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Abstract

Background: We previously identified dermicidin (DCD), which encodes a growth and survival factor, as a gene
amplified and overexpressed in a subset of breast tumors. Patients with DCD-positive breast cancer have worse
prognostic features. We therefore searched for specific molecular signatures in DCD-positive breast carcinomas from
patients and representative cell lines.

Methods: DCD expression was evaluated by qRT-PCR, immunohistochemical and immunoblot assays in normal and
neoplastic tissues and cell lines. To investigate the role of DCD in breast tumorigenesis, we analyzed the consequences
of its downregulation in human breast cancer cell lines using three specific shRNA lentiviral vectors. Genes up- and
down-regulated by DCD were identified using Affymetrix microarray and analyzed by MetaCore Platform.

Results: We identified DCD splice variant (DCD-SV) that is co-expressed with DCD in primary invasive breast carcinomas
and in other tissue types and cell lines. DCD expression in breast tumors from patients with clinical follow up data
correlated with high histological grade, HER2 amplification and luminal subtype. We found that loss of DCD expression
led to reduced cell proliferation, resistance to apoptosis, and suppressed tumorigenesis in immunodeficient mice.
Network analysis of gene expression data revealed perturbed ERBB signaling following DCD shRNA expression
including changes in the expression of ERBB receptors and their ligands.

Conclusions: These findings imply that DCD promotes breast tumorigenesis via modulation of ERBB signaling
pathways. As ERBB signaling is also important for neural survival, HER2+ breast tumors may highjack DCD’s neural
survival-promoting functions to promote tumorigenesis.
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Background
We previously described DCD as a candidate oncogene
in breast cancer based on its copy number gain and
overexpression in a subset of tumors [1]. Patients with
DCD-positive breast cancer are more likely to have
metastatic lymph nodes, larger tumors, and worse clin-
ical outcome [1]. We also demonstrated that overexpres-
sion of DCD enhanced cell proliferation and resistance
to oxidative stress-induced apoptosis in cell culture [1].
Furthermore, we showed that DCD encodes for a
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secreted protein that binds to a candidate receptor
present on the cell surface of breast cancer cells and
neurons [1].
In normal human tissues DCD displays a restricted ex-

pression pattern with significant expression detected
only in eccrine sweat glands of the skin [2] and in cer-
tain parts of the brain [1] Overexpression of DCD was
reported in multiple human tumor types including mel-
anoma, cutaneous tumors, breast, prostate, pancreatic,
and hepatocellular carcinomas [1,3-9]. The 11 kDa full-
length DCD protein and proteolytic peptides derived
from it have been proposed to have diverse biological
functions, such as acting as a growth and survival factor
in breast cancer [1] and in neural cells [10,11], displaying
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antibacterial activity [2,12,13], and inducing cancer-
associated cachexia in animal models and in cancer pa-
tients [14,15]. In addition, a recent study demonstrated
that DCD may function as a proteolytic enzyme which
can cleave and activate the pro-MMP-9 matrix metallo-
proteinase and, thus, may also promote tumor cell inva-
sion [16].
Despite the presumed importance of DCD in tumori-

genesis and neurodegenerative diseases, the molecular
mechanisms behind its many physiological and patho-
logical functions, its receptor, and the signaling pathway
activated by it remain obscure. The DCD gene appears
to have evolved fairly recently during evolution, as no
homologous genes could be identified beyond New
World Monkies based on Southern blot [1]. This appar-
ent lack of DCD homologues in lower organisms made
deciphering its biological function more difficult. Even
in the human genome only two proteins show limited
homology to DCD, and only one of these, lacritin
(LACRT), has been characterized to some extent [17].
LACRT is closely linked to DCD at chromosome 12q13
and it is co-amplified and co-expressed with DCD in a
subset of breast tumors [1]. Similar to DCD, lacritin is
also a secreted survival factor and it was proposed to
elicit its effects via activating a not-yet-identified G-
protein coupled receptor(s) and calcium signaling
[17-20]. However, it is unknown if DCD also functions
via related signaling pathways.
To further investigate the function of DCD in breast

cancer, here we describe the identification of a DCD
splice variant (DCD-SV) and the consequences of down-
regulating DCD expression in the MDA-MB-361 human
HER2+ breast cancer cell line and upregulating DCD in
the MCF-7 human HER2- breast cancer cell line and in
the SK-BR-3 human HER2+ amplified cell line. Notably,
we determined that DCD might elicit its oncogenic and
pro-survival effects via modulation of ERBB signaling.

Methods
Cell lines and tissue specimens
Breast tumor specimens were obtained from Boston area
hospitals and AC Camargo Cancer Center (São Paulo,
SP, Brazil). Normal human skin and placenta were col-
lected at Hospital São Paulo (São Paulo, SP, Brazil). The
use of the human specimens was approved by the ins-
titutional review boards (IRB) of the Brigham and
Women’s and Massachusetts General Hospitals (Boston,
MA, USA), Duke University Medical Center (Durham,
NC, USA, the National Disease Research Interchange
(Philadelphia, PA, USA) and AC Camargo Cancer Center
(São Paulo, SP, Brazil). The need for informed consent was
waived as the human specimens were deidentified. Breast
cancer cell lines were previously described [1] and updated
in Additional file 1: Table S1. For the generation of
derivatives of the MDA-MB-361 cell line expressing DCD
shRNA, we designed shRNA against different regions of
the DCD transcript and subcloned them into pLKO-puro
lentiviral construct. Lentivirus generation and validation
of the shRNA clones was performed as previously de-
scribed [21]. For generation of the MCF-7-DCD and SK-
BR-3-DCD human cell lines, the full length human DCD
cDNA was cloned into pcDNA3.1+ expression vector
at BamH1 and EcoR1 restriction enzyme sites. Plas-
mids were transfected into cells using LipofectAMINE
2000 (Invitrogen) and selected in 200–600 μg/ml G418
(Invitrogen). Transfection was confirmed by PCR and
Western blot analyses as previously described [22].

PCR, microarray, and network analyses
RNA preparation and RT-PCR analyses were conducted
essentially as we described [1]. Gene expression profiling
was performed by the Dana-Farber Microarray Core Fa-
cility using Affymetrix U133 Plus 2.0 chip following the
manufacturer’s protocols; data was analyzed by dChip
software [23]. Microrray data was deposited into GEO,
accession number # GSE57578, and is available to scien-
tific community (Additional file 2). Gene expression
levels were compared pair-wise between control pLKO
and each of the three DCD shRNA derivatives. Genes
that displayed statistically significantly different expres-
sion in all three pair-wise comparisons were selected for
further analyses using the MetaCore platform essentially
as previously described [24]. Details of network analyses
are included in the Supplementary Data. Quantitative
RT-PCR analyses were performed using SYBR Green
RT-PCR kit (Invitrogen, Carlsbad, CA) according to
manufacturer’s instructions on Mx3005P® qPCR System
(Agilent Technologies). REST© software was used for
statistical analyses [25]. Expression data is expressed as
means ± SD. Primer sequences used for PCR amplifica-
tions are available from the authors upon request.

Immunohistochemical, immunoprecipitation and
immunoblotting analyses
Immunohistochemical analysis (IHC) of formalin fixed
paraffin embedded cells and tissue samples was per-
formed as previously described [1] using affinity-
purified rabbit polyclonal raised against DCD synthetic
peptide (RQAPKPRKQRSS) and DCD-SV synthetic peptide
(RLVFGAPVNLTSIPLTSV), and commercially available
antibodies to DCD as follow: G-81 mouse monoclonal
[26], goat polyclonal (Santa Cruz Biotechnology, San Diego,
CA) and rabbit polyclonal (Abgent Inc, San Diego, CA).
The C-terminal peptides of human DCD and DCD-SV
were used for target/specificity assay. Immunoblot analyses
were performed as described [1]. For immunofluorescense,
immunohistochemical and immunoprecipitation studies,
the following mouse, human or rabbit primary and
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secondary antibodies were used: EGFR (sc-03), pEGFR
(tyr 1173, sc 12351) (Santa Cruz Biotechnology), EGFR
and ErbB-2/HER2 (pharmDX), cytokeratin-5/6 and
cytokeratin-18 (DakoCytomation), Trastuzumab/Herceptin
(Genentech Inc, South Francisco, CA), pMAPK 38 (tyr
180, 182), pAKT (tyr 308) (Cell Signaling Technology),
α-tubulin, β-actin (Sigma-Aldrich, St. Louis, MO), and
FITC-labeled goat anti-mouse or rabbit (Santa Cruz
Biotechnology and Cell Signaling). To evaluate the
phosphorylation status of EGFR, the MDA-MD-361 or
MCF-7 cell clones were treated with recombinant EGF
(Sigma) for 15 min, and cultures washed twice ice-cold
PBS and lysed in immunoprecipitation buffer as de-
scribed [27]. Lysates were incubated with anti-pEGFR
overnight at 4°C and next with protein A- and
G-Sepharose for 2 h and then the immunocomplexes
were pelleted by centrifugation. Western blotting was
performed as described [1].

Cell proliferation and survival assays
For cell proliferation assays, cells were seeded at 4 × 103

cells per well in 24-well plates in DMEM with 1% FCS
and treated with recombinant DCD at concentrations 1
to 1000 ng/ml. Cell proliferation was determined by in-
cubating the cells for 3–5 days in the presence of
0.1 mM bromo-2’-deoxyuridine (Oncogene Research,
Cambridge, MA) followed by detection using protocols
provided by the manufacturer. For cellular survival
assay, 1-2 × 103 cells in 96-well plates were incubated
overnight and subsequently treated with different con-
centrations of H2O2, staurosporine, and TNF-α with
cyclohexamide for 16–18 hours. Cellular viability was
determined using a tetrazolium salt assay (Sigma-
Aldrich, St. Louis, MO). Each experimental condition
was measured in quadruplicates and each experiment
was performed at least three times. Results are expressed
as mean ± SEM.

Xenograft assays in immunodeficient mice
For xenograft assays, 6-week-old female BALB/c nude
mice were subcutaneously injected in the flank with 200 μl
of matrigel (Becton-Dickson Biosciences, NJ) alone (con-
trol group) or mixed with 1 × 106 cells from MDA-MB-
361 pLKO clone (pLKO group) or MDA-MB-361 DCD
shRNA clone (IBC-I group). Five animals were used in
each group. Body weight, tumor mass and overall status
were monitored every two days throughout 45 days. Ani-
mal weight is expressed as mean ± SD percentage of
weight at injection. The mice were euthanized and organs
and tumors were dissected, weighed and frozen in liquid
nitrogen or fixed in 10% buffered formalin and embedded
in paraffin. Xenograft experiments were repeated twice
with essentially the same results. For in vivo therapy study,
female nude mice (20–25 g) were subcutaneously injected
in the dorsal flank with ~1 × 106 MDA-MB-361 parenteral
cells diluted 1:1 in Matrigel. When tumor volumes reached
200–300 mm3, mice were randomly distributed into
groups in order to test the different treatment. Animals in
group 1 received intraperitoneal doses of trastuzumab
(20 mg/kg), animal in group 2 received a mixture of goat
polyclonal anti-DCD antibodies (1 mg/Kg), named N-20,
A-20 and S-19 (Santa Cruz Biotech); and animal in group
3 their combination one a week for a five weeks. Tumors
were measured with a caliper every week, and volume cal-
culated by the formula: tumor volume = (width)2 × length
× 0.5. The body weight changes and performance status
were monitored daily for 5 weeks. All animal experiments
were performed according to a protocol approved by the
Animal Care and Use Committee of the Institute of Bio-
medical Sciences, University of São Paulo.
Statistical analyses
Results are expressed as mean ± SD. Data were analyzed
by the Student’s paired t-test, one-way (or two-way)
ANOVA and Fisher’s exact test as appropriate, using
Prism software. For the mouse xenograft experiments,
three groups of animals were compared using the exact
Wilcoxon rank sum test.
Results
Expression of DCD and DCD-SV in normal and neoplastic
tissues
While analyzing the expression of DCD by RT-PCR in
various normal and neoplastic tissues and cell lines, we
identified a larger transcript co-expressed with DCD.
The transcript contains a different fifth exon as a result
of alternative splicing (Figure 1A), thus, we designated it
DCD-SV (for DCD splice variant). This 526 bp DCD-SV
encodes a 12.1 kDa protein with a different C-terminus
missing the hydrophobic coiled-coil structure (amino
acids 80–103) thought to be essential for the antibacter-
ial function of DCD [2]. The expression of DCD and
DCD-SV correlated well in most tissue samples and cell
lines analyzed, although the relative levels of the two
transcripts demonstrated some variability (Figure 1A).
To define relative DCD and DCD-SV expression levels
more precisely, we performed quantitative RT-PCR ana-
lysis of various human tissue samples and cell lines.
Among normal tissues, placenta expressed almost only
DCD-SV, whereas in normal breast both transcripts were
detected at a 2:1 ratio and cell lines displayed variable
DCD and DCD-SV expression levels (data not shown).
Another group also identified a short truncated (DCD-
SV-1) and a larger (DCD-SV-2) form of DCD in human
placental tissue [19]. DCD-SV-1 is expressed in villous
parenchyma whereas the larger DCD-SV-2 isoform,
which is similar to the DCD-SV sequence identified in
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Figure 1 Expression of DCD and DCD-SV in normal and neoplastic tissues. A, RT-PCR analysis of DCD and DCD-SV expression in primary
human breast carcinomas and in breast cell lines. N denotes normal breast organoids obtained from two different age women. Amplification of
ACTB (actin) was used to indicate equal loading. B, DCD and DCD-SV immunostaining of epithelial cells and ducts of sweat gland of the skin,
C, Representative tumor tissue sections stained with rabbit polyclonal antibodies to DCD and DCD-SV. Magnification of 40× and 200×.
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our study, is expressed preferentially in reflected mem-
brane [16].
We performed IHC using different antibodies and rou-

tinely detected the expression of DCD and DCD-SV in
epithelial cells of human eccrine sweat glands (used as
control) and luminal side of secretory ducts (Figure 1B).
The reactivity was not present in normal mammary
epithelial cells, and reliable staining was present in
membrane and weaker in cytoplasm of tumor cells
(Figure 1C). Next, we examined ~600 samples of pri-
mary and invasive carcinomas spotted in two tissue mi-
croarrays slides. The patient cohort was previously
clinic-pathological evaluated and the tumors classified as
negative or positive for estrogen and progesterone re-
ceptors and EGFR and HER2 receptors [28]. The
Nottingham system was used for assessment of histo-
logic grade of each tumor [28]. A group of 26 samples
with consistent DCD immunoreactivity in <50% or >50%
of tumor cells was classified into subgroups according to
their clinical and pathological features. Statistically sig-
nificant associations (p < 0.05) were found between DCD
reactivity >50% and the subgroups with either high
histological grade or with HER2 score 3 (Table 1.A). No
relationship with overall survival was found. These re-
sults are in line with the findings of our previous study
analyzing a smaller cohort [1].



Table 1 Association of DCD expression and Breast Cancer
Biomarkers

A. Association between the clinical-pathological features and
molecular markers in DCD-positive breast cancer patient samples

Characteristics Invasive Breast Carcinoma, n = 26

Median age, years range 56 (37–79)

DCD expression <50% >50%

no. (%) no. (%) P-value

Nodal status

Negative, n = 9 7 (77.8) 2 (22.2) 0,11

Positive, n = 17 7 (41.1) 10 (58.9)

Histological Grade

Intermediate, n = 10 7 (70) 3 (30) 0,008

High, n = 16 2 (12.5) 14 (87.5)

Estrogen Receptor

Negative, n = 15 6 (40) 9 (60) 0,13

Positive, n = 11 8 (72.7) 3 (27.3)

Progesterone Receptor

Negative, n = 16 6 (37.5) 10 (62.5) 0,22

Positive, n = 10 7 (70) 3 (30)

ERBB2

Score 0–2, n = 14 14 (100) 0 0,001

Score 3, n = 12 0 12 (100)

B. Association between DCD and ERBBs mRNA expression in 55
breast cancer cell lines

DCD expression (RMA,log2)

<4 ≥4

no. (%) no. (%) P-value

ERBB2

<8, n = 25 13 (23.6) 12 (21.8) 0,047

≥8, n = 30 7 (12.7) 23 (41.8)

ERBB3

<9, n = 21 12 (21.8) 9 (16.3) 0,044

≥9, n = 34 9 (16.3) 25 (45.4)

ERBB4

<4, n = 21 10 (18.1) 11 (20) 0,391

≥4, n = 34 11 f 23 (41.8)

EGFR

<7, n = 40 17 (30.9) 23 (41.8) 0,795

≥7, n = 15 5 (0.05) 10 (14.5)

P = Statistical significance by Fisher’s exact.
RMA = robust multiarray average.
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To further confirm the association of ERBBs and DCD
expression, we compiled freely available microarray data
sets of 55 human breast cancer cell lines obtained from
Cancer Cell Line Encyclopedia (http://www.broadinstitute.
org/ccle). The list is described in Additional file 1: Table S1
and has representative models for the different subtypes of
the disease [29]. The association analyses were done across
the subgroups classified as higher or lower based on
whether the value was below or above the median of RMA
(robust multiarray average) normalized expression value
for the DCD and ERBB genes obtained in CCLE. Again,
we found statistically significant association (p < 0.05) be-
tween DCD expression (RMA ≥4) with HER2 (RMA ≥8)
and also with HER3 (RMA ≥9) expression (Table 1.B,
Additional file 1: Table S1). As expected, in these groups
are cell lines classified in the HER2 and luminal subtype, in
which HER2 gene is amplified or superexpressed [29] and
(Additional file 1: Table S1).

Consequences of DCD downregulation
To assess the function of DCD in breast cancer cells with
high endogenous expression, we generated derivatives of
the MDA-MB-361 human breast cancer cell line express-
ing three different shRNAs against DCD (IBC-I, IBC-II,
and IBC-III) using pLKO plasmid-derived lentiviruses.
Efficient downregulation of DCD mRNA and protein was
confirmed by multiple assays including RT-PCR analyses
(2C), immuno-cytochemistry (2A), and immuno-blotting
(Figure 2D). Cells expressing DCD shRNAs had signifi-
cantly reduced colony-forming ability (Figure 2B).
To evaluate if down-regulation of DCD affects cellular

resistance to apoptosis, we exposed the cells to various
doses of cytotoxic agents and found that their cellular
resistance to H2O2 (Figure 2E), staurosporine (Figure 2F),
and TNF-α at 200 ng/ml (Figure 2G) were significantly
reduced. These results are in agreement with prior stud-
ies describing higher apoptosis resistance of cancer cells
overexpressing DCD [1,6,7,9].
Next, we analyzed the effect of DCD downregulation

on tumorigenesis by performing xenograft assays in im-
munodeficient mice. Mice inoculated with MDA-MB-
361 cells expressing IBC-I shRNA developed smaller
tumors compared to control pLKO cells (Figure 3A).
The overall weight of various organs of mice inoculated
with tumor cells was significantly reduced compared to
animals without tumor, but no difference in body weight
was observed between control and DCD shRNA ex-
pressing cells, and we did not observe cachexia in any of
the experiments (Figure 3C,E). However, we observed a
significant difference in tumor mass between control
pLKO and IBC-I groups, which could explain the more
pronounced weight losses of carcass, gastrocnemius,
and soleus skeletal muscles in these mice (Figure 3E).
Macroscopic local invasion or metastasis was not ob-
served in any of the animals analyzed (data not shown).
Immunohistochemical analysis confirmed decreased
DCD protein levels in DCD shRNA expressing com-
pared to control xenografts (Figure 3D). Additionally,
we observed increased expression of CK-18 in DCD
shRNA expressing xenografts implying more luminal

http://www.broadinstitute.org/ccle
http://www.broadinstitute.org/ccle
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Figure 2 Characterization of MDA-MB-361 cell line derivatives expressing DCD shRNA. All experiments were repeated using three
independent cell clones with essentially identical results. Representative experiments are depicted in the figures. A, Morphology of the cells
(upper panel) and immunocytochemical analysis (lower panel) of DCD protein expression. B, Quantitative analysis of colony numbers (≥25 cells/
colony) two weeks following plating of the cells. y-axis indicates mean colony counts ± SD; * denotes statistically significant (p < 0.05) differences.
Quantitative RT-PCR (C) and immune-blot analysis (D) confirming reduced levels of DCD mRNA and protein, respectively, in DCD shRNA expressing
cells. Cellular survival of control pLKO (white bars) and DCD shRNA expressing (black bars) cells following treatment with the indicated concentration of
H2O2 (E) staurosporine (F) and TNF-α plus cyclohexamide (G). Y axis indicates % surviving cells compared to untreated controls.
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phenotype that could contribute to decreased tumor
growth (Figure 3D).

Signaling pathways modulated by DCD
To investigate the mechanisms underlying the growth
and survival-promoting effects of DCD in MDA-MB-
361 breast cancer cells, we analyzed the global gene
expression profiles of control pLKO and DCD shRNA
expressing cells (Figure 4A, Additional file 3: Table S3).
Genes were identified as differentially expressed if their
expression showed at least three-fold difference in each of
the three pair-wise comparisons. Using these criteria we
identified 208 up and 27 down-regulated genes (Additional
file 3: Table S3). Down-regulation of DCD resulted in de-
creased levels of several genes that regulate oxidative
stress, hypoxia, and angiogenesis including disulfide
isomerase-associated 3, 4 and 6 (PDIA), stress 70 kDa pro-
tein chaperone (STCH), heat shock 70 kDa protein 5
(GRP78), hypoxia-inducible gene 2 protein (HIG2), VEGF-
A, and VEGF-B. The c-MYC transcription factor, which
controls the expression of numerous genes involved in
metabolism, protein synthesis, and cell proliferation was
also down-regulated in DCD shRNA expressing cells.
Several genes regulating cell survival and death also
showed altered expression in DCD shRNA expressing
cells including protein phosphatase 3, the catalytic
subunit of calcineurin A (PPP3CA), calcium/calmodulin-
dependent protein kinase II delta (CAMK2D), thioredoxin-
interacting protein (TXNIP), and cyclin-dependent kinase
6 (CDK-6). Calcineurin is a calcium and calmodulin-
regulated protein phosphatase that acts as a molecular
integrator of specific calcium signals. TXNIP is an
inhibitor of thioredoxin, a central regulator of redox
states [30]. Thus, cells overexpressing DCD may display
increased resistance to oxidative stress-induced apop-
tosis due to their higher anti-oxidant activity potentially
because thioredoxin is relieved of inhibition by TXNIP.
Therefore, inhibiting DCD activity by antibodies or
small molecules may increase tumor cell susceptibility
to radiation and chemotherapy.
Systematic functional analysis of the differentially

expressed genes using GEO revealed significant enrich-
ment for genes with metabolic function among the 208
down-regulated genes, whereas among the 27 up-
regulated genes were enriched in signal transduction
pathways (Figure 4B). More detailed analysis of
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Figure 3 The effect of DCD downregulation on tumorigenesis. A, Representative mice from control and DCD shRNA experimental groups
twelve weeks after injection demonstrating visible differences in tumor size. No physical signs resulting from cachexia were observed in either
group of mice. B, Body weight of mice during the course of the experiment. Data are mean ± SE for 5–6 mice per group. *indicates statistically
significant (P < 0.05) differences calculated by ANOVA. C, Variation of body weight along xenograft tumor growth. Data are expressed as mean ±
SE of the average of weights of 5–6 animals in each experimental group. Statistical differences among groups were determined by One-way
ANOVA with Turkey’s pairwise comparisons. D, Immunohistochemical analysis of DCD and cytokeratin 5 (CK-5) and 18 (CK-18) protein expression
in xenografts derived from cells expressing DCD shRNA (IBC-I) compared to pLKO controls. E, Table 1 showing summary of tumor size and weight
of carcass, skeletal muscles, and individual organs. Data are expressed as mean ± SE of the average of wet weights of organs of 5–6 animals in each
experimental group. Statistical differences among groups were determined by One-way ANOVA with Turkey’s pairwise comparisons.
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signaling networks and pathway using the Metacore soft-
ware [24] predicted higher connectivity among the genes
within the EGFR signaling canonical pathway. Betacellulin,
amphiregulin, EGFR and c-Myc expression levels de-
creased in each of the three different DCD shRNA ex-
pressing cell pools compared to control pLKO (Figure 4C,
Additional file 4: Excel Spreadsheet 1, Additional file 5).
To experimentally validate these predictions of network

analysis studies, we analyzed the expression levels of all
ERBB family members by real time PCR in control and
DCD shRNA expressing cells (Figure 5A,B). These ana-
lyses indicated that the expression levels for EGFR,
ERBB2, and ERBB3, and their ligands BTC, EGF, TGF-α,
AREG, HB-EGF, NGR1, and NGR4 were down-regulated,
whereas the ERBB4 and ligands EREG and NGR2 were
up-regulated in cells expressing DCD shRNAs. The reduc-
tion of EGFR protein levels was confirmed by immunohis-
tochemical analysis of xenografts derived from DCD
shRNA expressing cells (Additional file 6). To analyze sig-
naling changes downstream of ERBB receptors, we
analyzed the phosphorylation status of EGFR, Akt and
p42/44 MAPK in control and DCD shRNA expressing
MDA-MB-361 cells untreated or treated with EGF 10 ng/
ml. The phosphorylation of EGFR, Akt, and MAPK pro-
teins increased in control pLKO cells but was low or no
detectable in IBC-I cells (Figure 5H).
Interestingly, ERBB4 promotes differentiation in

mammary epithelial cells [31,32] and it is associated
with better prognosis in breast cancer patients [33,34].
ERBB4 may execute its differentiation-inducing func-
tion by dimerizing with other ERBB family members
and decreasing the levels of more oncogenic ERBB het-
erodimers such as ERBB3/ERBB2 [35]. Correlating with
this, MDA-MB-361 breast cancer cells expressing DCD
shRNA displayed a more differentiated luminal epithelial
cell phenotype compared to control cells (Figure 2A).
The combined regulation of c-MYC, ERBBs, and sev-
eral other signal pathways by DCD may play a role in
this process. Thus, an intriguing hypothesis based on
our data is that the physiologic function of DCD is to



SEP10
HIG2
MUC5B
HNOEL-iso
CCNG1
HP
BNIP3
CGI-109
C10orf45
BTC
PFKP
HP
RDX
FOLR1
TPI1
TPI1
PACAP
AMBP
HP
EGFR
GRP58
HP
DUSP5
SSR3
LOC221002
NDRG1
EGFR
CBX4
FKBP11
SSR1
KIAA0644
ERP70
FLJ11200
MGC34646
CRABP1
JMJD1
SLC25A17
MGEA6
HSPA5
NFIL3
ADCY3
SEC24D
SERPINA1
TTLL1
EEF1B2
HP
AP1S1
srGAP2
IARS
DXYS155E
EPB41L4B
CHPPR
CDC42
HP
THOC2
CELSR2
PYGB
VEGFB
KIAA1102
MGC25062
ASPH
SHMT2
SLC24A1
PRO1855
NANOS1
P5
SLC25A6
UGP2
CALR
DDA3
PPP1CB
P5
SLC33A1
P5
HP
IRFBP2
AOF1
PGK1
CITED2
TOP3B
C21orf45
CTSL
ERO1L
ZN827
AASDH
HIBADH
HIST2H4
HP
SES3
DKFZP564M182
BTBD9
TALDO
ALDH7A1
UROM
STCH
Spir-1
CNOT8
DNAJB9
PPM1E
FLJ34922
TIGA1
KIAA0644
RTP801

F7
FLJ34922
FAIM2
HP
GMPPB
HP
SIAT1
DHRS3
GTPBP2
ARMET
SHMT2
HP
DUSP13
TMPS6
PPM1H
KCTD14
RARA
VEGF
UPP1
HP
SARS
HP
LOC51136
DJ79P11.1
FTHFSDC1
SPAS1
ATF1
HP
FLJ13840
CTSL2
TBP2
FLJ31951
PRSS15
APBB2
MICA
IVNS1ABP
DKFZP564O0523
PRKD2
SH3PXD2A
PLAB
TUBB
ChGn
DUSP6
BHLHB2
DUSP6
DUSP6
ASS
CBS
FGD3
VEGF
UNC5B
CEBPB
C20orf18
MSCP
LOC152519
IL8
HP
MYC
VEGF
KCNF1
EMP1
MXI1
HP
CAMP
PLAB
PFKFB3
PDK1
HP
FLJ10647
MIG-6
DSC96
STC1
DSC96
MTHFD2
PACAP
HP
SPRY4
EGR1
SERPINA3
TAT
PNMT
B3GNT5
KIAA1434
AREG
KRTHB6
ITGA6
TAT
HSPC242
GRIP2
PCK2
PPP1R1B
ASPH
MUC5B
EGR3
P4HA1
CADPS2
LOC81691
MUC5B
IER3
AK3
EGR1
ADCY3
STC1
PRO2605

PPP3CA
PPP3CA
ARRD4
TXNIP
C20orf114
TXNIP
UGT2B15
FLJ13110
KIAA0888
TXNIP
OGFRL1
HP
HP
FLJ222256
KIAA0888
MGV40489
LOC440309
KIAA0826
PDLIM5
RAN9
LOC148898
IL6ST
ACTR2
LOC166994
LOC152485
CATL1
THHS

IB
C

 II
I

IB
C

  I
I

IB
C

 I

pL
KO

IB
C

 I
II

IB
C

  I
I

IB
C

 I

pL
KO

A

C

B

IB
C

   
III

IB
C

   
II

IB
C

   
I

pL
KO

Figure 4 The effect of DCD levels on global gene expression profiles. A, Heatmap depicting relatedness of gene expression profiles of
control and DCD shRNA expressing cells. Hierarchical clustering was applied to Microarray data and selected portions of the clustering heat map
are shown here. Each row represents a probe and the official symbol of gene is shown. Red and green indicate high and low gene expression
levels, respectively. B, Gene ontology biological process categories highly represented in DCD shRNA expressing cells. Categories with an
enrichment score >2 using the DAVID Functional Annotation Tool are plotted. C, Development_ERBB signaling canonical pathway map
generated by MetaCore. Blue thermometers in Betacellulin, amphiregulin, EGFR and c-Myc indicate fold-change in expression levels in each of the
three different DCD shRNA expressing cell pools compared to control pLKO. See Additional file 5 for network legend.

Bancovik et al. BMC Cancer  (2015) 15:70 Page 8 of 13
promote progenitor-like cellular phenotype via modu-
lating the activity of pathways involved in maintaining
stem cell states.

Consequences of DCD overexpression or treatment
To further explore the relationship between DCD ex-
pression and ERBB signaling pathways, we generated de-
rivatives of the MCF-7 estrogen receptor positive and
HER2-non-amplified luminal breast cancer cells stably
expressing DCD. We compared cell growth and survival
in control and DCD-expressing cells as well as the ex-
pression levels of ERBB family of receptors and ligands
and components of their signaling pathways (Figure 6).
DCD overexpression increased colony formation and
survival (Figure 6C,D) as well as xenograft growth in
immunodeficient mice (data not shown). Similar obser-
vation was described previously [36]. The constitutive
autocrine expression of DCD significantly increased the
mRNA levels of EGFR, HER2/ErbB2, AREG, EGF, HB-
EGF, NRG3, and NRG4 (Figure 6E,F). Following EGF
stimulation, DCD-expressing MCF-7 cells displayed more
pronounced phosphorylation of EGFR, Akt, and MAPK
proteins compared to MCF-7 pCDNA cells (Figure 6G).
Next, we demonstrated that the overexpression of DCD
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gene in SK-BR-3 cells increase the proliferation of this
HER2-amplified cell line as well as tumor growth when
the cells were implanted in the mammary fat pads of fe-
male immunodeficient mice (Additional file 7: Figure S3).
Thus, the pattern of changes observed in these two DCD
overexpressing cells are the opposite of those found in
MDA-MB-361 cells expressing DCD shRNAs strengthen-
ing the link between DCD and ERBB signaling.
To demonstrate that the observed effects were due to

the extracellular actions of DCD, we analyzed the pro-
liferation of MDA-MB-361 cells treated with 1–100 nM
of highly purified recombinant human DCD (rhDCD)
(Figure 5C). Similar to our prior findings [1], recombin-
ant DCD enhanced cellular proliferation at 0.1-1 nM
but not at 10 and 100 nM. Similar bell-shaped dose–re-
sponse curves have been observed in experiments that
established Y-P30, a DCD-derived peptide, as a neural sur-
vival peptide [1,10,11], lacritin, a homolog to DCD [19]
and other well-known mitogenic factors including sonic
hedgehog, VEGF, FGF, and PDGF. More importantly, real
time RT-PCR analyses of treated cells confirmed the up-
regulation of EGFR, c-MYC, EGF, HB-EGF, and NRG3
(Figure 5D,E,F), whereas the expression of HER-2, −3
and −4 receptors and ligands AREG, BTC, TGF-α, and
NRG4 did not change significantly (Figure 5F,G). Fi-
nally, we tested the efficacy of trastuzumab, a human-
ized polyclonal antibody against HER2, and goat
polyclonal antibodies against DCD for the treatment
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of parental MDA-MB-361 cells in vitro and in vivo
(Figure 7A,B). The results demonstrated that individually
or the combination of anti-DCD antibodies and trastuzu-
mab caused a significant reduction of the number of cell
colonies in cell culture as well as the tumor growth as
xenograft in immunodeficient mice. These results confirm
our hypothesis that DCD autocrinally produced by MDA-
MB-361 cells may be acting in concert with the ligands of
HER/ErbB receptor family to stimulate the growth and
proliferation of breast cancer cells.
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Discussion
Here, we describe for the first time the co-expression of
DCD and DCD-SV in normal skin tissue and breast can-
cer cell lines using validated and novel specific anti-
bodies against different portions of these proteins. The
DCD splice variant is identical in its nucleotide sequence
to a larger (DCD-SV-2) form of DCD identified in hu-
man placental tissue as described [37]. Although we
found an association of DCD with either high histo-
logical grade or with HER2 positive samples (score 3),
we did not find a significant relationship between tumor
samples having DCD reactivity and overall survival in
this small cohort of 26 breast cancer patients. These re-
sults are in line with our previous studies [1,22,38].
There are few studies published in the literature that

report possible molecular mechanism(s) by which
DCD native protein and DCD-generated peptides
exert their function as growth and survival factors and
antibiotic peptides [6-13]. We believe that the binding
to low and high affinity membrane receptors [1]
would directly or indirectly promote the integration of
network signaling pathways leading ultimately to
EGFR phosphorylation and activation of p38 MAPK
and Akt (Figures 5 and 6). A recent study has de-
scribed the crystal and atomic structure of DCD-1 L
antibiotic peptide and detailed a mechanism by which
individual peptides undergo oligomerization and as-
sembly into a channel structure with ion conductivity
properties across a biomimetic membrane [37]. It is
not known if this putative channel is formed in mam-
malian membranes nor if it influences the growth rate
of malignant cells.
Human breast cancer cells selected for resistance to

trastuzumab in vivo overexpress epidermal growth fac-
tor receptor and ErbB ligands and remain dependent
on the ErbB receptor network [27,35,39]. Our experi-
ments in Figure 7 provide further evidence for parallel
pathways and their possible mediators, for example,
DCD. Finally, it is important to mention a recent
study published by Wilhelm and colleagues [40]
confirming the biological role of DCD as biomarker
for cellular resistance of various tumor cells to the
EGFR/ErbB1 tyrosine kinase inhibitors erlotinib and
lapatinib.
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Conclusions
Using gain-of-function and loss-of-function approaches
we confirmed that DCD acts as a growth and survival-
promoting factor in breast cancer. Furthermore, we
demonstrated that these effects are due to the modula-
tion of ERBB receptor signaling by DCD. In agreement
with this, here and in a previous study [1], we found that
DCD-expressing breast tumors are frequently HER2+.
Our data also imply that DCD-expressing HER2+ tumors
may be more likely to be resistant to HER2-targeted ther-
apies; a hypothesis that worth investigating in future
studies.
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