
sensors

Letter

Joint Angle-Doppler Estimation Algorithm Based on
Time Reversal Post-Doppler Adaptive MUSIC
in Low-Angle Multipath Environments

Chao Xiong, Chongyi Fan * and Xiaotao Huang

College of Electronic Science and Technology, National University of Defense Technology,
Changsha 410000, Hunan, China; chaoxiong@nudt.edu.cn (C.X.); xthuang@nudt.edu.cn (X.H.)
* Correspondence: chongyifan@nudt.edu.cn

Received: 16 September 2020; Accepted: 21 October 2020; Published: 30 October 2020
����������
�������

Abstract: This letter proposes a time-reversal (TR) post-Doppler adaptive multiple signal classification
(MUSIC) algorithm for multiple-input multiple-output (MIMO) radars, which addresses the joint
estimation of angle and Doppler in diffuse multipath environments. First, an improving TR MIMO
multipath model is proposed to avoid the ambiguity between the direction and Doppler in one
round trip. Then, the letter designs a spatial filter matrix according to transmit-receive steering
matrices, suppressing undesired round trips. Finally, we combine the post-Doppler adaptive MUSIC
algorithm and the designed filter to estimate angle and Doppler jointly. Simulation results verify the
applicability and effectiveness of the proposed model and algorithm.

Keywords: joint estimation; multipath; multiple-input multiple-output (MIMO); post-Doppler
adaptive MUSIC; time reversal (TR)

1. Introduction

Low-angle tracking is a challenge in very high-frequency (VHF) radar array signal
processing [1–3], which relates to two main difficulties. The first one is rich multipath in complex
terrains, making it tough to distinguish the target signal from multipath signals by traditional
methods. The other is that current low-angle multipath models ignore the effect of Doppler frequency.
Consequently, the performance of detection probability and parameter estimation accuracy degrades
significantly, especially for moving targets in low-angle environments. Multiple-input multiple-output
(MIMO) radar exhibits excellent capabilities in parameter estimation by adapting the orthogonal
waveform technique [4]. Therefore, applying MIMO radar in multipath scenarios has potential value.

To solve the first difficulty, conventional algorithms regard multipath as interference and suppress
it [5]. Oppositely, the time-reversal (TR) technique, as a utilizing multipath methods, has been
widely used in array signal processing [6–13]. As for TR MIMO parameter estimation, Tan proposes
an adaptive TR MUSIC algorithm to accomplish direction of arrival (DOA) estimation in a mirror
multipath scene by matching multipath channels [14]. Without referring to the precise multipath model
in [14], Liu multiplexes the rows and columns and applies the forward-backward spatial smoothing
technique to perform multiple targets’ parameter estimation [15]. However, these algorithms suffer
from diffuse multipath which is difficult to be modeled in real low-angle scenes.

As a general method, joint estimation is useful to address the second difficulty caused by moving
targets [16–18]. Nevertheless, there are few pieces of research about angle-Doppler estimation
in low-angle environments. Taking diffuse multipath and Doppler frequency into consideration,
Foroozan applies the traditional STAP algorithm to estimate the angle and Doppler frequency jointly
in an urban multipath environment [19]. Under the hypothesis that each multipath has a different
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Doppler frequency, the algorithm has an ambiguity issue between the angle and Doppler in one round
trip. Another way is to combine compressing sensing (CS) and TR to accomplish the joint estimation
of DOA, the direction of departure (DOD), Doppler in an environment with abundant clutter [20,21].
The essential is to establish a complete CS data dictionary. However, it is not suitable in low-angle
environments due to the uncertainty of diffuse multipath incident angles and Doppler frequencies.

Dealing with the difficulties in low-angle environments, the letter combines matrix filtering and
post-Doppler adaptive MUSIC technique to estimate angle and Doppler frequency. First, it improves a
TR MIMO multipath signal model to avoid the angle-Doppler ambiguity in round trips. Furthermore,
to suppress undesired round trips causing by the combination of forwarding and backward scattering
angles, the letter considers transmit-receive steering matrices and designs a corresponding spatial filter.
It can suppress the paths in the stopband sector, passing the actual target’s round trip. Ultimately,
a post-Doppler adaptive MUSIC algorithm is performed to realize the joint estimation in diffuse
multipath scenes. Simulations in Section 4 verify the reasonableness and effectiveness of the proposed
model and algorithm.

2. The Improved TR MIMO Multipath Signal Model

As shown in Figure 1, consider a monostatic MIMO radar, which is composed of a uniform
linear array with N antennas separated by a half wavelength at both the transmitter and receiver.
The transmission paths include one direct-path and M− 1 reflection paths for general consideration.
The attenuation factor, delay and arrival angle of i-th path are αi, τi and θi, respectively. Besides,
the direct-path angle is above 0◦ while other angles are below 0◦.
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Figure 1. Schematic diagram of time reversal multiple-input multiple-output (TR MIMO) radar
multipath model.

2.1. MIMO Radar Signal Model

The first probing signal emitted by each transmit element is fn(t)ej2π fct(1 ≤ n ≤ N), where fc is
the carrier frequency, fn(t) is the baseband envelope of the probing signal. All N transmitting signals
can be written in the vector form: f = [ f1, f2, ..., fN ]

T . Suppose that the baseband signal is orthogonal
to each other, i.e., f f H = IN . The receiving signal of j-th (1 ≤ j ≤ N) element is [19]:
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rj(t) =
M

∑
mb=1

M

∑
m f =1

N

∑
n=1

αl︷ ︸︸ ︷
αm f αmb fn(t− τnm f (t)− τjmb(t))× ejωc(t−τnm f (t)−τjmb

(t))
+ nj(t), (1)

where mb and m f represent the backward scattering path and forward scattering path, l = (m f , mb) is
a round trip. τnm f and τjmb are the propagation delays via forward and backward multipath between
the n-th transmit element to the target and from the target to the j-th receive element, respectively.
The carrier angular frequency ωc = 2π fc, and nj(t) is the observation noise of the j-th element.

Denote A(Θl) = αR(θmb)α
T
T(θm f ) as the transmit-receive steering matrix, where αR and αT are

the steering vectors of a uniform linear array. They can be described as:

αR(θmb) = [1, e−jωcτT
1 (θmb ), ..., e−jωcτT

N(θmb )]T , (2)

αT(θm f ) = [1, e−jωcτT
1 (θm f ), ..., e−jωcτT

N(θm f )]T . (3)

To simplify the expression, we rewrite the received signal in the vector form, r = [r1, r2, ..., rN ]
T is

recorded as:

r(t) =
L

∑
l=1

α̃l︷ ︸︸ ︷
αle−jωcτl(0) e−jωDl

tA(Θl) f (t− τl(0)) + n(t), (4)

where n(t) is the observation noise in MIMO radar.

2.2. TR MIMO Radar Signal Model

According to the principle of TR, r(t) is time-reversed, conjugated, energy normalized by c
and retransmitted. The second transmitting signal is cr∗(−t), where (·)∗ represents the conjugation.
The normalization coefficient c is c =

√
|| f ||2/||r||2.

With the equal amount of transmitting elements and receive elements, the second receiving signal
x(t) can be written as:

x(t) = c
L

∑
l′=1

α̃l′ e
−j2ωDl

tA(Θl′ )r
∗(−t + τl′ (0)) + v(t)

≈ c
L

∑
l=1
|α̃l |2e−j2ωDl

t

ATR︷ ︸︸ ︷
A(Θl)A

∗(Θl) f ∗(−t) + w(t), (5)

where v(t) is the observation noise in TR MIMO radar, while w(t) is the accumulated noise, which
takes n(t) and v(t) into account. The approximation in Equation (5) is vaild due to the super-resolution
focusing property of TR [13].

The signal model in (5) is described as the new model, which is different from the model in
reference [19](original model). The difference reflects in the transmit-receive steering matrix ATR.
Specifically, the steering matrix in the original model is AT(Θl)A∗(Θl), while our steering matrix is
A(Θl)A∗(Θl). It satisfies the principle of matrix multiplication due to the suppose that the number of
elements in the receiving and transmitting arrays is equal.

In the post-Doppler adaptive beamforming framework, assume the second received signals
consist of K pulses with a constant pulse repetition interval (PRI) in one coherent processing interval
(CPI) and the k-th (0 ≤ k ≤ K− 1) pulse’s signal can be written as:
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xk(t) = ck

L

∑
l=1
|α̃l |2e−j2ωDl

(τl(0)+kTr)

ATR︷ ︸︸ ︷
A(Θl)A

∗(Θl) f ∗(−t) + wk(t), (6)

where Tr is the PRI, ck is the k-th pulse’s normalization coefficient. As the reference [22] does, we
suppose that ck = c for all the pulses.

Applying matched filtering to the received signal in Equation (6), the new signals yk(t) are given
by [15]:

yk(t) = E[xk(t) f T(−t)]

= c
L

∑
l=1
|α̃l |2e−j2ω fl

(τl(0)+kTr)

ATR(Θl)︷ ︸︸ ︷
A(Θl)A

∗(Θl) +uk(t), (7)

where uk(t) = E[wk(t) f T(−t)] is a new noise matrix whose elements obey the Gaussian distribution.

3. The Post-Doppler Adaptive MUSIC Algorithm

This section first briefly describes the angle-Doppler ambiguity problem, then introduces the
proposed post-Doppler adaptive MUSIC algorithm from two steps.

Consider two different round trips with the indexes l = (θm f , θmb , ωD f , ωDb) and

l
′
= (θm f , θm

b′
, ωD f , ωD

b′
). The forward scattering angles are same and recorded as θm f , while the two

backward scattering angles are different and described as θmb , θm
b′

, respectively. The corresponding
forward Doppler velocities are the same and recorded as ωD f , the backward Doppler velocities are
different and denoted as ωDb and ωD

b′
, respectively. Using the original model, the two transmit-receive

matrices ATRl = ATR
l′

, but ωl = (ωD f + ωDb) 6= (ωD f + ωD
b′
) = ωl′ . It means that for two paths, as

long as they have the same forward scattering angle even with different backward scattering angles,
they can obtain the same transmit-receive steering matrix. Unfortunately, the Doppler velocities of
the two paths are generally different. This is precisely the angle-Doppler ambiguity problem brought
about by the reference [19]. However, it is a one-to-one correspondence between the matrix ATRl and
the Doppler velocity ωl in the new model according to (6). Compared with the original model, the
new model introduces redundant angle-Doppler combinations while avoiding the angle-Doppler
ambiguity problem. These redundant combinations affect the accuracy of parameter estimation.
Therefore, the following shows how the algorithm suppresses undesirable multipath signals.

3.1. Design of the Matrix Spatial Filter

The essential of the conventional matrix spatial filter is to constrain the array response of the
stopband and passband sectors. Correspondingly, the filter G has the following characteristics [23]:

GHa(θ) =

{
a(θ), θ ∈ Θp

0, θ ∈ Θs
, (8)

where a(θ) is the steering vector of the angle θ in a uniform linearly array, while Θp and Θs represent
the passband sector and the stopband sector, respectively.

In terms of the TR MIMO radar system, the passband sector refers to the round trips where the
backscatter angles and the forward scattering angles are greater than 0◦. The other situations are
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included in the stopband sector. By using the least-squares passband criterion of the peak stopband
constraint, the designed spatial filter matrix G can be expressed as:

min
G

Np

∑
j=1

∥∥∥GHb(Θlj
)− b(Θlj

)
∥∥∥2

s.t
∥∥∥GHb(Θli )

∥∥∥ ≤ ε, Θli ∈ Θs, i = 1, 2, ..., Ns∥∥∥GH
∥∥∥

F
≤ δ,

(9)

where G is the spatial filter, b(Θl) = vec(ATR(Θl)) and vec(·) denotes the vectorization operation.
Θlj

and Θli substitute the parameters of j-th round-trip in the passband and the parameters of
i-th round-trip path in the stopband, respectively. || · || represents the Frobenius norm, ε is the
corresponding stopband attenuation,

∥∥GH
∥∥

F ≤ δ constrains the noise power at the output of the
designed filter.

Let g = (vec(G))∗, the optimization problem in Equation (9) can be replced by the equal second
order cone programming (SOCP) form:

min
g

Np

∑
j=1

∥∥∥[I ⊗ BT(Θp)]g − vec[BT(Θp)]
∥∥∥

s.t
∥∥∥I ⊗ bT(Θli )

∥∥∥ ≤ ε, Θli ∈ Θs, i = 1, 2, ..., Ns

‖g‖ ≤ δ,

(10)

where I denotes the identity matrix,⊗ is the Kronecker product. B(Θp) = [b(Θlj=1
), b(Θlj=2

), ..., b(Θlj=Np
)].

3.2. Post-Doppler Adaptive MUSIC Processing

Applying matrix spatial filtering to k-th pulse’s receiving signal, the new signal zk is:

zk = GHvec[yk], k = 1, 2, ..., K. (11)

Stacking all K pulses’ data in the vector form, Z = [z1, z2, ..., zK]
T is described as:

Z =
L

∑
l=1
|α̃l |2ql + U, (12)

where ql is the new space-time steering vector. ql = af (l)⊗ (GHb(Θl)) and af (l) = c[1, ej2ω fl
Tr, ..., ej2ω fl

(K−1)Tr]T.
U represents the vectorized noise matrix of all K pulses.

The angle-Doppler MUSIC spectrum P(l) is:

P(l) =
dH

l dl

dH
l EnEH

n dl
, (13)

where dl denotes the space-time steering vector of path l, and its structure is similar to ql . For l-th path,
the forward scatering angle θm f and the backward scatering angle θmb are equal and greater than 0◦. RZ

represents the covariance matrix of Z, En is the noise subspace acquired by the eigen-decomposition of
RZ, which contains all the eigenvectors that corresponding to the smallest NNK− 1 eigenvalues.

4. Simulation Results

This section verifies the capability of the proposed algorithm (new method) from four aspects
and demonstrates the performance by comparing it with the conventional STAP algorithm in [19]
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(original method). The basic parameters in experiments were as follows: array elements number
N = 12, path number M = 4, carrier frequency fc = 200 MHz, and there were 256 snapshots.

4.1. Magnitude Response of the Matrix Spatial Filter

This simulation designed a matrix spatial filter used for the TR MIMO radar. Suppose both the
backward scattering angle θmb and the forward scattering angle θm f of all the round-trips ranged
from −20◦ to 5◦ with 1◦ interval. The magnitude response of the stopband sector was below −40 dB
(ε = 1.44), while the passband response remained steady as much as possible.

As shown in Figure 2, the filter output of the stopband sector is strictly below −40 dB, while the
distortion within the passband sector was relatively small. This result shows that the designed filter
was able to suppress the signal generated by multipath and had a relatively small impact on the direct
wave signal of the real target.
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-80
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Figure 2. Magnitude response of the designed matrix spatial filter (θb and θ f represent the backward
multipath angle and forward multipath angle respectively).

4.2. Root Mean Square Errors (RMSEs) Versus SNRs

This experiment examines the applicablity of the proposed algorithm. DOAs of each path are
2◦,−2◦,−8◦,−20◦, respectively, corresponding delays were 0 ns, 3 ns, 8 ns, 15 ns. The normalized
Doppler frequencies are 0.2, 0.16, 0.1, 0.06 (normalized by 1

Tr ), while the attenuation factors were
randomly set as: 1, 0.8730 − 0.0302i, 0.4541 + 0.3012i,−0.5104 + 0.0915i. In whole simulations,
SNR varied from −10 dB to 10 dB uniformly with 5 dB interval and 1000 Monte Carlo trials were
executed at each SNR.

As shown in Figure 3a, the RMSE of DOA obtained by the original method was unchanged with
the improvement of SNRs neither under the original model nor the new model, which was similar to
the normalized Doppler in Figure 3b. However, the RMSE under the new model is less than that under
the original model, which seems the new model may increase estimation accuracy because of avoiding
ambiguity. Nevertheless, parameter accuracy is still to be improved. Compared with the original
method, the RMSE of DOA obtained by the new algorithm was below 0.2◦ at SNR = −10 dB and
decreased to a constant value with the increase of SNRs eventually, which was the same as the Doppler.
The RMSE of the proposed algorithm was obviously lower than the original method, which benefited
from the suppression of undesired round trips.
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Figure 3. Root mean square error (RMSE) curves of DOA and Doppler versus SNRs.

4.3. RMSE Distributions

This experiment verified the proposed algorithm’s applicability in different multipath scenes.
The arrival angle, attenuation factor, delay and normalized Doppler frequency of the direct-path
were 2◦, 1, 0 ns and 0.2, respectively. There was a mirror path and two diffuse multipath, while the
parameters were randomly generated. We simulated 100 different multipath scenes with 100 Monte
Carlo trials for each scene at SNR = 5 dB.

Figure 4 plots the RMSE histograms of 100 different multipath environments in three situations.
Compared with the other two cases from the aspects of the RMSE span range, our algorithm had
an excellent performance in both DOA and Doppler. The result shows that our algorithm was more
suitable in different multipath scenes.

(a) Original method with the original
model

(b) Original method with the new model (c) New method with the new model

Figure 4. RMSE histograms of three cases (the top subplots are RMSE histograms of DOA, while the
bottom subplots are RMSE histograms of Doppler).
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4.4. RMSE of Different DOAs at A Fixed SNR

This experiment verified the applicability for different direct-path incident angles. For each
direct-path angle, there was a mirror angle and two randomly generated angles between −5◦ and
−20◦. The direct-path angle ranged from 1.1◦ to 2◦ with the step angle of 0.1◦, while all the normalized
Doppler frequencies were randomly generated between 0 and 0.2. The SNR was 5 dB, and 500 Monte
Carlo trials were performed for each direct-path angle.

Figure 5 describes the performance of the proposed joint estimation algorithm for different
incident angles. For each direct-path angle, the RMSE of the proposed algorithm was lower than
the corresponding RMSE of the conventional method. Moreover, the fluctuation of our RMSE was
smaller than that of traditional STAP. Due to the randomness of parameters, the RMSEs were generally
different even with the same SNR. The result further verified the superiority of the proposed algorithm.
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(a) RMSE of different incident angles
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(b) RMSE of Doppler with different incident angles

Figure 5. RMSE of three cases at SNR = 5 dB.

5. Conclusion

In this letter, a post-Doppler adaptive MUSIC algorithm used for angle-Doppler joint estimation
in diffuse multipath environments is proposed. The novel algorithm applies the matrix spatial filtering
technique and post-Doppler adaptive MUSIC algorithm to an improving multipath model, avoiding
the ambiguity between DOA and Doppler and increasing the estimation accuracy. Simulation results
verify the superiority of the proposed algorithm in different multipath scenes and different incident
angles. In the future, we will research on the optimization of algorithm complexity.
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