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Bufalin (BFL) and cinobufagin (CBF) are the principal bioactive constituents of Chansu, a
widely used traditional Chinese medicine (TCM). The synergistic effects of potential active
components are responsible for the bioactivities of TCM. Our results showed that the
cotreatment with BFL and CBF confers superior anticancer efficacy compared to
monotreatment. To reveal the underlying mechanisms of their cotreatment, an
integrated method composed of mass spectrometry-based lipidomics and matrix-
assisted laser desorption/ionization mass spectrometry imaging was used to delineate
the responses of tumor-bearing mice treated with BFL and CBF individually or in
combination. The cotreatment with BFL and CBF modulated the sphingolipid
metabolism and glycerophospholipid metabolism, and subsequently led to
mitochondria-driven apoptosis and systemic disruption of biomembranes in tumor
cells. Furthermore, we found that the disturbed lipid markers were mainly located in
the non-necrotic tumor areas, the essential parts for the formation of solid tumor
framework. Together, our findings revealed what occurred in tumor in response to the
treatment of BFL and CBF, from lipids to enzymes, and thus provide insights into the critical
role of lipid reprogramming in the satisfactory anticancer effect of BFL in combination
with CBF.
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INTRODUCTION

Hepatoma is a severe malignancy usually with poor prognosis (Thomas and Zhu, 2005). Although
hepatoma can be surgically resected, chemotherapy has an irreplaceable status and function for
patients in advanced stages (El-Serag et al., 2008). However, chemotherapy agents are still limited by
many disadvantageous factors, such as side effects and drug resistance (Roth et al., 2013; Duncan,
2014). It is urgent to find more effective chemotherapeutic options. Chansu is obtained from the skin
secretions of Bufo bufo gargarizans Cantor. Its extract has long been used as an anticancer agent in
China and other Asian countries (Meng et al., 2009). Huachansu capsules, a sterilized extract of
Chansu, has been marketed and used in clinical. They have been widely used for the treatment of
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patients with various types of cancer, especially in liver cancer
(Huang et al., 2020). The synergistic effects of the bioactive
components account for the anticancer effects of Chansu and
Huachansu. Bufadienolide-type cardiotonic steroids, bufalin
(BFL) and cinobufagin (CBF) (Supplementary Figure S1), are
the principal bioactive components in Chansu and Huachansu
(Qi et al., 2011). We detected BFL and CBF in Huachansu
capsules by ultra high performance liquid chromatography
(Supplementary Figure S2). Their individual anticancer
effects were associated with a downregulation of the pro-
survival proteins Bcl-2, and an upregulation of the pro-
apoptotic protein Fas and Bax (Qi et al., 2011; Shen et al.,
2014). So far, the anticancer mechanisms of BFL and CBF
were mostly assessed individually, which were insufficient for
the guidance of their clinical joint use. Therefore, more emphasis
should be put on the mechanisms of the combination of BFL
and CBF.

Lipids play a fundamental role in maintaining membrane
homeostasis, providing energy and are involved in cell
signaling in all living cells (Ackerman et al., 2018; Storck
et al., 2018). Accumulating evidence suggested that cancer was
related to aberrant lipid metabolism (Hirsch et al., 2010; Deng
and Li, 2020). Rapid proliferating cancer cells required increased
lipid biosynthesis for the construction of membrane. And
bioactive molecules produced by lipid catabolism acted as
signal molecules in the regulation of cancer metastasis
(Vander Heiden and DeBerardinis, 2017). As one important
subfield of metabolomics, lipidomics investigate the holistic
changes of endogenous lipids in response to stimuli based on
analytical chemistry principles (Yang and Han, 2016). In view of
the important role of lipid metabolism in cancer, lipidomics has
been widely used in the diagnosis and treatment of cancer. For the
diagnosis of cancer, the disorder of lipid metabolism occurred
early in the tumor progression, which made lipids suitable to be
used as diagnostic markers (Perrotti et al., 2016). For the
treatment of cancer, understanding lipid metabolism pathways
in cancer cells could provide potent targets for therapy, and
elucidating the function of lipids could benefit the development of
new anticancer drugs for clinical evaluation. Determining the
lipid change induced by drugs could help to clarify the
mechanism of drug action, and could provide a basis for the
combination and efficacy improvement of drugs (Zhang et al.,
2017; Brovkovych et al., 2018).

In addition to changes in the lipidomics, spatial information is
essential to investigate subtle, highly localized changes of
metabolites in histopathological regions of tumor. Therefore,
advanced imaging techniques are needed for probing focal
changes. Mass spectrometry imaging (MSI) is a powerful
technique to simultaneously visualize the spatial distribution of
molecules in biological samples. MSI has been widely utilized for
the diagnostic and prognostic marker discovery (Sun et al., 2019),
pharmacological target screening (Luo et al., 2013; He et al., 2015)
and the investigation of the spatial distribution of metabolites,
lipids and peptides in biological samples (Burnum et al., 2008;
Muller et al., 2015; Li et al., 2020). In particular, lipids are
appropriate for MSI analysis for several reasons: the polar
head groups of many lipid species make their ionization

easier; they are abundant components of tissues; and most of
them with a molecular weight within 300–1,000 Da (Zemski
Berry et al., 2011).

In the present work, an enhanced anticancer effect was
demonstrated by the cotreatment with BFL and CBF in the
xenograft model. Their synergistic anticancer effect was
obtained from cell culture experiments in our unpublished
work. Our previous work demonstrated the metabolic
regulation effects of the cotreatment of BFL and CBF in vitro
(Zhang et al., 2020). To thoroughly investigate the underlying
molecular mechanisms of their anticancer effects and reveal the
possible target region, tumor-bearing mice were treated with BFL
and CBF individually or in combination. Thereafter, lipid
disturbance analysis was performed by liquid chromatography-
mass spectrometry (LC-MS) based lipidomics combined with
matrix-assisted laser desorption/ionization mass spectrometry
imaging (MALDI-MSI). The findings of this work might
provide a new insight to explore the anticancer mechanisms
and localize the target region of BFL and CBF on the treatment of
hepatoma.

METHOD

Chemicals and Materials
BFL and CBF with a purity over 98% were purchased from
Chengdu Must Biotech Co., Ltd. (Chengdu, China). Cisplatin
were purchased from Solarbio Biosciences Company (Beijing,
China). Sinapic acid (SA), α-cyano-4-hydroxycinnamic acid
(HCCA), 2,5-dihydroxybenzoic acid (DHB), peptides and N-
(1-naphthyl)-ethylenediamine dihydrochloride (NEDC) were
purchased from Sigma-Aldrich (MO). Phosphate-buffered
saline (PBS) was purchased from GIBCO (Grand Island, NY).
Human hepatoma cell line HepG2 was purchased from Cobioer
Biosciences Company (Nanjing, China).

Establishment of Tumor Nude Mice Model
(Tumor Xenografts) and Drug
Administration
Male 4–6 weeks-old BALB/c nude mice were purchased from the
Chinese University of Hong Kong. All mice were maintained in
sterile individually ventilated cages. Water and food were
available ad libitum. The lights were on for 12 h per day, and
the temperature was kept at 20 ± 2°C with humidity of 45 ± 10%.
After 7 days of adaptation period, 5 × 106 of HepG2 cells were
subcutaneously implanted into the armpit of each mouse. When
the tumor size reached 100 mm3, the mice were randomly divided
into five groups (eight mice per group), mice in different groups
received drugs or PBS by intraperitoneal injection: 1) BFL
2 mg/kg, once a day, 2) CBF 4 mg/kg, once a day, 3) BFL
2 mg/kg + CBF 4 mg/kg, once a day, 4) Cisplatin 3 mg/kg,
twice a week (positive control), and 5) PBS (negative control).
The body weight and tumor volume were measured every two
days. The tumor volume was calculated by the formula: V � 0.5 ×
a × b2, where a and b represent the length and width of the tumor,
respectively. After 3 weeks, the mice were sacrificed. Tumors were
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collected and weighed, then stored at -80°C for LC-MS and
MALDI-MSI analysis. The detailed schedule for the xenograft
tumor model is shown in Figure 1A.

Enzyme-Linked Immunosorbent Assay to
Measure AFP in Serum
Mouse blood samples were collected and incubated for 30 min at
room temperature before centrifuging for 20 min at 2000 g. The
supernatant serum was carefully collected after centrifugation.
AFP ELISA kit was purchased from Meimian Industrial Co., Ltd.
(Jiangsu, China). The serum levels of AFP were measured
according to the vendor’s instructions.

Interaction of Bufalin and Cinobufagin
Bliss independence is widely used to analyze drug interaction.
The method compares the observed combination effect (YO) with
the predicted combination effect (YP) (Bliss, 1939). Typically, the
combination effect is declared synergistic if YO is greater than YP.

For statistical calculation, the relation between drug effect and
concentration of AFP was described as the following equation:

Y � 1 − AFPtreated

AFPcontrol

where Y is the effect of drugs; AFPtreated and AFPcontrol are the
concentration of AFP in the serum of treated group and PBS
group, respectively.

According to Bliss independence, the combination effect for
BFL and CBF can be predicted as:

YP�YBFL+YCBF−YBFLYCBF

Where YBFL and YCBF are the effect of BFL and CBF, respectively.

Lipidomics Analysis
Ten mg of tumor tissue was mixed with 320 μL of ice-cold
MeOH/H2O (80:20, v/v) and homogenized using a Polytron
PT2100 homogenizer (Kinematica, Lucerne, Switzerland).
Subsequently, 1 ml of MTBE was added and vortexed for
1 min. A total of 200 μL of water was added to induce phase
separation. Sample was vortexed for 1 min and incubated at room
temperature for 5 min. After centrifugation at 12,000 g and −4°C
for 15 min, the upper phase was collected and dried at 4°C.

The lipidomic analysis was performed using an Ultimate
3,000 ultra-high performance liquid chromatograph (UHPLC,
Dionex, Sunnyvale, CA) coupled with an Orbitrap Fusion Tribrid
mass spectrometer (Thermo Fisher Scientific Inc., Waltham,
MA). Lipid separation was performed on an ACQUITY UPLC
BEH C18 column (2.1 mm × 100 mm, 1.7 μm, Waters, Milford,
MA). The details of mobile phase for UHPLC andMS parameters
are summarized in Supplementary Table S1.

The raw data were processed by LipidSearch software
(Thermo Fisher Scientifific Inc., Waltham, MA) for extraction,
alignment and identification of the lipids. The multivariate
statistical analysis was processed using SIMCA software
(Version 14.1, Umetrics, Sweden). Orthogonal partial least

squares discriminant analysis (OPLS-DA) and Student’s t-test
were performed. The p-value and fold change (FC) were
calculated from the peak area. The differential lipids between
the control and drug treated groups were selected based on the
variable importance in projection (VIP) value (VIP >1), p value
(p < 0.05) as well as fold change (FC > 1.2 or <0.8).

Quantitative Real-Time Polymerase Chain
Reaction
Total RNA was extracted from tumor tissue using the RNAiso
plus kit (TaKaRa, Japan). cDNAs were synthesized using the
PrimeScript RT reagent kit (Takara, Japan). Quantitative PCR
was performed using SYBR Premix Ex Taq (Takara, Japan) on
Piko Real-Time PCR system (Thermo Scientific, Waltham, MA).
Statistical analysis was conducted by GraphPad Prism five
Software, Inc. (La Jolla, CA).

Lipid Imaging by Matrix-Assisted Laser
Desorption/Ionization Mass Spectrometry
Imaging
The 14-μm-thick tumor tissue sections were cut using a CryoStar
Nx70 cryostat (Thermo Fisher Scientific, Walldorf, Germany)
at -20 °C. The slices were dried in a vacuum desiccator for 20 min
before MALDI-MSI analysis. Matrix was prepared using an
automatic matrix sprayer (ImagePrep, Bruker Daltonics,
Billerica, MA), as described by Wang et al. (Wang et al.,
2015). Serial tumor tissue sections were subsequently stained
using hematoxylin and eosin (H&E) for pathological examination.
MALDI-MSI was carried out using a rapifleX MALDI Tissuetyper
(Bruker Daltonics, Germany) equipped with a smartbeam laser in
the M5 mode. The mass spectra were acquired at a mass range of
m/z 250–1,200 in the negative ionization mode by averaging signal
from 1,000 shots at 3.0 × 2810 V of detector gain and 82% of laser
power. The other parameters were optimized, including lens voltage
(11.00 kV), reflector voltage (20.84 kV), pulsed ion extraction time
(100 ns) and ion source voltage (20 kV). The spatial resolution for
MALDI-MSI was set at 100 μm. The instrument calibration was
performed with external standards (SA, DHB, HCCA, and Peptides)
before each data acquisition.

The obtained MALDI-MSI raw data were firstly processed and
analyzed by FlexImaging 5.0 software (Bruker Daltonics, Germany),
and subsequently imported into SCiLS Lab 2016a software (Bruker
Daltonics, Germany) for multivariate statistical analysis.

RESULTS

Anticancer Effect of Bufalin, Cinobufagin
and Their Cotreatment
The antitumor efficacy of BFL, CBF and their combination was
investigated in HepG2 tumor-bearing mice using cisplatin as a
positive control and PBS as a negative control. As shown in
Figure 1B, the tumor volume in the negative control group
increased rapidly. When used separately, BFL and CBF
displayed a significant tumor growth inhibition. The
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cotreatment with BFL and CBF led to stronger inhibition of
tumor growth, which is similar to the therapeutic efficacy of
cisplatin. Weight loss is a serious side effect of chemotherapy that
decreases the prognosis of cancer patients (Garcia et al., 2013).
Figure 1C showed that neither monotreatment nor cotreatment
with BFL and CBF induced significant body weight change for
mice. However, we observed the loss of body weight in the
cisplatin treated group, which is consistent with previous
reports (Garcia et al., 2013; Su et al., 2014). α-fetoprotein
(AFP) was one of the most important indicators for hepatoma
(Woodfield et al., 2017). Elevated serum levels of AFP have been
reported to positively correlate with cancer deterioration (Ortega
et al., 2000) Previous study has demonstrated that silencing AFP
expression induces apoptosis in hepatoma cell (Yang et al., 2008).
As shown in Figure 1D, the predicted concentration of AFP is
significantly higher than the observed concentration, that
indicating the combination of BFL and CBF induced superior
effect than predicted. Their synergetic effect was verified.

Global Metabolic Shifts Induced by Drug
Treatment
Heterogeneity is one of the characteristics of malignant tumors,
including intratumor morphological diversity and heterogeneity
for drug sensitivity (Bae and Park, 2011; Zhang et al., 2014). As
shown in Figure 2, the histopathological results indicated
considerable spatial heterogeneity in tumor morphology. The
parenchyma areas (red frame) and stroma areas (blue arrow)
(Bae, 2009), are important in the formation of a firm tumor
framework. According to the cell morphology, the tumor necrosis
area (green frame) can be determined by the notable cellular
debris. To understand the changes in tumor metabolic profile and
visualize the histological regions, the spectra from ion signal

profiles were processed by SCiLS Lab software and separated
using spatial segmentation analysis and probabilistic latent
semantic analysis (pLSA). All spectra of the particular cluster
were displayed as a spatial segmentation map, and all pixels in the
map were colored according to their cluster assignments. As
shown in Figure 3A, the bright blue cluster and red cluster
corresponded to the tumor necrosis areas and parenchyma areas,
respectively. The results of MSI segmentation were consistent
with the H&E staining results (Figures 2A,3A). Interestingly, the
yellow cluster could only be found in the tumor parenchyma
areas of the cotreatment group. According to dendrogram and
pLSA (Figures 3B,C), bright blue region and yellow region were
separated from the same cluster, indicating their close correlation.
The phenomenon might relate to the metabolic dysfunction
induced by the cotreatment of BFL and CBF.

Global Metabolic Shifts Induced by Drug
Treatment
The lipidomic profiles of tumor tissue were acquired using
UHPLC-MS/MS under positive and negative ionization modes.
915 ions in ESI (+) and 426 ions in ESI (−) were obtained. OPLS-
DA score plots were performed for discriminating between
groups. Figure 4 showed the segregation of drug treated
groups and the control group. When BFL and CBF were used
in combination, distinct differences were observed between
cotreatment group and control group, suggesting that the
combination of BFL and CBF induced conspicuous
perturbation of lipids. A total of 31 perturbed lipids primarily
contributed to the separation of BFL + CBF group and control
group (Figure 5 and Supplementary Table S2). The main
perturbed lipids were sphingolipids (SPs) and
glycerophospholipids (GPs).

FIGURE 1 | Tumor growth inhibition in HepG2 bearing nude mice after treatment with BFL, CBF and their combination. (A) In vivo experimental design. (B) The
growth of relative tumor volume assigned to five experimental groups. (C) The change of body weight along with time. (D) Serum levels of AFP. All data were represented
as mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.001 with PBS group (negative control); #p < 0.05; ##p < 0.01; ###p < 0.001 with cisplation group (positive control) or
predicted value.

Frontiers in Pharmacology | www.frontiersin.org January 2021 | Volume 11 | Article 5938154

Zhang et al. Bufalin and Cinobufagin Anticancer Mechanisms

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Sphingolipid Metabolism
Ceramide (Cer) that played important roles in SPmetabolismwas
significantly increased by BFL + CBF cotreatment (Figure 6A).
Cer could be formed either by ceramide synthase (CERS)
catalyzed de novo synthesis, or through the sphingomyelinase
(SMase) dependent hydrolysis of sphingomyelin (SM) (Reynolds
et al., 2004). The reaction could proceed in the reverse
orientation. The enzyme responsible for SM synthesis was

sphingomyelin synthase (SMsynthase), which catalyzed the
transfer of a phosphocholine from phosphatidylcholines (PC)
to the primary hydroxyl group of Cer forming SM (Ullman and
Radin, 1974). The catabolism of Cer proceeded through the
action of a ceramidase (CDase), which hydrolyzed the amide
bond, thus releasing the sphingoid base and free fatty acid (Mao
and Obeid, 2008). As shown in Figure 6B, the cotreatment with
BFL and CBF elevated the transcript level of CERS, but

FIGURE 2 | Tumor heterogeneity. (A) H&E staining image of tumor tissues. Red frame, green frame and blue arrow represented parenchyma area, necrosis area
and stroma areas, respectively. (B) The magnification (×40) figure of each representative tumor microregion.

FIGURE 3 | Abundance alteration and spatial distribution of metabolite markers in the tumor from MALDI-MSI analysis. (A) Spatial segmentation of the tumor
microregion based on MALDI-MSI profiles. (B) The dendrogram of segmentation map analysis. (C) pLSA score plots for MALDI-MSI profiles.
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suppressed the conversion between Cer and SM. These promoted
the biosynthesis of Cer. In parallel to facilitated Cer synthesis, the
combination of BFL and CBF suppressed CDase (involved in Cer
catabolism). However, the different trend was observed with
SMase, SMsynthase and CDase, when BFL and CBF were used
individually.

Glycerophospholipid Metabolism
Among GPs, the abundance of identified lipids exhibited
remarkable upregulation in phosphatidylglycerol (PG), PC and
lysophosphatidylcholine (LPC) as well as significant downregulation
in phosphatidylserine (PS), phosphatidylethanolamine (PE) and

phosphatidylinositol (PI) in the cotreatment group (Figure 7A). To
delineate the alteration of key enzymes in the pharmacological
actions, the expression of involved genes was determined by
qPCR. In GP metabolism, PE was synthesized either by the
diacylglycerol ethanolaminephosphotransferase (EPT) catalyzed
cytidine diphosphate (CDP)-ethanolamine (Kennedy) pathway
or by the phosphatidylserine decarboxylase (PSD) catalyzed
PS decarboxylation (Hermansson et al., 2011). All mammalian
cells synthesized PC via the 1,2-diacylglycerol
cholinephosphosphotransferase (CPT) catalyzed CDP-choline
(Kennedy) pathway, but hepatocytes could also produce PC by
phosphatidylethanolamine N-methyltransferase (PEMT) catalyzed

FIGURE 4 | Two-dimensional OPLS-DA score plots of lipidomic profiles. (A) Analysis in ESI positive mode. (B) Analysis in ESI negative mode.

FIGURE 5 |Heatmap analysis of the perturbed lipids followmonotreatment or cotreatment with BFL and CBF. The values were based on the fold change of the lipid
peak area (vs. control).
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methylation of PE (Vance et al., 1997). PS was synthesized by
phosphatidylserine synthase (PSS) one and two from PC and PE,
respectively (Vance and Steenbergen, 2005). Phosphatidylglycerol
synthase (PGS) catalyzed the reaction involved in the synthesis of
PG (Huang and Freter, 2015). As shown in Figure 7B, the
cotreatment of BFL and CBF upregulated the expression of PSD
and PEMT, and downregulated the expression of PSS1. However,
the expression of EPT, CPT, PSS2 and PGS were not significantly
changed (Supplementary Figure S3).

Visualization and Localization of Anticancer
Lipid Biomarkers
MALDI-MSI was used to visualize the spatial distribution of
anticancer lipid markers in tumor sections (Figure 8). With the
treatment of BFL and CBF individually or in combination, four
lipids were found to be significantly altered, which mainly
distributed in the parenchyma areas and stroma areas of
the tumor. Compared with control group, ion intensities of

PC (20:1/18:2) and PG (16:0/18:2) were significantly increased,
whereas decreased abundances of PE (18:2/18:2) and PS (16:0/20:
4) were found.

DISCUSSION

Hepatoma is a severe malignancy in the world with highmorbidity
and mortality. Despite all the medical efforts, it remains radically
incurable, especially for advanced cases (Schütte et al., 2014). The
low efficiency of single agent is an important reason for this
unfavorable situation. Combination therapy has been
successfully applied in reducing side effects and achieving
enhanced effectiveness (Lehár et al., 2009). The data presented
herein showed that the cotreatment with BFL and CBF enhanced
the antitumor efficacy in the xenograft mouse model but did not
induced significant loss in body weight. As a typical side effect of
chemotherapy, weight loss could negatively influence treatment
outcomes, even in overweight people (Arends et al., 2017).

FIGURE 6 | Analysis of SP metabolism following treatment with BFL, CBF and their combination. (A) Disturbance of ceramides with different aliphatic chains. (B)
mRNA expression of genes involved in SP metabolism. Data were represented as mean ± S.D. (*p < 0.05; **p < 0.01 compared to control).
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With satisfactory efficiency and low side effect, the
combination of BFL and CBF was suitable for cancer therapy.
To thoroughly clarify their pharmacological mechanisms, a
spatial lipidomics approach that aligns well with the
complexity and integrity of combination therapy was used to
provide insights into the responses of tumor toward the drug
combination treatment. The spatial lipid shifts induced by drug
treatment were visualized by MALDI-MSI. Interestingly, tumor
parenchyma area in the cotreatment group showed similar
metabolic profile with necrosis areas of other groups. But the
metabolic profile between parenchyma area and necrosis areas
are totally different in the monotreatment group (Figures 2, 3).
This indicated the transformation of tumor parenchyma areas to
necrosis areas, which could benefit the therapy and prognosis of
cancer.

LC-MS based lipidomics was performed to find the lipid
markers. The disorder of SPs and GPs was found to have a
close relationship with the satisfactory anticancer effect of BFL in
combination with CBF:

Of particular interest in lipidomic results was the
accumulation of ceramides in SP metabolism (Figure 6A)

due to the intimate connection between ceramides and
apoptosis (D Mullen and M Obeid, 2012; Li et al., 2014).
The stimulated expression of Cer synthesis related gene and
the suppressed expression of catabolism related gene jointly
led to the accumulation of Cer in the contreatment group.
Moreover, sufficient amounts of SM supported Cer biogenesis,
although their interconversion catalyzed by SMases and
SMsynthase was not upregulated. Increased Cer level was
observed in response to many cancer chemotherapeutic
agents, including fludarabine, vincristine, etoposide,
daunorubicin, irinotecan, paclitaxel, fenretinide and
doxorubicin (Senchenkov et al., 2001). Ceramide triggered
the mitochondria-driven apoptosis (Won and Singh, 2006).
Specifically, ceramide induced the release of cytochrome c, an
electron carrier of the mitochondrial electron-transport chain
(Andrieuabadie et al., 2001; Ow et al., 2008). The release of
cytochrome c led to a decrease in mitochondrial inner
transmembrane potential (ΔΨm), mitochondrial oxygen
consumption and Ca2+ retention, and all of which caused
mitochondrial dysfunction and ROS generation, ultimately
induced apoptosis (Ghafourifar et al., 1999) (Figure 9). Our

FIGURE 7 | Analysis of GPmetabolism following the treatment with BFL, CBF and their combination. (A) Fold changes of disturbed GPs (0.8 ≤ FC ≤ 1.2 thresholds
were indicated by vertical dotted lines). (B)mRNA expression of significantly changed genes involved in GPmetabolism. Data were represented asmean ± SD (*p < 0.05;
**p < 0.01 compared to control).
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FIGURE 8 | MALDI-MSI images of lipid markers in tumor sections.

FIGURE 9 | Scheme of perturbed lipid pathways. Lipids and genes marked in red (up arrow) and green (down arrow) represented the up- and downregulation,
respectively.
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findings indicated that the pro-apoptosis effect of BFL in
combination with CBF was mediated in part through the
accumulation of ceramide. The inconsistent regulation
between monotreatment and cotreatment groups on the
conversion between Cer and SM as well as the catabolism
of Cer might be a potential mechanism for their synergistic
effect.

GPs are the major structural lipids, which elicit crucial
biological functions in membrane integrity and functional
lipid biosynthesis (Hishikawa et al., 2014). After the
cotreatment with BFL and CBF, the abundance of PC was
increased, whereas the levels of PE and PS were decreased.
This finding indicated that the cotreatment with BFL and CBF
promoted the methylation from PE to PC, but not the
conversion from PC to PS, which was verified by the
activation of PEMT and suppression of PSS1. Besides, PC
was also the substrate for SMase to form SM in SP
metabolism, and the inhibition of SMase contributed to the
accumulation of PC (Figure 9). Consequently, the level of PC
was increased. PC induces apoptosis of hepatoma cells via death
ligands (Sakakima et al., 2009). Additionally, PE and PC were
the major constituents of biological membranes, and
contributed to cell proliferation (Gibellini and Smith, 2010).
The metabolic disorders of PE and PC might lead to the
disruption of cell membrane homeostasis (Vance, 2013). PG
was a biosynthetic precursor of cardiolipin, located in the inner
mitochondrial membrane and was required for the function of
many of the respiratory and ATP synthesizing enzymes (Struzik
et al., 2020). The increase of PG suggested that the treatment of
BFL and CBF might disturb the structure of mitochondrial
membrane. Our results showed that the treatment of BFL
and CBF induced a dysregulation of GP metabolism in the
tumor, which might result in the instability of biomembranes
and produce anticancer efficacy (Figure 9).

To verify the variation of lipid abundance and investigate
the therapeutic target of BFL and CBF, we used MALDI-MSI to
visualize the spatial distribution of lipid markers in tumor
tissue. We found the disturbed lipid markers mainly located in
the tumor parenchyma areas and stroma areas. It
demonstrated the tumor parenchyma areas and stroma
areas (essential parts for the formation of solid tumor
framework) were sensitive targets for BFL and CBF
(Figures 2, 8). The spatial distribution of drugs in tumor is
related to tumor heterogeneity and influencing clinical
outcomes (De Maar et al., 2020). The distribution of many
drugs was detected by MSI (Lukowski et al., 2017; Strydom
et al., 2019). Giordano et al. (Giordano et al., 2016) measured
the distribution of paclitaxel, a wildly used anticancer drug, in
xenograft mouse model. Mice were treated with paclitaxel
intravenously at a single dose of 60 mg/kg. They found
paclitaxel accumulated in the non-necrotic tumor areas.
However, in our research, mice were treated with 2 mg/kg
of BFL and 4 mg/kg of CBF via intraperitoneal injection for 21
days. The doses were too low to be detected in the tumor tissue.
In our future work, experiments with higher doses will be
performed for the research of the distribution of BFL and CBF
in the tumor.

CONCLUSION

Together, the present study demonstrated that the combination
of BFL and CBF acted synergistically in inducing apoptosis and
inhibiting growth in xenograft tumor. A novel mass
spectrometry-based spatial lipidomic method was applied to
reveal the underlying mechanism. As indicated by MALDI-
MSI study, the drugs may penetrate into tumor and act in
non-necrotic tumor areas. Our results indicated that the
metabolism dysregulation of SPs and GPs with the treatment
of BFL and CBF led to mitochondria-driven apoptosis and
systemic disruption of biomembranes. In particular, the
discrepant regulation of related enzymes in sphingolipid
metabolism among the monotreatment and cotreatment with
BFL and CBF might account for their synergism. This study
provides theoretical basis for the combination of BFL and CBF in
clinical practice.
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