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Abstract

Genome-wide association studies (GWAS) are widely used to search for genetic loci that underlie human disease. Another
goal is to predict disease risk for different individuals given their genetic sequence. Such predictions could either be used as
a ‘‘black box’’ in order to promote changes in life-style and screening for early diagnosis, or as a model that can be studied
to better understand the mechanism of the disease. Current methods for risk prediction typically rank single nucleotide
polymorphisms (SNPs) by the p-value of their association with the disease, and use the top-associated SNPs as input to a
classification algorithm. However, the predictive power of such methods is relatively poor. To improve the predictive power,
we devised BootRank, which uses bootstrapping in order to obtain a robust prioritization of SNPs for use in predictive
models. We show that BootRank improves the ability to predict disease risk of unseen individuals in the Wellcome Trust
Case Control Consortium (WTCCC) data and results in a more robust set of SNPs and a larger number of enriched pathways
being associated with the different diseases. Finally, we show that combining BootRank with seven different classification
algorithms improves performance compared to previous studies that used the WTCCC data. Notably, diseases for which
BootRank results in the largest improvements were recently shown to have more heritability than previously thought, likely
due to contributions from variants with low minimum allele frequency (MAF), suggesting that BootRank can be beneficial in
cases where SNPs affecting the disease are poorly tagged or have low MAF. Overall, our results show that improving disease
risk prediction from genotypic information may be a tangible goal, with potential implications for personalized disease
screening and treatment.
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Introduction

Genome-wide association studies (GWAS) have recently

become the dominant method for searching for the genetic basis

that underlies human diseases [1–3]. A typical GWAS consists of a

collection of genotypes from affected (cases) and healthy (controls)

individuals, allowing researches to search for single nucleotide

polymorphisms (SNPs) that significantly differ in frequencies

between the two groups [4,5]. Such studies have identified over

1,000 loci associated with more than 165 diseases and traits [6,7],

such as diabetes [8–10], cancer [11–13], and rheumatoid arthritis

[14].

In an effort to move beyond single SNP associations, multiple

studies tried to predict disease risk in individuals based on their

SNP profiles [15–19]. In such risk prediction studies, the entire set

of SNPs is potentially used to estimate the risk of every individual

to suffer from the disease, and this risk is then compared with the

actual disease status of the individual (e.g., case/control). The

quality of the prediction is assessed in several ways, with the AUC

value (area under the receiver operating curve) being a popular

choice, albeit not a perfect one [18,20]. Intuitively, the AUC can

be thought of as the probability that a predictor will correctly

classify a pair of samples, one positive and one negative, with a

perfect predictor having an AUC of 1, and a random predictor

having an AUC of 0.5. Currently, GWAS-based predictors

achieve a broad range of AUCs, ranging from relatively high

AUC values such as ,0.9 for Type 1 diabetes, and near random

AUC values for other diseases such as mood disorders [18].

Here, we set out to improve our ability to predict disease risk of

individuals based only on their SNP genotypes. In risk prediction

algorithms, a large set of SNPs is used to perform the predictions,

with the identity of the selected SNPs varying due to noise in the

choice of data. We thus hypothesized that improvements to risk

prediction may be achieved by selecting SNPs that are less

sensitive to noise and to the exact choice of data. To test this idea,

we devised BootRank, a method that uses bootstrapping in order to

rank SNPs for use within predictive models. In BootRank, the data

is re-sampled multiple times and a SNP ranking is produced for

each such sample, with the final SNP ranking being an aggregate

of all the sample rankings.

We tested BootRank on the Wellcome Trust Case Control

Consortium (WTCCC) data [21] and found that it increases the

robustness of the top-ranked SNPs across different cross-validation

sets. In order to validate that the SNP ranking produced by

BootRank is also more biologically relevant, we compared its

ranking to that based on GWAS association p-values (termed
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GWASRank). We found that BootRank results in a larger number

of enriched pathways associated with the different diseases, and

that the pathways detected have substantial support in the

literature. Finally, we used the SNP rankings of either BootRank

or GWASRank as inputs to seven different classification

algorithms and found that using BootRank significantly improves

the predictive power for held-out test individuals. Notably, the

diseases where using BootRank improves performance the most

were recently found to have an underestimated value of

heritability, likely because they are predominately affected by

variants that have low minimum allele frequency (MAF) [22]. This

unexpected finding suggests that BootRank is especially beneficial

in cases were the underlying SNPs that affect the disease are

poorly tagged or have low MAF.

In summary, our results highlight the importance of robust SNP

ranking in the task of disease risk prediction, and offer a concrete

method to improve ranking robustness, and consequently the

power to predict disease risk and identify biological pathways that

may play a role in the different diseases.

Results

Bootstrap ranking increases the fraction of top SNPs that
overlap between different cross-validations

Since current disease risk predictors are highly dependent on

the initial SNP ranking they take as input, we hypothesized that a

common limitation in these predictors may be the sensitivity of the

ranking to the exact choice of data. We thus wished to test whether

we can improve the ability to predict risk by selecting SNPs that

are less sensitive to noise and the exact choice of data. To achieve

such robust ranking of SNPs, we used bootstrapping [23], which

uses resampling of the data in order to overcome noise.

Bootstrapping makes the assumption that individuals are inde-

pendent and identically distributed, which could be problematic

for scenarios such as familial datasets. In the WTCCC dataset,

however, individuals have no known dependencies [21]. In our

method, we resample the data multiple times, producing a SNP

ranking for each such sampling based on GWAS p-values, and

then aggregate rankings from all samples to produce a final SNP

ranking. We compared our bootstrapping SNP ranking method

(termed BootRank), with the commonly used GWAS p-value SNP

ranking (termed GWASRank) in a strict cross-validation analysis.

When using cross-validation (CV) to generate training and test

sets, there are multiple training sets formed in the process (e.g., in a

5-fold CV, there are 5 different training sets, with a 75% overlap

of individuals between every pair of training sets). The fraction of

top SNPs that overlap between different training sets when

ranking is performed either by GWASRank (as commonly done), or

by BootRank, is indicative of the robustness of the SNP ranking

method.

To test the robustness of both ranking methods, we used the

Wellcome Trust Case Control Consortium (WTCCC) data

consisting of ,2000 cases and ,1500 control genotypes for 7

different diseases (T1D, Type 1 diabetes; T2D, Type 2 diabetes;

CD, Crohn’s disease; CAD, coronary artery disease; BD, bipolar

disorder; RA, rheumatoid arthritis; HT, hypertension). To ensure

minimal bias in the genotypes, we removed all SNPs that were

excluded in the original WTCCC paper [21,24], including SNPs

with deviation from Hardy-Weinberg equilibrium or bad cluster-

ing (see methods). For each disease, we randomly split the data

into training and test sets using a 5-fold CV partition scheme.

Next, in each training set, we computed for each SNP the

minimum (best) p-value it obtains in one of the genetic association

tests (i.e., general, dominant, recessive and additive, see Methods)

and ranked SNPs accordingly, as usually done in GWAS studies

(i.e., by GWASRank). In addition, we employed a bootstrapping

approach, where we re-sample our data from the training set and

produce a p-value based ranking for each such sample, and

aggregate all rankings to a final SNP ranking based on the median

rank SNPs obtained in all bootstrap samples (i.e., by BootRank). To

ensure that our results are not due to a specific random partition,

we repeated this 5-fold CV analysis 10 times and reported the

overall averages.

We found that across all 7 diseases examined, a significantly

higher fraction of the top SNPs are shared between different CV

training sets when using BootRank as compared to GWASRank

(Figure 1). In addition, the fraction of overlapping SNPs for

GWASRank decreases as more SNPs are employed (e.g., from

50% for 100 SNPs to 30% for 2000 SNPs in Bipolar disorder

(BD)), whereas the fraction of overlapping SNPs in BootRank

remains relatively constant when the number of SNPs increases

(e.g., ,70% in BD regardless of the number of input SNPs). We

also found that the advantage of BootRank becomes larger if a

smaller sample size is used to rank the SNPs (e.g., if only 25% of

data is used to rank SNPs for T2D, GWASRank shows ,0%

overlap while BootRank shows ,75% overlap, Figure S8),

further attesting to the robustness of BootRank.

These results show that the fraction of top SNPs that overlap

between different training sets using GWASRank is rather low,

and that using BootRank is beneficial for increasing the robustness

of SNP ranking across multiple CVs in 7 different diseases.

However, since ranking robustness by itself is meaningless (e.g., as

in ranking SNPs lexicographically by their ID), we next sought to

test whether this more robust ranking also has merit in the

biological sense.

Bootstrap ranking increases the number of enriched
pathways detected

To independently validate the biological relevance of our SNP

ranking, we searched for enriched biological pathways in the

different diseases. A popular method to detect pathways that are

important to a specific disease is to rank genes according to their

expected association, and then use this ranking to compute an

Author Summary

Genome-wide association studies are widely used to
search for genetic loci that underlie human disease.
Another goal is to predict disease risk for different
individuals given their genetic sequence. Such predictions
could either be used as a ‘‘black box’’ in order to promote
changes in life-style and screening for early diagnosis, or as
a model that can be studied to better understand the
mechanism of the disease. Current methods for risk
prediction have relatively poor performance, with one
possible explanation being the fact they rely on a noisy
ranking of genetic variants given to them as input. To
improve the predictive power, we devised BootRank, a
ranking method less sensitive to noise. We show that
BootRank improves the ability to predict disease risk of
unseen individuals in the Wellcome Trust Case Control
Consortium (WTCCC) data, and that combining BootRank
with different classification algorithms improves perfor-
mance compared to previous studies that used these data.
Overall, our results show that improving disease risk
prediction from genotypic information may be a tangible
goal, with potential implications for personalized disease
screening and treatment.

Predicting Disease Risk Using Bootstrap Ranking

PLOS Computational Biology | www.ploscompbiol.org 2 August 2013 | Volume 9 | Issue 8 | e1003200



enrichment p-value for different pathways (e.g., KEGG pathways).

The gene rankings tend to be based on the p-values obtained by

GWAS, either by assigning to each gene the best p-value obtained

by one of its nearby SNPs [25–28], or by pooling all p-values of

SNPs inside a gene to one combined p-value [29,30]. However, in

both methods, the initial GWAS p-values are critical, and we thus

tested whether the more robust ranking of BootRank also

improves the enrichment of pathways in the different diseases.

For each disease and CV training set, we first ranked all the

SNPs using either GWASRank or BootRank. Next, we assigned to

each gene the best p-value or bootstrap rank obtained by one of

the SNPs that resides within it or within its flanking 5 kb, resulting

in a ranked list of genes (a total of 172,854 SNPs were mapped to

13,294 genes). We then computed an enrichment p-value for each

KEGG [31,32] pathway using the Wilcoxon rank-sum test, and

defined a pathway as enriched if it passed the p-value threshold of

P,0.01 in at least 90% of all CV training sets (Figure 2). We

found that ranking by BootRank reduced the noise of computed p-

values across different CV training sets (as measured by the p-

value’s coefficient of variation) for 155/163 (95%) of enriched

pathways. In addition, BootRank increased the overall number of

enriched KEGG pathways in 6 of 7 diseases (Figure 2, a total of

52 uniquely enriched pathways in BootRank compared with 21 in

GWASRank).

Next, we examined whether the enriched pathways are known

to affect the corresponding disease. In Type 1 diabetes (T1D,

Table S1), three interesting pathways that were enriched only in

BootRank were ‘‘Valine, leucine and isoleucine biosynthesis’’, ‘‘Chemokine

signaling pathway’’, and ‘‘MAPK signaling pathway’’. Notably, a paper

that studied longitudinal changes in the amino acid profile in T1D

mice, found that the plasma concentrations of valine, leucine, and

isoleucine were significantly higher in the diabetic mice [33]. In

addition, a few works showed that people with high risk of

developing T1D have abnormal level of chemokines [34], and that

higher expression levels of the chemokine receptor accelerated

disease progress in mice [35]. Another paper also found an

enrichment of the MAPK pathway in T1D [36].

In Type 2 diabetes mellitus (T2DM, Table S2), pathways that

were enriched only in BootRank included ‘‘Type II diabetes mellitus’’,

‘‘Caffeine metabolism’’, ‘‘Complement and coagulation cascades’’ and

Figure 1. Fraction of intersection of filtered SNPs lists between different cross-validation partitions. For each disease (T1D, Type 1
diabetes; T2D, Type 2 diabetes; CD, Crohn’s disease; CAD, coronary artery disease; BD, bipolar disorder; RA, rheumatoid arthritis; HT, hypertension),
shown is the mean fraction (y-axis) of top SNPs shared between training sets from different cross-validations when ranking SNPs by GWASRank (red)
or BootRank (blue). The x-axis shows the number of SNPs that were selected as top SNPs from the SNP ranking.
doi:10.1371/journal.pcbi.1003200.g001
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‘‘alpha-Linolenic acid metabolism’’. The ‘‘Type II diabetes mellitus’’

pathway is connected to the disease since it is in fact based on

multiple studies of T2DM [37]. In addition, several works showed

that caffeine intake affects glucose levels and T2DM risk [38–40].

Genes involved in coagulation were found to be upregulated in

T2DM patients [41,42], and consumption of alpha-Linolenic acids

was found to ameliorate features of T2DM [43].

In Bipolar disorder (BD, Table S3) the ‘‘Neuroactive ligand-receptor

interaction’’ and ‘‘Propanoate metabolism’’ pathways were enriched only

in BootRank. The Neuroactive ligand-receptor interaction path-

way was indeed found to be enriched in a GWAS replication study

[44], and in a study listing potential targets for novel therapeutics

for BD, one of the suggested targets was a glutamate propionic

acid receptor [45], which is part of the Propanoate metabolism

pathway.

In Coronary artery disease (CAD, Table S4) several pathways

had enrichment only in BootRank including ‘‘Type II diabetes

mellitus’’, ‘‘Colorectal cancer’’ and ‘‘Endometrial cancer’’. Notably, there

is evidence that all three diseases are also associated with increased

levels of vascular diseases [46–49].

In Hypertension (HT, Table S5), ‘‘Amyotrophic lateral sclerosis

(ALS)’’ and ‘‘Ether lipid metabolism’’ pathways were enriched only in

BootRank. A recent paper showed that ALS patients have higher

frequency of HT [50], and another paper found an Ether lipid

deficiency in the blood plasma of HT patients [51].

In Crohn’s disease (CD, Table S6), pathways unique to

BootRank, included ‘‘Starch and sucrose metabolism’’, ‘‘Pantothenate and

CoA biosynthesis’’, ‘‘MAPK signaling pathway’’, and ‘‘Neuroactive ligand-

receptor interaction’’. Several studies showed that patients with CD

have higher intake of starch and sugar [52], and that a low-starch

diet can be beneficial for them [53]. In addition, the mRNA and

protein levels of Acyl-CoA-synthetase-5 were found to be

substantially reduced in CD patients [54], and MAPKs were

found to be critically involved in the pathogenesis of Crohn’s

Figure 2. BootRank reduces noise in p-value pathway enrichment scores and detects more enriched pathways. (a) For each disease
(T1D, Type 1 diabetes; T2D, Type 2 diabetes; CD, Crohn’s disease; CAD, coronary artery disease; BD, bipolar disorder; RA, rheumatoid arthritis; HT,
hypertension), shown are the differences in the average (x-axis) and coefficient of variation (y-axis) of the enrichment p-values of all significantly
enriched KEGG pathways. (b) The mean noise (measured as coefficient of variation) of pathway enrichment p-values are shown for all diseases for
GWASRank (red) or BootRank (blue).
doi:10.1371/journal.pcbi.1003200.g002

Predicting Disease Risk Using Bootstrap Ranking

PLOS Computational Biology | www.ploscompbiol.org 4 August 2013 | Volume 9 | Issue 8 | e1003200



disease [55]. Interestingly, a new drug intended to treat patients

with irritable bowel syndrome targets the GABAA-receptor gene

[56], which is part of the Neuroactive ligand-receptor pathway.

In rheumatoid arthritis (RA, Table S7), among many pathways

that were enriched only in BootRank were also ‘‘Melanogenesis’’,

‘‘Wnt signaling pathway’’ and ‘‘Hedgehog signaling pathway’’. In a study

of the regulation of melanin pigmentation, it was shown that

patients with RA show localized increased levels of b-Endorphin,

which in turn had been implicated in skin pathogenesis [57]. In

addition, Wnt signaling and the hedgehog pathway were found to

be implicated in RA in mice and humans [58,59].

Thus, these pathway enrichments show that using BootRank

can reduce the noise in p-value computations, allowing more

enriched pathways to be detected. Moreover, the enriched

pathways have considerable support in the literature as being

involved in the various diseases. These results show that BootRank

SNP ranking is not only more robust, but also more biologically

relevant than that of GWASRank.

Bootstrap ranking of SNPs results in better disease risk
prediction

Next, we tested whether BootRank’s more robust ranking of

SNPs can also improve risk prediction of held-out test individuals.

To this end, for each disease we used the SNP ranking based only

on the training data to filter the top SNPs at some given threshold

(e.g., top 1000 SNPs), and then used these SNPs to learn a

predictive discriminative model on training individuals using seven

different classification algorithms: (1) Random forest (RF) [60], an

ensemble classifier that consists of many decision trees; (2)

Regularized logistic regression (RLR) [61], where the solution is

a sparse vector of weights over the features; (3) A support vector

machine (SVM) [62] that uses weights on the training examples to

classify test cases; (4) Naı̈ve Bayes (NB), a probabilistic classifier

based on applying Bayes’ rule with independence assumptions; (5)

Robust adaboost (RAB), an adaptive ensemble algorithm where

new classifiers are tweaked in favor of those instances misclassified

by previous classifiers; (6) Allele count (AC), where classification is

done based on counting risk alleles in each individual; and (7) Log

odds (LO), where the classification is also based on the frequencies

of alleles in cases and controls.

We ranked SNPs either by BootRank or by GWASRank in

each of the 7 diseases, and used the different algorithms to predict

the disease status of the held-out test individuals, as well as the

algorithms’ majority vote. We summarize our predictive power

using the area under the receiver operating curve (AUC) value, as

it is widely used to assess predictive performance in a case-control

scenario. Intuitively, the AUC can be thought of as the probability

that a predictor will correctly classify a pair of samples, one

positive and one negative. A perfect predictor therefore has an

AUC of 1, whereas a random predictor has an AUC of 0.5.

Notably, we found that in three diseases, T2D, BD, and HT,

using BootRank compared to GWASRank significantly increased

the test AUC from 0.69, 0.68 and 0.65 to 0.82, 0.83 and 0.68,

respectively, and classification accuracy by ,7% on average

(Tables 1 and S10, 11, Figures 3 and S1, S2, S3, S4, S5,
S6, S7). In the remaining 4 diseases (T1D, CD, CAD, and RA),

using BootRank was not significantly beneficial to using GWAS-

Rank. Moreover, these three diseases for which BootRank

improved the performance the most (i.e., T2D, BD and HT)

were recently found to have an underestimated value of

heritability (h2), probably because they are mainly affected by

variants that have a low minimum allele frequency (MAF) [22].

This result suggests that BootRank is especially beneficial in cases

were the underlying SNPs that affect the disease are poorly tagged

or have low MAF.

We also found that in all cases, predictors based on multiple

SNPs ranked by either GWASRank or BootRank had better test

AUCs than a predictor based on the best single SNP in the

training set, and that in all cases BootRank significantly decreased

the over-fitting of the model, as seen by the lower difference

between training and test results (Figure 3b).

Next, we compared the performance of the 7 different

classification algorithms as well as their majority vote in terms of

their AUC values, precision-recall, and accuracy (Tables 2, S8,
S9, S10, S11). We found that for each disease, there is one

algorithm that performs best, but that overall, the combined

majority vote either outperforms individual algorithms or is very

close in performance to the best one, encouraging the use of such

multi-algorithm approaches to prediction of disease risk.

Finally, we sought to compare our predictive power with that

reported in other studies. Since different datasets have different

properties, such as number of cases and controls, genotyping

density and sampling biases, we only considered for this

comparison predictions made on the WTCCC data using a strict

cross-validation (CV) training and test scheme (i.e., where as we

did here, the test data was not used during the training process)

[15,16,24,63–67]. We found that in all of these cases, our

approach achieved better predictions (Table 1). We note that

we excluded methods such as [36], in which the ranking of SNPs

was partly done on the entire dataset before splitting into training

and test, because such a setting makes use of the held-out test data

during the training phase.

Taken together, we show that multi-SNP models can signifi-

cantly outperform single-SNP models in disease risk prediction,

and that BootRank improves the performance and robustness of

the predictions over GWASRank. In addition, we show that using

BootRank with a majority vote of several algorithms achieves

higher AUC on test data compared to previous reports in the

literature.

Discussion

Predicting the risk of individuals to develop a disease given their

genetic sequence is a desirable goal, yet the current ability to make

such predictions is relatively poor. Since they highly depend on the

initial ranking of SNPs that is given to them as input, one common

limitation of current methods is the dependence of this input set of

SNPs on noise or on the specific choice of data.

Here, we presented BootRank, a SNP ranking method based on

bootstrapping, and applied it to the Wellcome Trust Case Control

Consortium (WTCCC) data [21] consisting of thousands of

individuals suffering from seven different diseases. We first showed

that using BootRank results in a more robust SNP ranking

compared to using the GWAS p-value (GWASRank), and in more

significantly enriched pathways for the different diseases. More-

over, the pathways detected have considerable support in the

literature as being involved in the different diseases, validating the

biological merit of ranking SNPs by BootRank.

Next, we showed that BootRank could improve disease status

prediction in held-out test individuals, by comparing the

performance of an approach that uses a single SNP, to approaches

that use multiple SNPs ranked by BootRank or by GWASRank. It

is important to note, that we are not trying to identify the list of

‘‘truly’’ associated SNPs. In a sense, we do not believe that such a

list exists, since many SNP can have a very small effect, or be

context specific (e.g., affect only if another SNP is present), or be

environment-dependent (e.g., affect only if a certain virus is

Predicting Disease Risk Using Bootstrap Ranking
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attacking the cells). Therefore, BootRank is not a feature-selection

algorithm per se, but rather its goal is to improve the ranking of

SNPs with respect to a disease, and let the classification algorithm

use the data at hand to do the final feature selection and model

building. For the multi-SNP models, we compared seven different

classification algorithms as well as their majority vote. We found

that using both multi-SNP models outperform the single-SNP

model, and that BootRank significantly improves the test AUC in

3/7 of diseases (T2D, BD and HT, by 0.03–0.15) compared to

GWASRank. In addition, we showed that using BootRank with

the majority vote of all seven algorithms outperforms previous

disease status prediction values of test individuals in the WTCCC

data.

Although the improvement over existing publications is large in

some cases (e.g., Type 2 diabetes improves from 0.6 to 0.82 AUC),

in Type 1 diabetes (T1D) we were not able to improve significantly

over existing work and the test AUC remained ,0.9, suggesting

that in T1D we are perhaps approaching the limit of predictive

power solely from SNPs. The rest of the variance among

individuals could be attributed either to other genetic alterations

such as copy number or structural variations (CNVs and SVs,

respectively), epigenetic differences such as methylation, or

environmental factors such as nutrition or maternal effects.

In the other diseases where our test AUCs ranged from ,0.7 to

,0.8, the results are not yet clinically relevant, especially since the

propensity of disease cases in the population is low, and thus

having low specificity would generate many false positives. Clearly,

for these diseases, more could be done in order to improve

performance. Adding other genetic variants such as CNVs and

SVs could boost performance, as can integrating existing

biological knowledge such as pathway information, or protein-

protein interaction networks. We note that testing our method on

an external dataset to see how well it generalizes would be very

beneficial, but this is currently beyond the scope of this work.

The ability to predict disease risk across individuals could

transform human health by directing life-style changes among

high-risk individuals or by helping early diagnosis by promoting

periodical screenings. The ideal risk predictor would make use of

both genetic and epigenetic variants, as well as take into account

known biological mechanisms and environmental factors, and will

Figure 3. BootRank improves disease risk prediction for held-out test individuals. (a) For each disease (T1D, Type 1 diabetes; T2D, Type 2
diabetes; CD, Crohn’s disease; CAD, coronary artery disease; BD, bipolar disorder; RA, rheumatoid arthritis; HT, hypertension), shown are the training
(empty circles) and test (filled circles) AUC values as a function of different numbers of SNPs used in the model (x-axis) when employing either
GWASRank (red) or BootRank (blue) to rank SNPs. (b) The mean difference between training AUC and test AUC is shown for all diseases for GWASRank
(red) or BootRank (blue).
doi:10.1371/journal.pcbi.1003200.g003
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enable individuals to appreciate their different risks, aiding them to

make the right decisions regarding their health.

Methods

Genotype and phenotype datasets
All genotype and phenotype (disease state) data was obtained

from the Wellcome Trust Case Control Consortium (WTCCC)

[21], consisting of 7 different disease sets, with ,2000 cases for

each disease, and a shared set of ,1500 control individuals. All

SNPs that were removed by the original publication due to bad

quality, deviation from Hardy-Weinberg equilibrium or bad

clustering were removed in this study as well. No correction for

family structure was applied to the data.

Computing GWAS p-values for SNPs
For each set of cases and controls of a certain disease, 4 different

p-values were calculated for each SNP corresponding to the 4

possible genetic models:

1) General: Chi-square test for a 362 contingency table, where

each genotype (i.e., common/common, common/rare and

rare/rare) is counted separately. This test has 2 degrees of

freedom.

2) Dominant: Chi-square test for a 262 contingency table,

where common/rare and rare/rare are counted together.

This test has 1 degree of freedom.

3) Recessive: Chi-square test for a 262 contingency table, where

common/common and common/rare are counted together.

This test has 1 degree of freedom.

4) Additive: Chi-square test for a 262 contingency table, where

alleles are counted instead of genotypes (e.g., each genotype is

counted as two alleles). This test has 1 degree of freedom.

The best (lowest) p-value out of the 4 was assigned to each SNP

as the GWAS p-value.

Bootstrap ranking of SNPs
For a given training set of N individuals, 100 bootstrap samples

were generated by randomly selecting N individuals with

replacement. For each such sample, GWAS p-values were

calculated for all SNPs, and the corresponding ranking was

recorded (GWASRank). The final bootstrap ranking (BootRank) is

based on the median rank each SNP achieved across the 100

bootstrap samples. The BootRank code was written in-house and

has been made freely available for academic use in the following

website: http://genie.weizmann.ac.il/pubs/BootRank/.

Calculating average fraction of top-SNPs overlap
between different cross-validation partitions

For a given 5-fold cross-validation (CV) partition into training

and test, a SNP ranking was calculated (by either GWASRank or

BootRank), and a number of top-SNPs were selected (e.g., top

1000) as the top-SNPs list for this partition. As a 5-fold CV has 5

such partitions, 5 lists of top-SNPs were calculated. Next, for each

pair of partitions, the fraction of overlapping top-SNPs was

calculated (i.e., how many top-SNPs they share out of a 1000), and

the average across the 10 possible pairs was recorded. This

procedure was repeated 10 times to remove possible biases from a

specific CV partition, and the overall average of the 10 repeats was

reported.

Testing for KEGG pathway enrichments for the different
diseases

For each disease, we created 10 repeats of 5-fold cross-

validation sets, resulting overall in 50 training sets. For each

training set, we first computed a SNP ranking (by either

GWASRank or BootRank). Next, we converted the SNP ranking

to a gene ranking, by assigning each gene the best rank obtained

by a SNP that resides within it or within its flanking 5 kb region.

For a given gene ranking, we computed enrichment p-values for

all KEGG [31,32] pathways by using the Wilcoxon rank-sum test

using an in-house script. Intuitively, testing whether genes

belonging to a pathway appear more at the top of the ranked

list than expected by chance, by comparing the sum of their ranks

to the sum of ranks of a random set of genes of equal size. A

pathway was defined as significantly enriched in the disease if it

Table 1. Prediction performance for WTCCC data on test
data.

Disease/method T1D T2D BD CD CAD RA HT

BootRank + Majority 0.90 0.82 0.83 0.70 0.72 0.74 0.68

GWASRank + Majority 0.88 0.69 0.68 0.67 0.72 0.75 0.65

LO, AC [15] 0.75 0.6 0.67 0.63 0.6 0.67 0.61

SVM [67] 0.82 0.71

GWASelect [24] 0.79

SVM, LR [63] 0.89

Forward ROC [64] 0.71

LR, SVM, RF, BN [65] 0.56

Elastic-net [16] 0.64

LR, AC, SVM [66] 0.6

Shown are the AUC values obtained by different studies across the seven
diseases in the WTCCC dataset. The reported AUCs were calculated only for test
individuals. For each study, we took the best AUC reported for each disease,
and missing diseases were left blank.
Diseases: T1D, Type 1 diabetes; T2D, Type 2 diabetes; CD, Crohn’s disease; CAD,
coronary artery disease; BD, bipolar disorder; RA, rheumatoid arthritis; HT,
hypertension. Algorithms: SVM, support vector machine; LR, logistic regression;
AC, allele count; RF, random forest; LO, log odds; BN, Bayesian networks.
doi:10.1371/journal.pcbi.1003200.t001

Table 2. Mean test AUC for different algorithms using
BootRank.

Disease/algorithm T1D T2D BD CD CAD RA HT

Support vector machine (SVM) 0.90 0.76 0.78 0.64 0.63 0.71 0.61

Random forest (RF) 0.88 0.76 0.77 0.65 0.68 0.71 0.64

Regularized logistic regression
(RLR)

0.91 0.77 0.76 0.696 0.71 0.78 0.68

Naı̈ve Bayes (NB) 0.77 0.83 0.83 0.67 0.72 0.71 0.68

Allele count (AC) 0.80 0.79 0.80 0.63 0.59 0.65 0.61

Log Odds (LO) 0.81 0.81 0.81 0.699 0.69 0.71 0.67

Robust adaboost (RAB) 0.89 0.78 0.78 0.695 0.75 0.75 0.71

Majority (all algorithms) 0.90 0.82 0.83 0.70 0.72 0.74 0.68

4-Majority (only RF, RLR, NB and
RAB)

0.91 0.82 0.82 0.71 0.75 0.77 0.70

Shown are the average AUC values for test individuals for the different
algorithms when using BootRank, or when combining all 7 algorithms
(Majority), or only 4 algorithms (4-Majority).
doi:10.1371/journal.pcbi.1003200.t002
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passed an enrichment p-value of P,0.05 in at least 45/50 (90%) of

the CV training sets.

Predicting disease risk using different classification
algorithms

For each disease cross-validation partition, we used the training

set to produce a SNP ranking (by either GWASRank or BootRank).

Next, we selected some top number of SNPs (e.g., 1000), and used

these SNPs as input for one of seven classification algorithms: (1)

Random forest (RF) [60]; (2) Regularized logistic regression (RLR)

[61]; (3) A support vector machine (SVM) [62]; (4) Naı̈ve Bayes

(NB); (5) Robust adaboost (RAB); (6) Allele count (AC); and (7) Log

odds (LO). Running the algorithms was done by either using built-in

functions in MATLAB (e.g., Adaboost), or by coding the algorithm

in MATLAB ourselves. After learning the discriminative model

from training examples, disease risk was predicted for the held-out

test individuals (i.e., not a binary prediction but rather a continuous

one), and this ranking of test individuals (i.e., from most likely to

have the disease to least likely) was used to compute the area under

the receiver operating characteristic curve (AUC value).

Parameters used or learned for the different classification
algorithms

In all of the classification algorithms we set the different

parameters based only on the training data.

In Random forest, we use an in-house implementation, and set

the number of weak predictors to be 500, as we found that the

AUC appears to converge around that point. For the number of

random features selected at each node in the tree, we used the

original recommendation of Breiman [60] as the square root of the

total number of features.

In the Regularized logistic regression we use the GLMNET

implementation [61], and set the penalty parameter using an

internal cross-validation on the training data, where we a subset of

the training is set aside as validation and the best penalty is chosen

by the validation set. Once the penalty is chosen, we use it to learn

the feature weights on the whole training set.

In the support vector machine we use the Radial basis function

(RBF) kernel in all cases, and set the penalty parameter C to 1 and

the gamma parameter to 1 over the number of features in the

model, which are all the default values in the implementation we

used (LIBSVM [62]).

In Naı̈ve Bayes we use the Matlab implementation, and set the

distribution type as Multivariate multinomial (since the data is

discrete) and the prior to be empirical.

In Robust adaboost we use the Matlab implementation, with

500 learning cycles and trees as weak learners.

In Allele count and Log odds we use an in-house implemen-

tation and there are no fitted parameters.

Combining predictions of different algorithms to form a
majority vote

For a given cross-validation partition, the predicted rankings of

held-out test individuals (i.e., from most likely to have the disease

to least likely) were calculated for all algorithms. Next, the disease-

risk rankings were combined by assigning each test individual the

median ranking obtained across the different algorithms.

Supporting Information

Figure S1 BootRank improves disease risk prediction
for held-out test individuals using the Random forest
algorithm. For each disease (T1D, Type 1 diabetes; T2D, Type

2 diabetes; CD, Crohn’s disease; CAD, coronary artery disease;

BD, bipolar disorder; RA, rheumatoid arthritis; HT, hyperten-

sion), shown are the training (empty circles) and test (filled circles)

AUC values as a function of different numbers of SNPs used in the

model (x-axis) when employing either GWASRank (red) or

BootRank (blue) to rank SNPs.

(TIFF)

Figure S2 BootRank improves disease risk prediction
for held-out test individuals using the Support vector
machine algorithm. For each disease (T1D, Type 1 diabetes;

T2D, Type 2 diabetes; CD, Crohn’s disease; CAD, coronary

artery disease; BD, bipolar disorder; RA, rheumatoid arthritis;

HT, hypertension), shown are the training (empty circles) and test

(filled circles) AUC values as a function of different numbers of

SNPs used in the model (x-axis) when employing either

GWASRank (red) or BootRank (blue) to rank SNPs.

(TIFF)

Figure S3 BootRank improves disease risk prediction
for held-out test individuals using a regularized Logistic
regression algorithm. For each disease (T1D, Type 1 diabetes;

T2D, Type 2 diabetes; CD, Crohn’s disease; CAD, coronary

artery disease; BD, bipolar disorder; RA, rheumatoid arthritis;

HT, hypertension), shown are the training (empty circles) and test

(filled circles) AUC values as a function of different numbers of

SNPs used in the model (x-axis) when employing either

GWASRank (red) or BootRank (blue) to rank SNPs.

(TIFF)

Figure S4 BootRank improves disease risk prediction
for held-out test individuals using the Naı̈ve Bayes
algorithm. For each disease (T1D, Type 1 diabetes; T2D, Type

2 diabetes; CD, Crohn’s disease; CAD, coronary artery disease;

BD, bipolar disorder; RA, rheumatoid arthritis; HT, hyperten-

sion), shown are the training (empty circles) and test (filled circles)

AUC values as a function of different numbers of SNPs used in the

model (x-axis) when employing either GWASRank (red) or

BootRank (blue) to rank SNPs.

(TIFF)

Figure S5 BootRank improves disease risk prediction for
held-out test individuals using the Allele count algorithm.
For each disease (T1D, Type 1 diabetes; T2D, Type 2 diabetes; CD,

Crohn’s disease; CAD, coronary artery disease; BD, bipolar disorder;

RA, rheumatoid arthritis; HT, hypertension), shown are the training

(empty circles) and test (filled circles) AUC values as a function of

different numbers of SNPs used in the model (x-axis) when employing

either GWASRank (red) or BootRank (blue) to rank SNPs.

(TIFF)

Figure S6 BootRank improves disease risk prediction
for held-out test individuals using the Log odds algo-
rithm. For each disease (T1D, Type 1 diabetes; T2D, Type 2

diabetes; CD, Crohn’s disease; CAD, coronary artery disease; BD,

bipolar disorder; RA, rheumatoid arthritis; HT, hypertension),

shown are the training (empty circles) and test (filled circles) AUC

values as a function of different numbers of SNPs used in the

model (x-axis) when employing either GWASRank (red) or

BootRank (blue) to rank SNPs.

(TIFF)

Figure S7 BootRank improves disease risk prediction
for held-out test individuals using a Robust Adaboost
algorithm. For each disease (T1D, Type 1 diabetes; T2D, Type

2 diabetes; CD, Crohn’s disease; CAD, coronary artery disease;

BD, bipolar disorder; RA, rheumatoid arthritis; HT, hyperten-
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sion), shown are the training (empty circles) and test (filled circles)

AUC values as a function of different numbers of SNPs used in the

model (x-axis) when employing either GWASRank (red) or

BootRank (blue) to rank SNPs.

(TIFF)

Figure S8 Fraction of intersection of filtered SNPs lists
between different cross-validation partitions for different
subsets of the data. For each disease (T1D, Type 1 diabetes;

T2D, Type 2 diabetes; CD, Crohn’s disease; CAD, coronary artery

disease; BD, bipolar disorder; RA, rheumatoid arthritis; HT,

hypertension), shown is the mean fraction (y-axis) of top SNPs

shared between training sets from different cross-validations when

ranking SNPs by GWASRank (red) or BootRank (blue), for different

sizes of subsets of the data (i.e., 25%, 50%, 75% and 100%, marked

by different symbols). The x-axis shows the number of SNPs that

were selected as top SNPs from the SNP ranking.

(TIFF)

Table S1 T1D differential pathway enrichment for
BootRank and GWASRank. Columns are: KEGG pathway

ID, KEGG pathway name, median p-value for GWASRank

(missing if non-significant), median p-value for BootRank (missing

if non-significant), Supporting reference in the literature.

(DOCX)

Table S2 T2D differential pathway enrichment for
BootRank and GWASRank. Columns are: KEGG pathway

ID, KEGG pathway name, median p-value for GWASRank

(missing if non-significant), median p-value for BootRank (missing

if non-significant), Supporting reference in the literature.

(DOCX)

Table S3 BD differential pathway enrichment for Boot-
Rank and GWASRank. Columns are: KEGG pathway ID,

KEGG pathway name, median p-value for GWASRank (missing

if non-significant), median p-value for BootRank (missing if non-

significant), Supporting reference in the literature.

(DOCX)

Table S4 CAD differential pathway enrichment for
BootRank and GWASRank. Columns are: KEGG pathway

ID, KEGG pathway name, median p-value for GWASRank

(missing if non-significant), median p-value for BootRank (missing

if non-significant), Supporting reference in the literature.

(DOCX)

Table S5 HT differential pathway enrichment for Boot-
Rank and GWASRank. Columns are: KEGG pathway ID,

KEGG pathway name, median p-value for GWASRank (missing

if non-significant), median p-value for BootRank (missing if non-

significant), Supporting reference in the literature.

(DOCX)

Table S6 CD differential pathway enrichment for Boot-
Rank and GWASRank. Columns are: KEGG pathway ID,

KEGG pathway name, median p-value for GWASRank (missing

if non-significant), median p-value for BootRank (missing if non-

significant), Supporting reference in the literature.

(DOCX)

Table S7 RA differential pathway enrichment for Boot-
Rank and GWASRank. Columns are: KEGG pathway ID,

KEGG pathway name, median p-value for GWASRank (missing

if non-significant), median p-value for BootRank (missing if non-

significant), Supporting reference in the literature.

(DOCX)

Table S8 Mean test AUC-PR for different algorithms
using BootRank. Shown are the average AUC values for the

Precision-Recall (PR) curve for test individuals for the different

algorithms when using BootRank, or when combining all 7

algorithms (Majority), or only 4 algorithms (4-Majority). The best

single algorithm for each disease is highlighted in gray.

(DOCX)

Table S9 Mean test AUC-PR for different algorithms
using GWASRank. Shown are the average AUC values for the

Precision-Recall (PR) curve for test individuals for the different

algorithms when using GWASRank, or when combining all 7

algorithms (Majority), or only 4 algorithms (4-Majority). The best

single algorithm for each disease is highlighted in gray.

(DOCX)

Table S10 Mean test classification accuracy for differ-
ent algorithms using BootRank. Shown is the average

classification accuracy for test individuals for the different

algorithms when using BootRank, or when combining all 7

algorithms (Majority), or only 4 algorithms (4-Majority). The best

single algorithm for each disease is highlighted in gray.

(DOCX)

Table S11 Mean test classification accuracy for differ-
ent algorithms using GWASRank. Shown is the average

classification accuracy for test individuals for the different

algorithms when using GWASRank, or when combining all 7

algorithms (Majority), or only 4 algorithms (4-Majority). The best

single algorithm for each disease is highlighted in gray.

(DOCX)
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Expression of acyl-CoA synthetase 5 reflects the state of villus architecture in
human small intestine. J Pathol 202: 188–196. doi:10.1002/path.1504.

55. Hommes D, van den Blink B, Plasse T, Bartelsman J, Xu C, et al. (2002)

Inhibition of stress-activated MAP kinases induces clinical improvement in
moderate to severe Crohn’s disease. Gastroenterology 122: 7–14.

56. Leventer SM, Raudibaugh K (2007) Clinical trial: dextofisopam in the treatment
of patients with diarrhoea-predominant or alternating irritable bowel syndrome.

Aliment Pharmacol Ther 27(2):197–206.
57. Slominski A, Tobin DJ, Shibahara S, Wortsman J (2004) Melanin pigmentation

in mammalian skin and its hormonal regulation. Physiol Rev 84: 1155–1228.

doi:10.1152/physrev.00044.2003.
58. Sen M (2005) Wnt signalling in rheumatoid arthritis. Rheumatology (Oxford)

44: 708–713. doi:10.1093/rheumatology/keh553.
59. Ruiz-Heiland G, Horn A, Zerr P, Hofstetter W, Baum W, et al. (2012) Blockade

of the hedgehog pathway inhibits osteophyte formation in arthritis. Ann Rheum

Dis 71: 400–407. doi:10.1136/ard.2010.148262.
60. Breiman L (2001) Random forests. Machine learning 45: 5–32

61. Friedman J, Hastie T, Tibshirani R (2009) glmnet: Lasso and elastic-net
regularized generalized linear models. Version1. Available: http://www-stat.

stanford.edu/,tibs/glmnet-matlab. Accessed 16 July 2013

62. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

Available: http://www.csie.ntu.edu.tw/,cjlin/libsvm. Accessed 16 July 2013
63. Wei Z, Wang K, Qu H-Q, Zhang H, Bradfield J, et al. (2009) From disease

association to risk assessment: an optimistic view from genome-wide association
studies on type 1 diabetes. PLoS Genet 5: e1000678. doi:10.1371/journal.p-

gen.1000678.

64. Ye C, Cui Y, Wei C, Elston RC, Zhu J, et al. (2011) A non-parametric method
for building predictive genetic tests on high-dimensional data. Hum Hered 71:

161–170. doi:10.1159/000327299.
65. Pirooznia M, Seifuddin F, Judy J, Mahon PB, Bipolar Genome Study (BiGS)

Consortium, et al. (2012) Data mining approaches for genome-wide association

of mood disorders. Psychiatr Genet 22: 55–61. doi:10.1097/YPG.0-
b013e32834dc40d.

66. Davies RW, Dandona S, Stewart AFR, Chen L, Ellis SG, et al. (2010) Improved
prediction of cardiovascular disease based on a panel of single nucleotide

polymorphisms identified through genome-wide association studies. Circ
Cardiovasc Genet 3: 468–474. doi:10.1161/CIRCGENETICS.110.946269.

67. Roshan U, Chikkagoudar S, Wei Z, Wang K, Hakonarson H (2011) Ranking

causal variants and associated regions in genome-wide association studies by the
support vector machine and random forest. Nucleic Acids Research 39: e62.

doi:10.1093/nar/gkr064.

Predicting Disease Risk Using Bootstrap Ranking

PLOS Computational Biology | www.ploscompbiol.org 10 August 2013 | Volume 9 | Issue 8 | e1003200


