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When measuring the research variable is complicated, expensive, or problematic, median ranked 
set sampling (MRSS) is often utilized since it is straightforward to rank the components using 
a low-cost sorting criterion. Using this sampling scheme, many authors considered the problem 
of population mean estimation with a single auxiliary variable in order to obtain more precised 
estimators than the traditional ratio type regression estimators. In this article, we extend their 
ideas based on regression approach using two auxiliary variables and introduce a new regression-

type estimator along with its theoretical expression of minimum mean square error (MSE). The 
suggested estimator’s applicability is demonstrated using both simulated and real-world data sets.

1. Introduction

In various practical experiments, especially in the fields of environment, ecology, medicine, and health research, observing the 
study variable, designated as Y, can often be challenging due to its intricate, expensive, repetitive, or even destructive measurement 
methods. However, despite the challenges or complexities associated with data collection, ranking the sampled elements can be 
relatively straightforward without incurring additional expenses. Let’s consider this example: The rapid appearance of Calliphoridae 
flies on a decaying body shortly after death serves as a natural survival mechanism. In their postmortem investigations, forensic 
entomologists often depend on the larvae of these flies to estimate the time elapsed since death. Once the larvae reach their full 
size, they immediately stop consuming food. By examining the contents of the insects’ intestines, particularly the absence of food 
in the front part of the intestine during subsequent development, forensic entomologists possess the ability to precisely ascertain 
the postmortem interval. However, the use of radiographic techniques to evaluate changes in the intestinal contents of maggots 
poses a significant challenge (Sharma et al., [1]). Meanwhile, evaluating and ordering the length of the larvae is comparatively 
straightforward as they demonstrate consistent growth throughout their entire life cycle. Another instance arises in a health-related 
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research, aiming to estimate the average cholesterol level of a population. Instead of performing invasive blood tests on every 
individual within the sample, individuals can be ranked by their weight, even through visual observation alone. Consequently, 
a blood sample can be collected from only a limited number of subjects (Shahzad et al., [2]).

Initially, the ranked set sampling (RSS) was introduced by McIntyre [3] as an economical and efficacious sampling method 
to estimate the mean population of rummage yields and pastures. This sampling plan is appropriate when an auxiliary variable 
associated with the study variable can be ranked either visually or by any cost free criteria. It can be designed by choosing randomly 
𝜗 samples of 𝜗 size elements from the population and then ranking all elements within each sample regarding the study variable. For 
an application of RSS, interested readers may refer to Johnson et al. [4] who considered RSS to develop vegetation research. Cobby 
et al. [5] considered RSS to investigate grass and grass-clover swards. Chen et al. [6,7] suggested an improved estimation procedure 
using RSS. Al-Omari [8,9] suggested modified estimation procedures in RSS. Shahzad et al. [10,11] put forward innovative idea 
in RSS, specifically addressing the issue of sensitivity. Additionally, Shahzad et al. [2] recommended the successive utilization of 
auxiliary information to estimate the population parameter using RSS. Sabry et al. [12] evaluated the performance of various RSS 
designs using a hybrid approach. Aljohani et al. [13] conducted a study on RSS, utilizing a modified Kies exponential distribution. 
Sabry et al. [12] examined parameter estimation of an exponential Pareto distribution in the context of RSS and double RSS designs. 
Yousef et al. [14] introduced a Bayesian estimation approach using the MCMC method to estimate the system reliability of the 
inverted ToppLeone distribution in RSS. Akhter et al. [15] developed the generalized Bilal distribution, discussed its properties, and 
investigated its estimation using RSS.

The modification towards the basic RSS design were suggested by Muttlak [16] i.e. median ranked set sampling (MRSS). The 
MRSS design that we adopted in this article as follows:

Step 1: Select Ψ𝑝 random samples of size Ψ𝑝.

Step 2: Rank the elements within each sample via any visual inspection criteria.

Step 3: For odd sample size, choose the ((Ψ𝑝 + 1)∕2)𝑡ℎ and ((Ψ𝑝 + 2)∕2)𝑡ℎ smallest ordered elements from each set. For even sample 
size, choose the (Ψ𝑝∕2)𝑡ℎ and ((Ψ𝑝 + 2)∕2)𝑡ℎ ordered elements from the first and remaining Ψ𝑝∕2 sets.

Step 4: Repeat the above steps for achieving desired sample size.

For more details about the MRSS scheme with its steps, modifications and developments see, among others, Al-Omari [17], 
Koyuncu [18] and Alomair and Shahzad [19]. In sampling theory, when a sufficient positive correlation exists between the interest 
and auxiliary variables, the traditional ratio estimator is the most communal estimator of the population mean. In the present work, 
as an extension of ideas provided in references Al-Omari [17] and Koyuncu [18], we are going to propose a new estimator based on 
using two auxiliary variables.

This article has several sections that make up the remainder. The preliminaries and adapted estimators under MRSS based on 
two auxiliary variables are briefly introduced in Section 2. In Section 3, a new regression-type estimator along with its theoretical 
expression of minimum MSE is introduced. Section 4 is dedicated to highlighting the proposed estimator’s efficiency. Different 
numerical investigations are done with an existing estimator based on simulation study and real-life data set. The most relevant 
conclusions drawn from the obtained results are finally set out in Section 5.

2. Preliminaries and adapted estimators under MRSS with two auxiliary variables

Within this section, we establish the MRSS design that incorporates a single study variable alongside two auxiliary variables. Let’s 
consider a scenario where a median ranked set sample of size Ψ𝑝 is extracted from a finite population denoted as Λ, which comprises 
𝑁 units. Let 𝑌 be study variable, 𝑋, 𝑊 be the first and second supplementary variables, respectively.

Let (𝑋𝑖(1), 𝑊𝑖[1], 𝑌𝑖[1]), (𝑋𝑖(2), 𝑊𝑖[2], 𝑌𝑖[2]), … , (𝑋𝑖(Ψ𝑝), 𝑊𝑖[Ψ𝑝], 𝑌𝑖[Ψ𝑝]) be the order statistics of 𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖Ψ𝑝
and the judgment order 

of 𝑊𝑖1, 𝑊𝑖2, … , 𝑊𝑖Ψ𝑝
; 𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖Ψ𝑝

for (𝑖 = 1, 2, … , Ψ𝑝). Here, the symbols () and [] signify a perfect ranking for variable 𝑋 and 
imperfect rankings for variables 𝑌 and 𝑊 . We use the designations MRSSO and MRSSE to represent the units measured using MRSS 
for odd and even sample sizes, respectively.
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be the MRSS mean of 𝑋, 𝑊 and 𝑌 respectively. Further, 𝑉 𝑎𝑟(�̄�𝑀𝑅𝑆𝑆𝐸 ) = 𝜆(𝐸)(𝜎2
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.

In order to enhance the efficiency of estimators, it is possible to leverage auxiliary information linked to an auxiliary variable 
X, which exhibits correlation with the study variable Y. Typically, the mean of X is employed as auxiliary information. However, to 
further improve the efficiency of estimators, additional auxiliary information concerning variable X, such as the median, coefficient of 
variation, or correlation coefficient, can also be utilized. Furthermore, when a positive correlation is present between variable Y and 
variable X, the ratio estimator proves to be effective. There are many realistic circumstances (industrial, economical, biological, and 
medical) where a positive correlation exists between the two variables, it has been shown that there is a direct positive relationship 
between (i) the volume of production and the volume of crude oil exports, (ii) the students’ grades in Statistics and their grades in 
Mathematics, (iii) the human body’s immunity from the risk of certain diseases and paying attention to fitness, etc.

In this context, we are modifying the conventional regression estimator by incorporating two auxiliary variables within the MRSS 
framework.

�̄�𝑟𝑔(𝑗) = 𝑦𝑀𝑅𝑆𝑆(𝑗) + 𝑏𝑦𝑥(𝑗)(𝜇𝑥 − 𝑥𝑀𝑅𝑆𝑆(𝑗)) + 𝑏𝑦𝑤(𝑗)(𝜇𝑤 −𝑤𝑀𝑅𝑆𝑆(𝑗))
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where 𝜇𝑥, 𝜇𝑤 be the population means and (𝑏𝑥𝑦(𝑗), 𝑏𝑤𝑦(𝑗)) representing regression coefficients. Taking into account the selection of odd 
and even samples, these estimators can be slimmed as follows, with the notation 𝑗 = (𝐸, 𝑂) denoting even and odd sample selection, 
respectively. Furthermore,
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3. Proposed estimator

In the context of MRSS (Multivariate Randomized Stratified Sampling), Al-Omari [17] introduced novel estimators of the mean 
population based on ratios, utilizing the mean, as well as the first and third quartiles of an auxiliary variable. Building upon Al-Omari’s 
idea, Koyuncu [18] extended the concept to introduce regression, exponential, and difference type estimators using a single auxiliary 
variable in MRSS. In the realm of simple random sampling (SRS), Rao [20] incorporated two tuning parameters to implement a 
generalized form of the traditional regression estimator. Drawing inspiration from Rao [20], Al-Omari [17], and Koyuncu [18], we 
propose a regression-type estimator under MRSS that leverages two auxiliary variables, namely, (𝑋, 𝑊 ).

�̄�𝑃 (𝑗) = 𝑘1(𝑗)𝑦𝑀𝑅𝑆𝑆(𝑗) + 𝑘2(𝑗)(𝜇𝑥 − 𝑥𝑀𝑅𝑆𝑆(𝑗)) + 𝑘3(𝑗)(𝜇𝑤 −𝑤𝑀𝑅𝑆𝑆(𝑗))

In order to calculate the bias and mean square error (MSE), we can define the following:
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𝜇𝑦
, 𝜀1(𝑗) =

�̄�𝑀𝑅𝑆𝑆(𝑗) − 𝜇𝑥

𝜇𝑥
, 𝜀2(𝑗) =

�̄�𝑀𝑅𝑆𝑆(𝑗) − 𝜇𝑤

𝜇𝑤
.

In the case where the sample size Ψ𝑝 is odd, we can express it as follows:
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In the case where the sample size Ψ𝑝 is even, we can express it as follows:
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(𝜎

𝑤𝑦[
Ψ𝑝
2 ]

+ 𝜎
𝑤𝑦[

2+Ψ𝑝
2 ]

), 𝐸(𝜀1(𝐸)𝜀2(𝐸)) =
𝜆(𝐸)

𝜇𝑤𝜇𝑥
(𝜎

𝑤𝑥[
Ψ𝑝
2 ]

+ 𝜎
𝑤𝑥[

2+Ψ𝑝
2 ]

).

By representing the proposed estimator �̄�𝑃 (𝑗) in terms of 𝜀’s, we obtain the following expression

�̄�𝑃 (𝑗) − 𝜇𝑦 = 𝑘1(𝑗)𝜇𝑦(1 + 𝜀0(𝑗)) − 𝑘2(𝑗)𝜇𝑥𝜀1(𝑗) − 𝑘3(𝑗)𝜇𝑤𝜀2(𝑗) − 𝜇𝑦 (1)

Taking square of equation (1) and applying expectation, we get MSE expressions of �̄�𝑃1. Subsequently, by taking partial derivatives 
of the MSE and determining the optimal values of weights, denoted as 𝑘1, 𝑘2, and 𝑘3, we can substitute these values into the MSE 
expressions, resulting in minimum MSE expressions. Briefly, we are providing the expressions of optimum weights and minimum 
MSE as follows

𝑘1 ≅

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
−1 + 𝜌2

𝑥𝑤[
1+Ψ𝑝

2 ]

]
[
−1 + 𝜌2

𝑥𝑤[
1+Ψ𝑝

2 ]
+ 𝜆(𝑂)(𝜇2

𝑦
)−1𝜎2

𝑦[
1+Ψ𝑝

2 ]

{
𝑃(𝑂)

}] if Ψ𝑝 is odd

[
−1 + (𝜌2

𝑥𝑤[
Ψ𝑝
2 ]

+ 𝜌2
𝑥𝑤[

2+Ψ𝑝
2 ]

)

]
[
−1 + (𝜌2

𝑥𝑤[
Ψ𝑝
2 ]

+ 𝜌2
𝑥𝑤[

2+Ψ𝑝
2 ]

) + 𝜆(𝐸)(𝜇2
𝑦
)−1(𝜎2

𝑦[
Ψ𝑝
2 ]

+ 𝜎2
𝑦[

2+Ψ𝑝
2 ]

)
{
𝑃(𝐸)

}] if Ψ𝑝 is even

𝑘2 ≅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜎
𝑦[

1+Ψ𝑝
2 ]

[
−𝜌

𝑦𝑥[
1+Ψ𝑝

2 ]
+ 𝜌

𝑥𝑤[
1+Ψ𝑝

2 ]
𝜌
𝑦𝑤[

1+Ψ𝑝
2 ]

]
𝜎
𝑥(

1+Ψ𝑝
2 )

[
−1 + 𝜌2

𝑥𝑤[
1+Ψ𝑝

2 ]
+ 𝜆(𝑂)(𝜇2

𝑦
)−1𝜎2

𝑦[
1+Ψ𝑝

2 ]

{
𝑃(𝑂)

}] if Ψ𝑝 is odd

(𝜎
𝑦[

Ψ𝑝
2 ]

+ 𝜎
𝑦[

2+Ψ𝑝
2 ]

)
[
−(𝜌

𝑦𝑥[
Ψ𝑝
2 ]

+ 𝜌
𝑦𝑥[

2+Ψ𝑝
2 ]

) + (𝜌
𝑥𝑤[

Ψ𝑝
2 ]

+ 𝜌
𝑥𝑤[

2+Ψ𝑝
2 ]

)(𝜌
𝑦𝑤[

Ψ𝑝
2 ]

+ 𝜌
𝑦𝑤[

2+Ψ𝑝
2 ]

)
]

(𝜎
𝑥(

Ψ𝑝
2 )

+ 𝜎
𝑥(

2+Ψ𝑝
2 )

)

[
−1 + (𝜌2

𝑥𝑤[
Ψ𝑝
2 ]

+ 𝜌2
𝑥𝑤[

2+Ψ𝑝
2 ]

) + 𝜆(𝐸)(𝜇2
𝑦
)−1(𝜎2

𝑦[
Ψ𝑝
2 ]

+ 𝜎2
𝑦[

2+Ψ𝑝
2 ]

)
{
𝑃(𝐸)

}] if Ψ𝑝 is even

𝑘3 ≅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜎
𝑦[

1+Ψ𝑝
2 ]

[
−𝜌

𝑦𝑤[
1+Ψ𝑝

2 ]
+ 𝜌

𝑥𝑤[
1+Ψ𝑝

2 ]
𝜌
𝑦𝑥[

1+Ψ𝑝
2 ]

]
𝜎
𝑤[

1+Ψ𝑝
2 ]

[
−1 + 𝜌2

𝑥𝑤[
1+Ψ𝑝

2 ]
+ 𝜆(𝑂)(𝜇2

𝑦
)−1𝜎2

𝑦[
1+Ψ𝑝

2 ]

{
𝑃(𝑂)

}] if Ψ𝑝 is odd

(𝜎
𝑦[

Ψ𝑝
2 ]

+ 𝜎
𝑦[

2+Ψ𝑝
2 ]

)
[
−(𝜌

𝑦𝑤[
Ψ𝑝
2 ]

+ 𝜌
𝑦𝑤[

2+Ψ𝑝
2 ]

) + (𝜌
𝑥𝑤[

Ψ𝑝
2 ]

+ 𝜌
𝑥𝑤[

2+Ψ𝑝
2 ]

)(𝜌
𝑦𝑥[

Ψ𝑝
2 ]

+ 𝜌
𝑦𝑥[

2+Ψ𝑝
2 ]

)
]

(𝜎
𝑤[

Ψ𝑝
2 ]

+ 𝜎
𝑤[

2+Ψ𝑝
2 ]

)

[
−1 + (𝜌2

𝑥𝑤[
Ψ𝑝
2 ]

+ 𝜌2
𝑥𝑤[

2+Ψ𝑝
2 ]

) + 𝜆(𝐸)(𝜇2
𝑦
)−1(𝜎2

𝑦[
Ψ𝑝
2 ]

+ 𝜎2
𝑦[

2+Ψ𝑝
2 ]

)
{
𝑃(𝐸)

}] if Ψ𝑝 is even

where 𝜌 symbols are donating the correlations between different variables as mentioned in their subscripts and

𝑃(𝑂) = −1 + 𝜌2
𝑥𝑤[

1+Ψ𝑝
2 ]

+ 𝜌2
𝑦𝑥[

1+Ψ𝑝
2 ]

+ 𝜌2
𝑦𝑤[

1+Ψ𝑝
2 ]

− 2𝜌
𝑥𝑤[

1+Ψ𝑝
2 ]

𝜌
𝑦𝑥[

1+Ψ𝑝
2 ]

𝜌
𝑦𝑤[

1+Ψ𝑝
2 ]

,

𝑃(𝐸) = −1 + (𝜌2
𝑥𝑤[

Ψ𝑝
2 ]

+ 𝜌2
𝑥𝑤[

2+Ψ𝑝
2 ]

) + (𝜌2
𝑦𝑥[

Ψ𝑝
2 ]

+ 𝜌2
𝑦𝑥[

2+Ψ𝑝
2 ]

) + (𝜌2
𝑦𝑤[

Ψ𝑝
2 ]

+ 𝜌2
𝑦𝑤[

2+Ψ𝑝
2 ]

)

− 2(𝜌 Ψ + 𝜌 2+Ψ )(𝜌 Ψ + 𝜌 2+Ψ )(𝜌 Ψ + 𝜌 2+Ψ ).
4

𝑥𝑤[ 𝑝

2 ] 𝑥𝑤[ 𝑝

2 ] 𝑦𝑥[ 𝑝

2 ] 𝑦𝑥[ 𝑝

2 ] 𝑦𝑤[ 𝑝

2 ] 𝑦𝑤[ 𝑝

2 ]
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Table 1

MSE and PRE for BMI data.

�̂� MSE PRE MSE PRE

�̄�𝑟𝑔(𝑗) Ψ𝑝 = 4 4.8672 131.2783 Ψ𝑝 = 5 3.6744 187.0782

�̄�𝑃 (𝑗) Ψ𝑝 = 4 2.3970 266.5606 Ψ𝑝 = 5 2.3579 291.5304

�̄�𝑟𝑔(𝑗) Ψ𝑝 = 6 5.8679 105.7351 Ψ𝑝 = 7 4.6492 144.4548

�̄�𝑃 (𝑗) Ψ𝑝 = 6 2.3330 240.7880 Ψ𝑝 = 7 2.2970 292.3741

�̄�𝑟𝑔(𝑗) Ψ𝑝 = 8 5.5604 118.3864 Ψ𝑝 = 9 4.1161 170.4057

�̄�𝑃 (𝑗) Ψ𝑝 = 8 2.2692 290.0866 Ψ𝑝 = 9 2.0122 364.1778

�̄�𝑟𝑔(𝑗) Ψ𝑝 = 10 8.3374 103.9473 Ψ𝑝 = 11 4.5006 144.9507

�̄�𝑃 (𝑗) Ψ𝑝 = 10 2.2288 276.6068 Ψ𝑝 = 11 2.2121 294.9074

�̄�𝑟𝑔(𝑗) Ψ𝑝 = 12 4.7780 131.0691 Ψ𝑝 = 13 5.1339 115.1614

�̄�𝑃 (𝑗) Ψ𝑝 = 12 2.2106 283.2897 Ψ𝑝 = 13 2.1936 269.5280

𝑀𝑆𝐸(�̄�𝑃 (𝑗)) ≅

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

if Ψ𝑝 is odd,[
𝜆(𝑂)𝜎

2
𝑦[

1+Ψ𝑝
2 ]

(1 −𝑅2
(𝑂))

]
[
1 + 𝜆(𝑂)(𝜇2

𝑦
)−1𝜎2

𝑦[
1+Ψ𝑝

2 ]
(1 −𝑅2

(𝑂))

]
if Ψ𝑝 is even,[

𝜆(𝐸)(𝜎2
𝑦[

Ψ𝑝
2 ]

+ 𝜎2
𝑦[

2+Ψ𝑝
2 ]

)(1 −𝑅2
(𝐸))

]
[
1 + 𝜆(𝐸)(𝜇2

𝑦
)−1(𝜎2

𝑦[
Ψ𝑝
2 ]

+ 𝜎2
𝑦[

2+Ψ𝑝
2 ]

)(1 −𝑅2
(𝐸))

]
Finally comparing, 𝑀𝑆𝐸(�̄�𝑃 (𝑗)) with 𝑀𝑆𝐸(�̄�𝑟𝑔(𝑗)), we immediately observe that

𝑀𝑆𝐸(�̄�𝑃 (𝑗)) ≤𝑀𝑆𝐸(�̄�𝑟𝑔(𝑗)). (2)

4. Numerical illustration

In this section, simulation study and real-life application, have been conducted to demonstrate the performance of the proposed 
estimator over the exiting regression estimator.

4.1. Simulation study

Present sub-section developed to assess the efficiency of the regression and proposed Rao-type estimators, based on simulation 
study. So for comparisons a multi-variate normal distribution for (𝑌 , 𝑋, 𝑊 ) with mean vector (𝑌 , �̄�, �̄� ) = (5.1, 5.1, 5.1) and variance-

covariance matrix respectively as given by

Σ =
⎡⎢⎢⎣
11.9 2.7 2.8
2.7 2.9 1.0
2.8 1.0 2.9

⎤⎥⎥⎦ , 𝜌𝑦𝑥 = 0.4957, 𝜌𝑦𝑤 = 0.5076.

From the population, 𝐾 = 9000 samples of even size (4, 6, 8, 10, 12), and odd sizes (5, 7, 9, 11, 13) are selected according to MRSS 
and for the 𝑘th sample, the estimate (�̄�𝑟𝑔(𝑗), �̄�𝑃 (𝑗)) of 𝑌 is computed. In this way, for each considered estimator, the MSE is obtained as 
MSE(�̂�) =∑𝐾

𝑘=1(�̂�
(𝑘) − 𝑌 )2∕𝐾 , where �̂�(𝑘) is denoted by (�̄�𝑟𝑔(𝑗), �̄�𝑃 (𝑗)) estimators. The percentage relative efficiency (PRE) is computed 

for comparison purposes

PRE(�̂�) =
𝑉 𝑎𝑟(�̄�𝑀𝑅𝑆𝑆(𝑗))

MSE(�̂�(𝑘))
× 100.

For whole simulation procedure we followed Shahzad et al. [21]. The results of MSE and PRE associated with artificial data are 
presented numerically in Table 1. It appears clearly that the values of MSE associated with the proposed estimator are smaller than the 
corresponding ones with the traditional regression estimator. The PRE of the proposed estimator with respect to the corresponding 
traditional regression estimator based on MRSS is greater than 100. The PRE associated with even samples is greater than odd 
samples.

5. Real life application

This subsection is based on a real-life dataset aimed at evaluating the effectiveness of traditional regression estimators and the 
5

proposed Rao-type regression estimators. To conduct this evaluation, we utilize a health survey dataset prepared by the Turkish 
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Table 2

MSE and PRE for artificial data.

�̂� MSE PRE MSE PRE

�̄�𝑟𝑔(𝑗) Ψ𝑝 = 4 4.747444 228.662354 Ψ𝑝 = 5 4.245515 221.540652

�̄�𝑃 (𝑗) Ψ𝑝 = 4 2.578595 420.989627 Ψ𝑝 = 5 2.529242 371.872038

�̄�𝑟𝑔(𝑗) Ψ𝑝 = 6 4.122489 250.131596 Ψ𝑝 = 7 3.882289 243.397792

�̄�𝑃 (𝑗) Ψ𝑝 = 6 2.489604 414.188197 Ψ𝑝 = 7 2.442237 386.915948

�̄�𝑟𝑔(𝑗) Ψ𝑝 = 8 3.816635 275.628783 Ψ𝑝 = 9 3.670095 241.236521

�̄�𝑃 (𝑗) Ψ𝑝 = 8 2.423363 434.096863 Ψ𝑝 = 9 2.381172 371.817250

�̄�𝑟𝑔(𝑗) Ψ𝑝 = 10 3.715528 338.540145 Ψ𝑝 = 11 3.602003 272.024404

�̄�𝑃 (𝑗) Ψ𝑝 = 10 2.396768 524.813287 Ψ𝑝 = 11 2.356845 415.739182

�̄�𝑟𝑔(𝑗) Ψ𝑝 = 12 3.587764 281.505522 Ψ𝑝 = 13 3.462109 264.823833

�̄�𝑃 (𝑗) Ψ𝑝 = 12 2.355186 428.830371 Ψ𝑝 = 13 2.307687 397.302198

Statistical Institute (TSI), which examines the factors that may influence obesity-related behaviors in Turkey, consisting of data from 
800 individuals. This dataset has also been recently explored by Cetin and Koyuncu [22]. In our analysis, the study variable (Y) is 
the Body Mass Index (BMI), while the weight (X) and age (W) serve as auxiliary variables. We employ a multivariate randomized 
stratified sampling (MRSS) scheme to select samples of both even sizes (4, 6, 8, 10, 12) and odd sizes (5, 7, 9, 11, 13).

The collected data consist of 𝑁 = 800 observations with 𝜌𝑥𝑦 = 0.867, 𝜌𝑤𝑦 = 0.609, 𝜌𝑥𝑤 = 0.483, 𝜇𝑦 = 23.77678, 𝜇𝑥 = 67.55813, 𝜇𝑤 =
30.12625, 𝜎𝑥 = 13.8396, 𝜎𝑦 = 4.195531, 𝜎𝑤 = 11.03823.

The results of MSE and PRE associated with BMI data are presented numerically in Table 2. Clearly, it appears that the values of 
MSE associated with the proposed estimator are smaller than the corresponding ones with the traditional regression estimator. The 
PRE of the proposed estimator with respect to the corresponding traditional regression estimator based on MRSS is greater than 100. 
The PRE associated with samples of odd size is greater than the corresponding ones with even samples except for Ψ𝑝 = 13 compared 
to Ψ𝑝 = 12, where the reverse is true.

Based on the results of numerical illustrations shown in Tables 1 and 2, for all samples under consideration, we noticed that the 
condition given in equation (2) has been satisfied. So, the performance of the proposed Rao-type estimator always outperforms the 
performance of the existing and adapted estimators.

6. Conclusion

In this research paper, drawing inspiration from Rao [20], Al-Omari [17], and Koyuncu [18], we introduce a novel Rao regression-

type estimator designed to enhance mean estimation in median ranked set sampling (MRSS) using two auxiliary variables. We assess 
the effectiveness of this proposed estimator by analyzing both simulated and real-life datasets, comprising samples of both even 
and odd sizes. The real-life dataset, previously studied by Cetin and Koyuncu [22], focused on examining the factors influencing 
obesity in a population of 800 individuals in Turkey. In our study, we consider the Body Mass Index (BMI) of each individual as the 
variable of interest, with weight and age serving as auxiliary variables. The results demonstrate that the proposed Rao-type estimator 
consistently outperforms the traditional ratio regression estimator, as demonstrated in the theoretical comparison section. Based on 
the findings from both real-life application and simulation illustrations, we conclude that the proposed Rao regression-type estimator 
is a valuable alternative to the traditional regression estimator. We highly recommend its usage, as it can significantly improve the 
estimation of the population mean in MRSS when employing two auxiliary variables.
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