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The advances in medicine, together with lifestyle modifications, led to a rising life
expectancy. Unfortunately, however, aging is accompanied by an alarming boost of age-
associated chronic pathologies, including neurodegenerative and metabolic diseases.
Interestingly, a non-negligible interplay between alterations of glucose homeostasis
and brain dysfunction has clearly emerged. In particular, epidemiological studies have
pointed out a possible association between Type 2 Diabetes (T2D) and Parkinson’s
Disease (PD). Insulin resistance, one of the major hallmark for etiology of T2D, has
a detrimental influence on PD, negatively affecting PD phenotype, accelerating its
progression and worsening cognitive impairment. This review aims to provide an
exhaustive analysis of the most recent evidences supporting the key role of insulin
resistance in PD pathogenesis. It will focus on the relevance of insulin in the brain,
working as pro-survival neurotrophic factor and as a master regulator of neuronal
mitochondrial function and oxidative stress. Insulin action as a modulator of dopamine
signaling and of alpha-synuclein degradation will be described in details, too. The
intriguing idea that shared deregulated pathogenic pathways represent a link between
PD and insulin resistance has clinical and therapeutic implications. Thus, ongoing
studies about the promising healing potential of common antidiabetic drugs such as
metformin, exenatide, DPP IV inhibitors, thiazolidinediones and bromocriptine, will be
summarized and the rationale for their use to decelerate neurodegeneration will be
critically assessed.
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Abbreviations: 6-OHDA, 6-hydroxydopmin; AMPK, Adenosine Monophosphate-Activated Protein Kinase; BAX, (B
Cell Lymphoma)-Associated X; BCL, B Cell Lymphoma; COX, Cyclooxygenase; DPP-4, dipeptidyl-peptidase IV; ERK,
Extracellular Receptor Kinase; Ex-4, Exenatide; GLP, Glucagon-like peptide; GSK, Glycogen Synthase Kinase; HFD, high
fat diet-treated; IL, Interleukin; iNOS, Inducible nitric oxide synthase; IR, Insulin receptor; IRS, Insulin receptor substrate;
JNK, Jun N-terminal Kinase; MD, Mediterranean-style diet; Met, Metformin; MMP-3, matrix metalloprotease 3; MPP+,
1-methyl-4-phenyl pyridinium; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; NIRKO, neuron-specific insulin
receptor knockout; PD, Parkinson’s disease; PED/PEA, Phosphoprotein enriched in diabetes/phosphoprotein enriched in
astrocytes; PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; PI3K, Phosphoinositide 3-
kinases; PPARγ, Peroxisome proliferator-activated receptor gamma; RA, Retinoic acid; ROS, Reactive oxygen species; T2DM,
Type 2 Diabetes Mellitus; TORC, cytochrome c-type protein; TNF, Tumor Necrosis Factor; TZD, Thiazoledinediones.
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INTRODUCTION

The prevalence of aging-associated chronic pathologies, such
as neurodegenerative and metabolic diseases, has dramatically
increased along with life expectancy (Zochodne and Malik,
2014). Type 2 Diabetes (T2D) embraces almost 90% of all
cases of diabetes and actually represents a major public health
problem worldwide. Chronic hyperglycemia is the hallmark of
T2D, resulting from insulin resistance and beta cell dysfunction,
and is associated with long-term complications, including
retinopathy, nephropathy, micro and macro vascular diseases.
More recently, experimental, clinical and neuroimaging data
provided evidence of a connection between T2D and brain injury
(Hamed, 2017). T2D-associated brain injury is largely linked to
hyperglycemia and involves several different pathological events,
such as oxidative stress (Muriach et al., 2014), mitochondrial
dysfunction (Shokrzadeh et al., 2018), neuroinflammation (Rom
et al., 2018), decrease of neurotrophins (Franco-Robles et al.,
2014), modification of neurotransmitters (Datusalia and Sharma,
2014), vascular derangements (Kooistra et al., 2013), amyloid β

deposition (Wang X. et al., 2014), increased tau phosphorylation
(Platt et al., 2016) and progressive cognitive dysfunction (Simo
et al., 2017). Epidemiological studies also support the evidence
of a crosstalk linking T2D and neurodegenerative disorders
(Morsi et al., 2018). In particular, an interesting association
between T2D and PD has recently emerged from clinical,
experimental and genome-wide association studies (Biosa et al.,
2018; De Pablo-Fernandez et al., 2018).

Deterioration of dopaminergic neurons in the extrapyramidal
tract of the midbrain is the trigger for PD pathogenesis, resulting
from an interplay of genetic and environmental factors (Olanow
et al., 2009). Most of the time PD is a sporadic disease, but
few cases have genetic origin and several genes associated to PD
have been found (Hernandez et al., 2016). Impairment of the
dopaminergic neurons leads to a reduction in dopamine signaling
and may lead to a relative increase in acetylcholine release
from cholinergic neurons in the striatum, thereby contributing
to dyskinesia (Heumann et al., 2014). Other typical motor
symptoms of PD are bradykinesia, resting tremor, muscular
rigidity and abnormal posture and gait (Olanow et al., 2009). In
many cases of PD, loss of dopaminergic neurons in the substantia
nigra is accompanied by the formation of intracellular neuronal
inclusions composed of alpha-synuclein, known as Lewy bodies,
in the central, autonomic, and peripheral nervous system.
The diagnosis of PD is essentially based on the neurological
examination, aimed to identification of characteristic motor
signs, deriving from the loss of nigral dopaminergic neurons. The
presence of a sustained response to dopamine drugs (dopamine
agonists or levodopa) is also commonly used in diagnosis. Several
non-motor symptoms are associated to PD, too. They include
hyposmia, sleep behavior disorder, loss of olfaction, constipation,
depression and global cognitive decline and precede the clinical
effects of dopamine deficiency, sometimes for several years
(Schapira et al., 2017). Unlike motor symptoms, non-motor
symptoms of PD are not improved by dopamine replacement
therapy and seem to derive from the formation of Lewy bodies
beyond midbrain dopaminergic neurons (Dickson et al., 2009).

Cognitive impairment and dementia are the most disabling
non-motor symptoms of PD, resulting from microvascular
disease (Kim J.S. et al., 2014), deposition of Lewy bodies
in neocortical and limbic areas, hyperphosphorylated tau-
containing neurofibrillary tangles and formation of amyloid-
beta-peptide plaques (Irwin et al., 2013).

The onset of diabetes appears to increase severity of symptoms
in PD patients (Sandyk, 1993), and epidemiological studies
suggest that diabetes is a risk factor for PD (Hu et al., 2007;
Cereda et al., 2012). Several studies have tried to explain how
T2D affects pathogenesis and progression of PD. In 1993, Sandyk
(1993) found a relationship between PD and T2D, evidencing
that up to 50–80% of patients with PD featured an altered
glucose tolerance in response to a glucose load. Some years later,
Schernhammer et al. (2011) evaluated a population of 1.931
cases and 9.651 controls, evidencing a 36% increased risk of
developing PD among patients with T2D. Similarly, a major risk
of developing PD among individuals with T2D was found in
the study conducted by Sun et al. (2012). In this case-control
study, by examining a Chinese population of 603.416 diabetics
and comparing it with a diabetes-free control, they found that
diabetic women had a higher incidence of PD compared to
men. Moreover, young diabetic men aged 21–40 years or diabetic
women aged 41–60 years were more susceptible to the risk
of Parkinsonism. Additional studies have suggested a positive
association between PD risk and T2D. In particular, Hu et al.
(2007) have studied a Finnish population of 51.552 individuals,
both men and women, aged between 25 and 74, without a history
of PD at baseline, concluding that T2D is associated with an
increased risk of PD. Very recently, De Pablo-Fernandez et al.
(2018) have found an association between diabetes and PD in
a retrospective study, where a cohort of 2,017,115 individuals
admitted for hospital treatment with a codified diagnosis of type
2 diabetes was compared with a reference cohort of 6,173,208
people without diabetes.

Nevertheless, there is also opposite evidence, pointing out
a lower risk of PD incidence in subjects with T2D (Powers
et al., 2006) and an inverse association of hyperglycemia with
the onset of PD in individuals without any neurodegenerative
disease (Miyake et al., 2010). These conflicting results could
be due to confounding sampling of the different populations.
For instance, in the report performed by Miyake et al. (2010),
T2D diagnosis is based on the filling up of self-reported
questionnaires. An additional source of confusion may be that the
considered populations are too small to obtain significant results.
Differences in study design and methodology and the difficulty
to rule out confounders (such as microvascular damage and
diabetic treatment) as risk factors for PD negatively affect data
reproducibility, too. However, notwithstanding the heterogeneity
of the data, the existence of a positive association between T2D
and PD has been recently supported by interventional studies
showing a reduction in incidence of PD in T2D patients treated
with antidiabetic drugs such as metformin, sulfonylureas and
exenatide, which exert neuro-protection (Wahlqvist et al., 2012;
Aviles-Olmos et al., 2013). Several lines of evidence suggest
that impairment of insulin signaling increase the risk of PD
(Morris et al., 2008; Bosco et al., 2012; Ashraghi et al., 2016;
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Pang et al., 2016). Indeed, it has been recently found that
insulin resistance, the impaired responsiveness to insulin, typical
of T2D, occurs in PD brains and plays a key role in the
progressive development of PD pathological hallmarks. In this
review, we examine the relevance of insulin signaling in brain,
especially for dopaminergic function, the relationship between
insulin resistance and PD and finally we give an overview of
the rationale underlying the use of drugs currently used for
T2D in PD patients.

INSULIN SIGNALING IN BRAIN

Insulin is a peptide hormone secreted in response to postprandial
hyperglycemia from pancreatic beta−cells in blood circulation.
Historically, insulin was essentially known as the main regulator
of peripheral glucose homeostasis, since it induces glucose uptake
in adipose tissue and skeletal muscle and glycogen synthesis
in the liver, inhibiting in parallel hepatic glycogenolysis and
gluconeogenesis (Haeusler et al., 2018).

In addition to these peripheral targets, insulin also undertakes
a neuroregulatory function, although the physiological
significance of its role in the brain has only recently started
to emerge in both murine models and humans (Schubert et al.,
2004; Duarte et al., 2012; Grote and Wright, 2016). Detectable
concentrations of insulin have been found in several brain
regions, including hypothalamus, olfactory bulb and midbrain
since many years (Baskin et al., 1983), but it is not yet clear
whether insulin is locally produced in CNS. Experimental
evidence supports the hypothesis of insulin biosynthesis in adult
neuronal cells derived from the hippocampus and olfactory
bulb (Kuwabara et al., 2011) and by pyramidal neurons in
the cortex (Dorn et al., 1982). Immunoreactive insulin and
C-peptide were found in the brain from human cadavers, and,
in situ hybridization showed the presence of insulin mRNA in
the periventricular nucleus of the rat hypothalamus (Blazquez
et al., 2014). Furthermore, Havrankova et al. (1978) showed
the presence of insulin in rat brain at concentrations between
10 and 100 times higher than that in plasma. On the contrary,
other studies did not confirm these results, and conclusive
evidence for significant amounts of insulin synthesized in brain
is lacking (Gray et al., 2014). However, insulin may enter brain
parenchyma and precapillary space via a receptor-mediated
transport (Duffy and Pardridge, 1987; Banks et al., 1997).
Studies performed in an experimental model of human blood
brain barrier (BBB) formed by isolated capillaries deriving
from fresh human brain autopsy have shown that BBB insulin
receptor has physicochemical properties similar to the IRs
present in peripheral tissues such as adipocytes and hepatocytes
(Pardridge et al., 1985; Plata-Salaman, 1991). Insulin transport
to the CNS is reduced in high-fat diet-induced obesity (Kaiyala
et al., 2000) and suppressed by hyperglycemia (Banks et al.,
1997). In addition, Alzheimer’s disease and aging are associated
with a reduction in insulin transport across the BBB (Craft
et al., 1998; Frolich et al., 1998). Several studies have been
performed in order to assess the integrity of BBB in PD although
the results are still unclear. The observation that peripheral

decarboxylase inhibitors, such as carbidopa and benserazide,
do not reduce levodopa efficacy in brain indicate that BBB
integrity is not compromised in parkinsonian patients (Rinne
and Molsa, 1979). In support of this hypothesis, current and
future therapeutic strategies for PD treatment are based on
lipophilic substances or on a direct injection of proteins, genes
and cellular therapies into the brain (Christine et al., 2009).
Nevertheless, recent studies have also indicated that BBB is
damaged in PD patients. Indeed, compromised BBB integrity
in the striatum has been observed in postmortem brain tissue
from PD patients (Gray and Woulfe, 2015). Furthermore,
Dohgu et al. have indicated that monomeric alpha-synuclein
induces BBB dysfunction by activating pericytes which, in
turn, release inflammatory mediators (Dohgu et al., 2019). In
conclusion, it is not possible to establish if insulin resistance
in the PD brain arise from altered insulin transport across
BBB. Hopefully, in the next future, advances in imaging
techniques will allow to more carefully identify the source of
insulin in the brain.

Interestingly, Jimenez-Jimenez et al. have compared
cerebrospinal fluid (CSF) insulin levels in PD patients and
in healthy subjects without finding significant differences
between them (Jimenez-Jimenez et al., 2000). In contrast, other
experimental evidence has shown that non-diabetic PD patients
have increased blood glucose after oral glucose tolerance test
without the concomitant rise in insulin levels, probably due to
an impaired adaptive insulin secretion (Marques et al., 2018).
Thus, the relationship between CSF/brain and serum insulin
levels in PD needs to be elucidated. However, the specific role
of this hormone in the different brain areas remains undeniable.
Indeed, insulin elicits its effects by binding a specific tyrosine
kinase receptor, expressed in different brain regions (Plum
et al., 2005), including dopaminergic neurons (Figlewicz et al.,
2003; Konner et al., 2011). Glucose uptake into neurons is
insulin independent, thus in the brain insulin signaling regulates
olfaction, mood and memory (McNay et al., 2010; Ketterer
et al., 2011; Aime et al., 2012; Kleinridders et al., 2014; Biessels
and Reagan, 2015; Heni et al., 2015). In addition, acting on
glucosensing neurons of the hypothalamus, insulin modulates
peripheral metabolism, hepatic glucose output, food intake, body
weight, lipolysis and white adipose tissue browning (Blazquez
et al., 2014; Dodd et al., 2015).

REGULATION OF SURVIVAL OF
DOPAMINERGIC NEURONS

Well-characterized insulin functions in the central nervous
system are the regulation of apoptosis during neuronal
development and the enhancing of neuronal survival. This
is not surprising since insulin binding to its receptor (IR)
activates several intracellular effectors relevant to cell survival,
such as PI3K/Akt pathway. Insulin, indeed, negatively modulates
the expression of pro-apoptotic proteins protecting embryonic
retinal cells during development from cell death (Diaz et al.,
1999). Regarding the increase of neuronal survival, it is
known that insulin signaling rescues rat hippocampal cells
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in culture injured by oxygen or glucose deprivation (Mielke
and Wang, 2005) and has neuroprotective effects on H2O2-
induced toxicity of retinoic acid (RA)-differentiated SH-SY5Y
cells (Ramalingam and Kim, 2014). During the pathogenesis
of PD, characterized by death of dopaminergic neurons
in the substantia nigra pars compacta, insulin pro-survival
ability is particularly relevant and clearly emerged in studies
performed in SH-SY5Y cells pretreated with the neurotoxin
MPP+ and in animal models (Moroo et al., 1994). In this
cellular model of experimental PD, insulin prevented cell
death in a dose dependent manner. It inhibits MPP + -
induced iNOS and ERK activation, lowering in turn nitric
oxide release, reactive oxygen species (ROS), calcium ion
influx and finally decreasing the ratio of Bax to Bcl-2
through activating anti-apoptotic PI3K/Akt/GSK3 pathways
(Ramalingam and Kim, 2016b).

MODULATION OF ALPHA-SYNUCLEIN
EXPRESSION AND AGGREGATION

Another characteristic neuropathologic feature in the PD brain
is the accumulation of cytosolic inclusions of fibrillary forms
of alpha-synuclein, called Lewy bodies. In C6 astrocytoma cells,
a 24 h MPP + treatment induces a significant increase of a
helically folded tetramer of alpha-synuclein accompanied by
an augmentation of SNCA mRNA levels. Interestingly insulin
affects alpha-synuclein expression and aggregation, too, by
a mechanism involving the PI3K/Akt pathway (Ramalingam
and Kim, 2017; Yang et al., 2018). Indeed, pretreatment
with insulin induced a marked decrease in the tetrameric
alpha-synuclein, preventing the cytotoxic effect of MPP +
(Ramalingam and Kim, 2017). The molecular mechanisms
underlying insulin protective action against MPP+ neurotoxicity
have been better clarified in SH-SY5Y cells, where insulin
decreases alpha-synuclein and Cox-2 levels and blocks ROS-
induced membrane damage. In parallel, it activates autophagy,
integrins and syndecans signaling (Ramalingam and Kim,
2016a). Autophagy modulation by insulin is particularly relevant
for PD pathogenesis, since it is crucial for elimination of
abnormal and toxic protein aggregates. Insulin, indeed, blocking
mTORC1 activity, stimulates autophagy of toxic proteins and
activates Akt survival protein, through an mTORC2-mediated
mechanism (Heras-Sandoval et al., 2014). The crucial importance
of autophagy regulation by insulin is highlighted by the fact
that the specific pharmacological inhibition of mTORC1 by
rapamycin reduces alpha-synuclein aggregation (Sarkar et al.,
2007) and prevents dopaminergic neuron loss (Tain et al.,
2009). An additional plausible mechanism by which insulin
promotes autophagy and negatively modulates alpha-synuclein
toxicity is the inhibitory phosphorylation of GSK3beta by
Akt. GSK3beta, indeed, co-localizes with alpha-synuclein in
Lewy bodies and its expression is increased in postmortem
brain from PD patients (Nagao and Hayashi, 2009) and in
experimental models of PD associated with alpha-synuclein
accumulation (Golpich et al., 2015). Recent evidences have
revealed the presence of the microtubule associated protein tau

in Lewy bodies, which is essentially known for its pathological
role in Alzheimer disease, but it has recently been shown to
participate in PD pathogenesis as well. GSK3beta inactivation
by insulin is also involved in insulin-induced inhibition of
tau phosphorylation which reduces neurotoxicity, increasing its
binding to microtubules (Tokutake et al., 2012). Interestingly,
insulin can directly affect alpha-synuclein turnover, reducing its
aggregation and toxicity (Kao, 2009). Insulin action on alpha-
synuclein aggregation is mediated by activation of IDE (insulin
degrading enzyme), a highly conserved Zinc metallopeptidase
which degrades amyloidogenic proteins. IDE, in turns, binds
to alpha-synuclein oligomers, preventing them from further
assembly into amyloid fibers that cause degeneration of
dopaminergic neurons in PD patients (Sharma et al., 2015;
Figure 1). Experiments performed in specific alpha-synuclein
knockout mice have provided contrasting results. Indeed, while
Rodriguez-Araujo et al. (2015) suggest that absence of alpha-
synuclein in mice is associated with impairment in glucose
metabolism during HFD-induced insulin-resistance, Geng et al.
(2011) show an increased rate of insulin secretion in alpha-
synuclein knockout mice, indicating alpha-synuclein as negative
regulator of insulin secretion.

REGULATION OF MITOCHONDRIAL
FUNCTION AND INFLAMMATION

In addition to modulate alpha-synuclein amount, insulin
is able to regulate mitochondrial biogenesis and to directly
affect mitochondrial electron transport chain activity through
stimulation of the IR/PI3K/Akt pathway, which suppresses
FoxO1/HMOX1 induction (Cheng et al., 2010). Importantly,
in hippocampal neurons, compounds activating IR also
activate the AMPK-SIRT1-PGC1alpha signaling axis, enhancing
in parallel mitochondrial function (Barhwal et al., 2015).
Insulin’s ability to modulate mitochondrial membrane
potential has long been characterized (Huang et al., 2003,
2005), but Aghanoori et al. (2017) recently revealed that
insulin also controls mitochondrial function up-regulating
mitochondrial electron transport system protein expression and
complex activity.

Conversely, experimental models of insulin resistance feature
altered levels of mitochondrial proteins in the substantia nigra
(Khang et al., 2015), reduced levels of mitochondrial complex
I and dysregulated calcium homeostasis (Moreira et al., 2006;
Duarte et al., 2012). These phenomena impair mitochondrial
biogenesis, inducing membrane depolarization and generation
of excessive ROS, oxidative stress and increased cell death
(Huang et al., 2003; Kleinridders et al., 2015). The link between
mitochondrial dysfunction, insulin resistance and dopaminergic
neuronal degeneration probably relies in the disruption of the
Parkin-PARIS-PGC1alpha pathway. In chronic insulin resistance
condition, indeed, reduced levels of Parkin have been observed
in parallel with accumulation of a zinc finger protein, named
PARIS, able to repress PGC1alpha expression and highly
expressed in the substantia nigra of sporadic PD patients
(Khang et al., 2015).
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FIGURE 1 | Insulin signaling regulates neuronal function. Insulin binding to its receptor, through the intracellular substrates IRSs, leads to activation of PI3-K pathway
which, in turn, inhibits GSK3, mTORC1 and IDE, reducing alpha-synuclein aggregation, and enhances cell survival. In addition, insulin-induced PI3K activation
stimulates dopamine synthesis and turnover and mitochondrial biogenesis. This figure includes experimental results obtained in cell cultures and partially confirmed
in rodent and human brain.

Insulin represents also a master regulator of extracellular
events involved in PD pathogenesis, such as microglial activation
and increase of pro-inflammatory mediators that contributes
to ROS generation. Interestingly, several different pathways
downstream IR activation such as PI3K/Akt and p38/MAPK
pathways, are involved in TGF-beta1 neuroprotective effect
against MPP + -induced neurodegeneration (Liu et al., 2016).
Moreover, PI3K/Akt pathway decreases neuroinflammation up-
regulating IkBalpha, a selective endogenous blocker of NF-kB,

the main transcription factor responsible for expression of
inflammatory genes (Khasnavis et al., 2012).

EFFECT ON DOPAMINE SYNTHESIS
AND TURNOVER

Insulin itself represents also a physiological regulator of
dopamine synthesis and clearance. A convincing demonstration
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for insulin relevance in modulation of dopamine signaling has
been provided by the phenotype of NIRKO mice, featuring a
neuron-specific knockout of IR. NIRKO mice, indeed, exhibit
manifestations of anxiety and depressive-like behaviors. These
hallmarks are accompanied by increased dopamine turnover,
which in turn leads to decreased dopamine signaling in
the striatum and nucleus accumbens. In vitro data indicate
that in neuronal cells these alterations arise from a loss of
insulin effect on expression of MAO A and MAO B, involved
in inactivation of monoamine neurotransmitters (Kleinridders
et al., 2015). Moreover, there is evidence in literature that
insulin is able to regulate expression of tyrosine hydroxylase
(TH), the rate-limiting step in the biosynthesis of dopamine.
Insulin in rats was shown to induce a transient increase
in TH mRNA in adrenal medulla (Rusnak et al., 1998; Xu
et al., 2007). Conversely, pathological states characterized by
impaired insulin signaling are associated with alterations of TH
expression and/or activity. For instance, in experimental diabetes
decreased TH activity in terminal fields for noradrenergic and
dopaminergic neurons has been observed (Chu et al., 1986;
Glanville and Anderson, 1986; Kono and Takada, 1994) and
genetically diabetic Wistar rats show decreased immunoreactive
TH (Nascimento et al., 2011). Moreover, in streptozotocin-
treated rats, TH mRNA was increased in the locus coeruleus
but decreased in the ventral tegmental area/substantia nigra
pars compacta (Figlewicz et al., 1996). Part of the mechanism
underlying TH modulation by insulin has been recently clarified
in PC12 cells, where insulin regulates TH expression through
the transcription factors HIF-1alpha and Nur77 (Fiory et al.,
2018). These data have evidenced the critical role of insulin
signaling in maintaining an appropriate dopaminergic tone by
regulating TH expression in the central nervous system. In
addition, studies in brain slices, in striatal synaptosomes, and
in vivo have shown that insulin activation of IR increases
dopamine uptake by the dopamine transporter (DAT). In
particular, direct intracerebroventricular infusion of insulin
results in increased DAT mRNA levels. Accordingly, when CNS
insulin levels were reduced by 24- to 36-h food deprivation,
DAT mRNA levels, assessed by in situ hybridization, were
significantly decreased in the ventral tegmental area/substantia
nigra pars compacta and the Vmax of dopamine uptake was
significantly decreased in striatum from fasted rats. Interestingly,
in vitro incubation with a physiological concentration of
insulin augmented striatal dopamine uptake to control levels
(Patterson et al., 1998). Similarly, insulin increases dopamine
uptake and modulates DAT trafficking via PI3K in rat striatal
synaptosomes (Carvelli et al., 2002). In particular, the key
regulator downstream PI3K, responsible for DAT regulation by
insulin, is Akt2 (Speed et al., 2010). These results suggest that
synaptic dopamine signaling may be altered by reducing the
available cell surface DATs in states of chronic hypoinsulinemia,
such as diabetes (Carvelli et al., 2002). For instance, high
fat feeding, impairs striatal insulin-induced activation of Akt,
reducing in turns DAT cell surface expression and function
and locomotor responses to amphetamine (Speed et al., 2011).
Finally, it has been recently shown that insulin influences food
choice amplifying action potential-dependent dopamine release

in the nucleus accumbens and caudate-putamen through an
indirect mechanism involving striatal cholinergic interneurons
that express IR. Furthermore, the sensitivity of striatal dopamine
release to insulin in rats is oppositely altered by chronic
diet manipulations; indeed, food restriction enhances and
obesogenic diet decreases responsiveness to insulin, respectively
(Patel et al., 2018). On the other end, there is no known
information about insulin-regulated food choice effect on PD
onset and/or progression.

ROLE IN COGNITIVE FUNCTION

Insulin plays an acknowledged role in regulation of memory
and cognitive function, too. This is particularly relevant for PD
progression, since cognitive impairment represents a significant
non-motor symptom of PD. PD patients, indeed, feature more
rapid decline in cognitive domains and in memory (Aarsland
et al., 2017), exhibiting a cognitive impairment which embraces
a spectrum of severity from relatively mild symptoms to
end-stage dementia (Davis and Racette, 2016). However, mild
cognitive impairment can occur early in the course of PD, while
dementia commonly characterizes advanced stages of PD (Hely
et al., 2008). Interestingly, the prevalence of cognitive deficit
is significantly higher in PD patients with diabetes mellitus
than in patients with PD only, suggesting that diabetes may be
one risk factor for cognitive dysfunction in PD patients (Yang
et al., 2017). However, specific role of insulin in safeguarding
cognitive function has been more clearly confirmed by studies
showing that PD patients with dementia are prone to comorbid
insulin resistance (Bosco et al., 2012; Ashraghi et al., 2016),
even when they were unaffected by diabetes. Cognitive decline
in PD and progression to dementia derive from alterations in
hippocampal structure and function (Bouchard et al., 2008;
Costa et al., 2012; Pan et al., 2013). This is plausible, since
hippocampal neurons are particularly susceptible to alterations
in insulin sensitivity (Fehm et al., 2006). Importantly, a high
density of IRs has been found in the hippocampus, cortex and
amygdala, where they participate in cognitive functions (Singh
et al., 1997; Gerozissis, 2003). Furthermore, acute administration
of insulin, through activation of hippocampal IRs, ameliorates
performance on memory tasks in rats (Park et al., 2000) and
enhances verbal memory and cognition in humans (Kern et al.,
2001; Benedict et al., 2004). Insulin effects on cognition involves
the PI3K/Akt pathway (McNay and Recknagel, 2011) and is
probably mediated by its ability to affect synaptic plasticity.
Activation of the PI3K/Akt pathway, indeed, maintains dendritic
spine stabilization, necessary for memory consolidation (Goldin
and Segal, 2003; Zhao and Townsend, 2009). The crucial
insulin effector downstream PI3K/Akt pathway involved
in preservation of cognitive function is GSK3beta. Insulin
increases GSK3beta inhibitory phosphorylation through
PI3K/Akt signaling. The phosphorylation of GSK3 beta, in
turn, improves long-term memory in hippocampal-associated
tasks, decreases tau and alpha-synuclein accumulation and
neurotoxicity and reduces neuroinflammation and apoptosis.
In conclusion, insulin alleviates cognitive impairment in

Frontiers in Neuroscience | www.frontiersin.org 6 August 2019 | Volume 13 | Article 868

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00868 August 14, 2019 Time: 15:25 # 7

Fiory et al. Insulin Signaling and Dopaminergic Function

PD via the inactivation of GSK3beta mediated by PI3K/Akt
(Yang et al., 2018).

RELEVANCE OF INSULIN RESISTANCE
FOR PARKINSON’S DISEASE

Interestingly, patients with PD feature augmented autoimmune
reactivity to insulin (Wilhelm et al., 2007). Moreover, in the
substantia nigra pars compacta of patients with PD, death
of dopaminergic neurons is often anticipated by marked loss
of IR mRNA and enhanced levels of IRS phosphorylation at
serine residues, with inhibitory action on insulin signaling and
subsequent increased insulin resistance (Moroo et al., 1994;
Takahashi et al., 1996; Duarte et al., 2012; Morris et al.,
2014). In particular, increased levels of IRS-1 pSer312 in the
putamen and of pSer616 in hippocampal tissue of PD patients
were found (Athauda and Foltynie, 2016). Likewise, both 6-
OHDA-induced PD models and alpha-synuclein overexpressing
mice show increased IRS phosphorylation at serine residues in
the dopamine-depleted striatum (Morris et al., 2008, 2011a,b;
Gao et al., 2015). In addition, increased nuclear translocation
of PTEN and GSK3beta, paralleled by an impaired insulin
signaling cascade, was observed in postmortem substantia nigra
from PD patients (Sekar and Taghibiglou, 2018). Similarly,
other authors have found decreased Akt phosphorylation in
sections of substantia nigra from parkinsonian and control
subjects (Malagelada et al., 2008; Timmons et al., 2009).
These alterations may contribute to the pathogenesis and/or
progression of PD. However, all of these results have been
obtained in absence of “ex vivo” stimulation with insulin and,
at the best of our knowledge, there is no evidence about
the ability of PD postmortem brains to respond to insulin.
Thus, the physiological decline in insulin signaling, which
represents a typical hallmark of aging (Zhao et al., 2004;
Kushner, 2013), is clearly accelerated in PD. On the other
hand, the alterations of insulin signaling exacerbate PD clinical-
pathological symptoms, enhancing dopaminergic degeneration
and worsening disease progression and, in parallel, both motor
and cognitive decline (Papapetropoulos et al., 2004). Several
studies performed in animal models confirmed the onset of
this deleterious crosstalk between insulin resistance and PD.
In 2014, Wang and collaborators highlighted the relevance of
insulin resistance for PD etiology using ob/ob and db/db mice
as T2D model. These mice show insulin signaling impairment,
ER stress and inflammation not only in peripheral tissue, but also
in midbrain. It is worth of notice that they feature accumulation
of alpha-synuclein and microglia activation along with increased
production of pro-inflammatory cytokines. All these events were
shown to enhance the vulnerability of dopaminergic neurons
to MPTP neurotoxicity in the substantia nigra of db/db mice
(Wang L. et al., 2014; Wang S. et al., 2014). Similar results
were obtained in mice become insulin resistant upon a high-
fat diet (HFD), which are more susceptible to PD inducing
toxins, such as 6-OHDA and MPTP, characterized by a significant
increase in nigrostriatal neurodegeneration and by a reduced
dopaminergic signaling. This leads to a more severe motor

deficits compared to matched controls (Choi et al., 2005;
Morris et al., 2010, 2011a,b).

Recently, Sharma and Taliyan (2018) standardized an animal
model suitable to mimic the comorbidity between insulin
resistance and PD. To this aim, male Wistar rats were
administrated 6-OHDA in medial forebrain bundle after 8 weeks
feeding with high fat diet. The phenotype of these rats confirmed
the capacity of insulin resistance to exacerbate PD pathology.
In HFD-fed rats, indeed, 6-OHDA induced more pronounced
neuronal damage and loss of striatal dopamine, leading, in
parallel, to worst performance in behavioral tasks such as rotarod,
narrow beam walk test and locomotor activity, compared to rats
fed with standard diet.

The relevance of insulin resistance for PD has been further
confirmed by the phenotype of transgenic mice overexpressing
PED/PEA-15, a scaffold protein highly expressed in the brain
and overexpressed in T2D subjects. These insulin resistant mice,
indeed, show loss of dopaminergic neurons in the striatum
and hypokinetic movements resembling PD motor alterations
(Perruolo et al., 2016). Not least, NIRKO mice with neuron-
specific IR knockout are the proof that insulin resistance is
involved also in the onset of PD non-motor symptoms, since
these mice develop increased dopamine turnover responsible for
anxiety and depressive behaviors (Kleinridders et al., 2015).

Surprisingly, several studies found that alpha-synuclein
increases inhibitory phosphorylation of IRS at serine residues,
negatively regulating insulin signaling (Gao et al., 2015). Different
mechanisms have been proposed to explain the deleterious
effect of alpha-synuclein on insulin signaling. First, alpha-
synuclein increases degradation of IRS-1, inhibiting protein
phosphatase 2A through mTORC1 activation (Gao et al., 2015).
In addition, alpha-synuclein induces microglial production of
pro-inflammatory cytokines (Beraud et al., 2013; Blandini, 2013;
Gallegos et al., 2015).

Overproduction of pro-inflammatory cytokines such as TNF-
alpha in the CSF and CNS of PD patients was, indeed,
evidenced in postmortem studies (Reale et al., 2009a,b). Similarly,
peripheral concentrations of IL-6, TNF-alpha, IL-1beta, IL-2,
IL-10, and C-reactive protein in PD patients are significantly
higher compared with age-matched controls (Qin et al.,
2016). Moreover, among newly diagnosed PD patients, those
with higher levels of pro-inflammatory markers feature lower
cognitive assessment scores (MMSE) and more rapid motor
decline (Williams-Gray et al., 2009). Pro-inflammatory cytokines
are probably responsible for increased activity of IRS serine
kinases such as JNK, involved in the onset of neuronal insulin
resistance (Peng and Andersen, 2003; Klintworth et al., 2007;
Morris et al., 2008).

Interestingly, in HFD fed mice, restoring of IR signaling by
inhibition of protein tyrosine phosphatase 1B or by treatment
with the small molecule IR sensitizing agent, TCS 401, re-
establishes insulin positive action on dopamine release and
reuptake at dopamine terminals in the nucleus accumbens
(Fordahl and Jones, 2017). Similarly, treatment with insulin
sensitizing drugs and normalizing HFD ameliorate depressive
behaviors in rodents (Yamada et al., 2011; Sharma et al., 2012).
This evidence further suggests that insulin resistance could
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represent a common risk factor involved in both T2D and
PD pathogenesis.

INSULIN RESISTANCE TREATMENTS IN
PARKINSON’S DISEASE

Both insulin resistance and PD can be defined as multifactorial
disorders due to the interaction of environmental factors with a
genetic susceptibility. Thus, modification of lifestyle and health
behaviors, such as diet, can improve and prevent the onset of
these diseases. It is well established that the MD, a nutritional
model widespread in some countries of the Mediterranean sea
such as southern Italy, Spain and Greece, which is based on a
relatively higher intake of cereals, fruit, vegetables, seeds, olive
oil (unsaturated fat) compared to a more rare use of red meat
and animal fats (saturated fats), has many beneficial effects
on insulin-resistance and T2D (Giugliano and Esposito, 2008;
Grosso et al., 2014; Garcia et al., 2016). More recently, some
authors have shown that MD seems to play also a neuroprotective
role, although not all of epidemiologic studies report a positive
function of MD on neurodegenerative diseases and further
studies are required to validate these evidences (Alcalay et al.,
2012; Okubo et al., 2012; Martinez-Lapiscina et al., 2013a,b;
Cassani et al., 2017; Table 1).

In parallel with the healthy lifestyle, insulin and several
drugs currently used for the treatment of insulin resistance have
been suggested to have therapeutic effects in patients with PD
(Figure 2 and Table 1). These substances include metformin,
exenatide, thiazolidinediones, and bromocriptine.

The role of insulin in PD treatment has been firstly evidenced
by several studies indicating the presence of frequent amnesic
defects in T2D patients (Perlmuter et al., 1984; Helkala et al.,
1995; Vanhanen et al., 1999). Subsequently, these observations
have been confirmed by the fact that intranasal administration
of insulin in the hippocampus can improve memory deficits
in humans (Benedict et al., 2004). However, the importance of
insulin is not limited to the learning and memory processes, but
also extends to its ability to induce anti-inflammatory and neuro-
protective responses. Indeed, intranasal insulin administration
protects against substantia nigra dopaminergic neuronal loss
and alleviates motor deficits induced by 6-OHDA in rats
(Pang et al., 2016). The positive effects mediated by insulin
can be probably related to the capacity of this hormone
to improve brain oxidative stress, apoptosis, autophagy and
neuroinflammation and to the presence of its receptor in the
CNS, in particular in the hippocampus and medial temporal
cortex and amygdala, as described before (Singh et al., 1997;
Gerozissis, 2003).

Metformin belongs to the biguanide family and is the most
frequently used oral antidiabetic drug (Viollet et al., 2012). Met,
by activating AMPK or increasing the IR expression and tyrosine
kinase activity (Musi et al., 2002; Viollet et al., 2012; Rena et al.,
2017), reduces hepatic gluconeogenesis and increases insulin-
stimulated glucose uptake in skeletal muscle and adipocytes.
In addition, Met decreases free fatty acid oxidation, improving
insulin sensitivity (Musi et al., 2002; Rena et al., 2017) and

TABLE 1 | Role of insulin resistance treatments in Parkinson’s disease.

Insulin resistance
treatments

Role in Parkinson’s
disease

References

Mediterranean-style
diet

neuroprotection ? Alcalay et al., 2012
Okubo et al., 2012

Martinez-Lapiscina et al., 2013a

Martinez-Lapiscina et al., 2013b

Cassani et al., 2017

Insulin neuroprotection Perlmuter et al., 1984

memory improvement Helkala et al., 1995

↓ neuroinflammation Vanhanen et al., 1999

↓ oxidative stress Benedict et al., 2004

Pang et al., 2016

Singh et al., 1997

Gerozissis, 2003

Metformin neuroprotection Ng et al., 2012

Perez-Revuelta et al., 2014

Hsu et al., 2011

Imfeld et al., 2012

Moore et al., 2013

Kuan et al., 2017

GLP-1 receptor
agonists

neuroprotection Li et al., 2009

amelioration of motor
function

Bertilsson et al., 2008
Kim et al., 2009

Chen et al., 2015

Aviles-Olmos et al., 2013

Aviles-Olmos et al., 2014

MacConell et al., 2015

Athauda et al., 2017

DPP-4 inhibitors neuroprotection Svenningsson et al., 2016

↓ neuroinflammation Matteucci and Giampietro, 2015

↓ oxidative stress Yazbeck et al., 2009

Abdelsalam and Safar, 2015

Nassar et al., 2015

Thiazoledinediones neuroprotection ? Rabchevsky et al., 2017

Dehmer et al., 2004

NINDS Exploratory Trials in
Parkinson Disease (NET-PD)
FS-ZONE Investigators, 2015

Chang et al., 2015

insulin secretion from pancreatic beta-cells (Sreenan et al., 1996).
Further studies suggest that metformin can cross BBB and
activate AMPK in the CNS (Nath et al., 2009). In addition, this
drug has been shown to rescue dopaminergic dysfunction and
mitochondrial abnormalities in Drosophila models of PD (Ng
et al., 2012) and to reduce the phospho-Ser129 alpha-synuclein,
the modified form of alpha-synuclein that occurs most frequently
within PD, both in vitro and in vivo (Perez-Revuelta et al., 2014).
Nevertheless, studies performed in humans revealed contrasting
results. Indeed, while Hsu et al. have suggested that can reduce
the risk of dementia (Hsu et al., 2011) in diabetic patients, other
authors indicate that metformin exposure in patients with T2D
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FIGURE 2 | Role of the antidiabetic drugs on brain function. Several antihyperglycemic agents play a neuroprotective and anti-inflammatory role by directly acting on
brain or by reducing insulin resistance.

may lead to the development of neuronal diseases, including
dementia and PD (Imfeld et al., 2012; Moore et al., 2013;
Kuan et al., 2017).

Glucagon-like peptide-1 (GLP-1) receptor agonists, by
mimicking the effects of the incretin hormone GLP-1, increase
glucose-mediated insulin secretion and reduce postprandial
glucagon levels, gastric emptying rate, food intake and body
weight. Differentially from GLP-1 hormone, having a short half-
life, GLP-1 agonists have two important properties that include
the longer duration of action after subcutaneous administration
respect to GLP-1 and the resistance to degradation mediated
by dipeptidyl-peptidase 4 (DPP-4) enzymes (Prasad-Reddy
and Isaacs, 2015). Several GLP-1 receptor agonists, including
lixisenatide, exenatide and liraglutide, induce neuroprotective
effects, and, in particular, exenatide (Ex-4), a synthetic version
of exendin 4, has been suggested to have an important role
in PD. Indeed, both “in vitro” and “in vivo” studies have
demonstrated the ability of exenatide to mediate neurotrophic
and neuro-protective effects. In particular, Li et al. (2009)
have shown that Ex-4 treatment protects dopaminergic
neurons against degeneration, preserves dopamine levels

and improves motor function in the MPTP mouse model of
PD. Similar results have been obtained by Bertilsson et al.
(2008) who suggest that that Ex-4 significantly increases
the number of neurons positive for TH and vesicular MAO
transporter 2 in the substantia nigra of animals lesioned with
6-OHDA. Several mechanisms by which exenatide protects
form neurodegeneration have been hypothesized. Kim et al.
(2009) have showed that this drug protects dopaminergic
neurons by preventing MPTP-induced microglial activation
and MMP-3 expression. Other authors have demonstrated that
GLP-1 receptor stimulation reduces apoptosis by promoting
Bcl-2 expression and inhibiting the activation of caspase 3 and
preserves mitochondrial function in dopaminergic neurons
(Chen et al., 2015). Toxin-based models of PD, despite their
limited translational value, have allowed to clarify mechanisms
of action of GLP-1 agonists. Nevertheless, it is still unclear which
of the previously described pathways are crucial for the GLP-1
agonists therapeutic effects for PD (Foltynie and Athauda, 2018).
Clinical trials have also validated the positive effects of GLP-1R
agonists in PD, underlining the safety and tolerability of this
drug (Aviles-Olmos et al., 2013, 2014; MacConell et al., 2015;
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Athauda et al., 2017). Nevertheless, the difficulty to compare
each GLP-1R agonists under the same conditions limits, in part,
the reproducibility of these studies.

DPP-4 is an enzyme which rapidly inactivates GLP-1 and
GIP incretins, limiting their hypoglycemic action (Hansen et al.,
1999). Furthermore, increased serological levels of DPP-4 have
been observed in diabetic patients (Kim N.H. et al., 2014)
and, thus, several DPP-4 inhibitors are used in the effective
treatment of T2D. Treatment with DPP-4 inhibitors improves
metabolism, insulin secretion and reduces glucagon secretion.
Compared to GLP1 analogs, DPP-4 inhibitors are not able to
induce weight loss, but in any case they do not lead to an
increase in body weight, which instead occurs with sulfonylurea
or insulin treatment.

Since the discovery of neurotrophic and immune
regulating functions of DPP-4 inhibitors in the CNS,
increasing studies supports the idea that DPP-4 might also
be involved in the development of neurological disorders with a
neuroinflammatory component.

Svenningsson et al. (2016) in a nationwide case-control
study, found a significantly decreased incidence of PD among
individuals with a record of DPP-4 inhibitor intake. The
authors hypothesize that the this positive effect can be due not
only to the increase of GLP-1/GLP-1R binding, but also by
reducing the degradation of some neurotrophic neuropeptides,
including pituitary adenylate cyclase-activating polypeptide
(PACAP), substance P, neuropeptide Y, and gastrin-releasing
peptide (Matteucci and Giampietro, 2015). Furthermore,
DPP-4 inhibitors may have direct immunosuppressive effects,
providing interesting insights for the future therapeutic
development of treatments of neurological conditions with
recognizable immune-related dysfunctions (Yazbeck et al., 2009;
Svenningsson et al., 2016).

Other studies have shown the antiparkinsonian effect
of vildagliptin, a dipeptidyl peptidase (DPP)-4 inhibitor, in
rotenone−induced PD model in rats. Indeed, in these animals,
vildagliptin by blocking the RAGE/NFκB cascade, suppresses
inflammatory, oxidative stress, and apoptotic mediators
reducing death of dopaminergic neurons and motor impairment
(Abdelsalam and Safar, 2015). Similar results have been obtained
by Nassar et al. (2015) using saxagliptin, another DPP-4 inhibitor.

Thiazoledinediones, that include rosiglitazone and
pioglitazone, are oral hypoglycemic agents which bind and
activate the nuclear receptor PPARγ. This protein is expressed
not only in many insulin target tissues, but also in the substantia
nigra and in the putamen nucleus (Swanson and Emborg, 2014).
TZDs improve insulin-resistance in several ways, including
the reduction of circulating fatty acids, the activation of the
Glut4-mediated glucose transport and the decrease of the levels
of inflammatory cytokines (Davidson et al., 2018).

Moreover, pioglitazone mediates its neuro protective effect, by
binding a protein residing in the mitochondrial outer membrane,
called MitoNEEt and regulating the activity of complex I in
neuronal cells (Rabchevsky et al., 2017). In addition, this drug
blocks the nitric oxide-mediated toxicity in MPTP-treated mice
(Dehmer et al., 2004). As for the other anti-diabetic medications,
studies performed in humans about the efficacy of TZDs in PD

are still disappointing (NINDS Exploratory Trials in Parkinson
Disease (NET-PD) FS-ZONE Investigators, 2015). A possible
explanation for difficulty to obtain significant data in neurological
disorder such as parkinsonism can be probably related to the
poor capacity of TZDs to cross the BBB. Indeed, pioglitazone and
rosiglitazone are substrates of the P-glycoprotein. This protein
increases during the inflammatory state that occurs in PD and
acts as a stereoselective barrier preventing the entry of TZDs into
the brain (Chang et al., 2015).

A class of drugs capable of activating D2R dopaminergic
receptors is represented by the dopaminergic agonists. In
particular, an ergoline derivative, bromocriptine, indicated for the
treatment of patients with parkinsonism who no longer respond
to treatment with levodopa, improves glycemic homeostasis
and is used in the treatment of T2D since 2009. The
mechanism of action of bromocriptine is still not very clear.
This drug, by activating D2 and blocking D1 receptors, is
able to reduce blood glucose and serum triglycerides levels
and to decrease body weight (Kalra et al., 2011; Lopez Vicchi
et al., 2016). Furthermore, bromocriptine directly activates
the alpha 2-adrenergic receptors, inhibiting glucose-stimulated
insulin secretion in pancreatic beta cells (Kalra et al., 2011;
Lopez Vicchi et al., 2016).

Studies performed on animal models, in particular on ob/ob
mice and Syrian hamsters suggest that bromocriptine treatment
improves obesity and associated metabolic dysfunctions and
inhibits the seasonally occurring obesity, hyperinsulinemia,
insulin resistance and impaired glucose tolerance (Cincotta
and Meier, 1995; Liang et al., 1998; Luo et al., 1998). In
addition, several clinical trials have demonstrated the beneficial
effect of bromocriptine on glycemia and weight in obese non-
diabetic and diabetic subjects (Meier et al., 1992; Pijl et al.,
2000; Aminorroaya et al., 2004; Gaziano et al., 2010). Thus,
despite bromocriptine has been used since the 1960s for
treatment of PD, acromegaly and prolactinomas, only recently
its relevance has been demonstrated in T2D, encouraging its
future application.

From these data, it is clear that the correction of metabolic
disorders is of fundamental importance in the care of PD.
However, actually, there is no resolutive antihyperglycemic
treatment able to improve PD, slow down its progression and
alleviate its symptoms. Thus, the future challenge of the PD
research aims to identify new molecules that are more effective
and tolerable both in PD and in insulin-resistance than the
traditional ones.

CONCLUSION

Several clinical and experimental studies indicate a higher
prevalence of PD in patients diagnosed with diabetes. Indeed, it
is now clear that the loss of insulin signaling may cause neuronal
mitochondrial dysfunction and oxidative stress followed by loss
of dopaminergic neurons and impaired memory functioning.
These results have been corroborated by studies performed in
animal models and by the positive action that some antidiabetic
drugs induce with significant benefits in patients diagnosed
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with PD. However, although the scientific research has
reached several promising results, further and more detailed
investigations are necessary to validate these studies in order
to discover new therapeutic avenues.
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