
Table 1 for a randomly selected image.
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Figure 4. The comparison of the time consumption of different methods under different thresholding levels.

Table 1. Performance comparison in terms of thresholding level (M), thresholds and computation time.

Method M Thresholds CPU Time (s)

Otsu

2 116 0.233523
3 85-157 0.313405
4 69-120-178 0.348805
5 60-101-138-187 0.666153
6 52-85-117-150-193 1.293793

Kapur

2 155 0.256437
3 91-170 0.395228
4 75-130-183 0.473902
5 66-113-160-203 1.222006
6 56-93-132-170-209 1.181965

QKapur

2 147 2.007029
3 10-147 2.12888
4 10-17-147 3.924715
5 10-17-147-252 3.114482
6 10-17-147-251-252 4.59602

GQEM

2 114 0.338808
3 84-147 0.410247
4 70-117-168 0.666514
5 62-99-133-176 0.682051
6 54-86-114-143-182 0.985941

QLEEM

2 107 0.001661
3 86-135 0.002079
4 62-106-153 0.002549
5 53-90-121-160 0.003043
6 49-83-106-133-166 0.003673
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From Figure 2, we find that the segmentations obtained by using GQEM, QLEEM and Otsu
are visually indistinguishable, which means these three methods have a similar performance.
This conclusion can be further confirmed in Figure 3: the GQEM method obtains almost the same
PSNR score as Otsu’s in spite of very little computational error; meanwhile, both GQEM and QLEEM
outperform the others in terms of SSIM. The experimental results can be explained with the criteria
of maximizing quantum entropy and the lossy-encoding scheme proposed in our methods, because
they emphasize the weight of between-class variance and retain the local information, respectively.
This feature is highly consistent with the SSIM method, which assesses the perceived quality of images
based on structural similarity indicators, such as contrast and local inter-dependencies of pixels.

Examining Figure 4 and Table 1, we can see that the proposed QLEEM algorithm achieves the
fastest execution speed (at least 100-times faster than Otsu in the case of bi-level thresholding and up
to 350-times when the number of thresholds increases to five). In addition, the time consumption of
QLEEM was insensitive to increments of the threshold level, since the complexity of our algorithm
was mainly correlated with the total intensity level, instead of the amount of thresholds.

On the other hand, the upper bounds of the thresholding level recommended by the proposed
QLEEM algorithm were tested. We found that the maximum possible amount of thresholds was lower
than 10 for about 40 images in the test set. Our algorithm would terminate when we try to apply more
thresholds to them. Figure 5 lists two groups of images and corresponding histograms, for which the
proposed algorithm gave one and two thresholds, respectively. According to the visual observation, it
is reasonable to believe that the suggested amounts of thresholds are feasible, as there are no more
than three distinct peaks in their histograms.
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Figure 5. Two groups of images in the test dataset, to which the QLEEM algorithm suggests applying
(a) bi-level and (b) tri-level thresholding, respectively.

Finally, we evaluate segmentations against the ground truth data. The first experiment is
performed on a synthetic image corrupted by Gaussian noise (the mean value is zero, and the variance
is 0.03), which is utilized for testing the efficiency and robustness of the proposed methods. Figure 6
shows the noisy image and segmentation results obtained by different algorithms. In addition,
the performance indexes: the DICE ratio, PRI, GCE and VI scores, are used to assess the robustness of
these algorithms. The corresponding scores are listed in Table 2.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Comparison of segmentation results on a synthetic image. (a) noisy image (Gaussian noise
with zero mean and 3% variance); (b) Otsu result; (c) Kapur result; (d) QKapur result; (e) GQEM result;
(f) QLEEM result.

Table 2. Performance of different algorithms on a noisy image (the best values are highlighted). DICE,
Dice similarity coefficient; PRI, probabilistic Rand index; GCE, global consistency error; VI, variation
of information.

Algorithm DICE PRI GCE VI

Otsu 0.889787 0.934784 0.09807 0.54778
Kapur 0.908592 0.946141 0.093275 0.532568

QKapur 0.472366 0.426367 0.084447 1.570079
GQEM 0.921509 0.955491 0.078646 0.45552
QLEEM 0.908281 0.948501 0.097511 0.580201

The visual comparison in Figure 6 shows that the proposed GQEM and QLEEM algorithms
produce clearer and more accurate segmentation results. From Table 2, we can confirm this conclusion:
our GQEM clearly outperformed the others on the DICE, PRI, GCE and VI values. The robustness of
the proposed GQEM for noisy images can be explained by comparing the object function of GQEM
and Otsu. Considering the last term in Equations (2) and (17), both of them measure the distance
between pixel intensities, but our GQEM method scaled the range [0, L− 1] of this parameter down to
[0, 1]. This feature is helpful for suppressing the high contrast caused by noise, and then, our GQEM
algorithm partly played the role of a low-pass filter in segmentation tasks.

In the second experiment, we performed thresholding segmentation on BSDS300 dataset and
compared the results with the ground truth segmentations in terms of the DICE, PRI, GCE and VI
indexes. The average scores of these indicators obtained by different algorithms are presented in
Table 3.
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Table 3. Average performance of different algorithms on BSDS300 dataset (the best values are highlighted).

Algorithm DICE PRI GCE VI

Otsu 0.411934 0.613044 0.385938 2.825647
Kapur 0.400079 0.64313 0.366348 2.49384

QKapur 0.363979 0.542463 0.1704 1.802242
GQEM 0.412396 0.611379 0.384827 2.892085
QLEEM 0.405824 0.614035 0.386781 2.931183

From Table 3, we can see that all the listed algorithms obtained lower scores compared with those
that have been well trained with the manually-labeled dataset. In general, thresholding segmentation
is a form of unsupervised segmentation, which cannot use any a priori knowledge involving the
ground truth of a training set of images. Furthermore, the proposed GQEM and QLEEM along with the
others used for comparison are all histogram-based algorithms. They achieve optimal segmentation by
merely utilizing the probability distribution of colors, instead of the spatial and texture information.

5. Conclusions

In this paper, we address the image thresholding problem on quantum state space. The proposed
GQEM and QLEEM methods follow a different way to represent images and determine the optimal
thresholds in the language of quantum mechanics. In summary, the contributions of this paper mainly
include the following aspects: (1) To our knowledge, this is the first application of the global quantum
entropy criteria to the thresholding problem. The von Neumann entropy is more powerful for image
segmentations than the Shannon entropy, because it measures the distance between pixel intensities, as
well as the probability distribution. (2) Compared with other state-of-the-art approaches, our QLEEM
algorithm tends to retain more structural information after segmentations. It is highly consistent with
the way in which the HVS works. (3) The proposed QLEEM algorithm has the lowest consumption
of execution times known to us, even compared with others that are sped up with some intelligent
optimization techniques.
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