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Abstract

Working memory is a basic human cognitive function. However, the genetic signatures

and their biological pathway remain poorly understood. In the present study, we tried

to clarify this issue by exploring the potential associations and pathways among genetic

variants, brain morphometry and working memory performance. We first carried out

association analyses between 2-back accuracy and 212 image-derived phenotypes

from 1141 Human Connectome Project (HCP) subjects using a linear mixed model

(LMM). We found a significantly positive correlation between the left cuneus volume

and 2-back accuracy (T = 3.615, p = 3.150e−4, Cohen's d = 0.226, corrected using

family-wise error [FWE] method). Based on the LMM-based genome-wide association

study (GWAS) on the HCP dataset and UK Biobank 33 k GWAS summary statistics, we

identified eight independent single nucleotide polymorphisms (SNPs) that were reliably

associated with left cuneus volume in both UKB and HCP dataset. Within the eight

SNPs, we found a negative correlation between the rs76119478 polymorphism and

2-back accuracy accuracy (T = −2.045, p = .041, Cohen's d = −0.129). Finally, an LMM-

based mediation analysis elucidated a significant effect of left cuneus volume in medi-

ating rs76119478 polymorphism on the 2-back accuracy (indirect effect = −0.007,

95% BCa CI = [−0.045, −0.003]). These results were also replicated in a subgroup of

Caucasians in the HCP population. Further fine mapping demonstrated that

rs76119478 maps on intergene CTD-2315A10.2 adjacent to protein-encoding gene

DAAM1, and is significantly associated with L3HYPDH mRNA expression. Our study
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suggested this new variant rs76119478 may regulate the working memory through

exerting influence on the left cuneus volume.

K E YWORD S

brain morphometry, cuneus, genome-wide association study, Human Connectome Project,
mediation, n-back, UK biobank, working memory

1 | INTRODUCTION

Working memory (WM) plays an essential role in human cognition

that stores and manipulates information temporarily while performing

complex tasks such as reasoning, comprehension, and learning

(Baddeley, 2010). Deficits in WM performance are associated with a

variety of psychiatric and neurological disorders, including attention

deficit hyperactivity disorder (Martinussen, Hayden, Hogg-Johnson, &

Tannock, 2005), schizophrenia (Van Snellenberg et al., 2016), multiple

sclerosis (Bobholz & Rao, 2003), Alzheimer's disease (Jahn, 2013), and

addiction (Livny et al., 2018). Based on the multicomponent model

proposed by Baddeley et al., the WM system can be separated into at

least four interacted components, a prefrontal central executed sys-

tem, a parietal episodic buffer, an occipital visual-spatial sketchpad,

and a prefrontal-temporal phonological loop (Baddeley, 2012; Chai,

Abd Hamid, & Abdullah, 2018). Although the term “working memory”
has been introduced for about 60 years (Miller, Galanter, &

Pribram, 1960), the genetic signatures and their biological pathway

are still poorly understood.

Some studies attempted to quantify the heritability of WM. They

found that the estimates of heritability for WM range from 0.32 to

0.66 in either healthy individuals or clinical samples, indicating moder-

ate to high heritability of WM (Ando, Ono, & Wright, 2001; Karlsgodt

et al., 2010; Vogler et al., 2014). Besides, studies based on SNP also

indicate the genetic association with WM. For example, a recent study

reported an SNP rs1625579 at the coding gene MIR137 is associated

with both neural activation and behavioral performance during a WM

task (Zhang et al., 2018). Another study reported a significant

SPON1 × APOE genotype interaction on WM performance (Liu

et al., 2018). Besides, Gregory et al. reported that rs3918242 regu-

lated the expression of the gene SLC12A5 and was associated with

WM-associated brain structure and activation (Gregory et al., 2019).

In addition to candidate gene approaches, recent advances in high-

resolution genome-wide association studies (GWAS) provide an

opportunity to identify potential genomic loci that contribute to com-

plicated cognitive processes without a priori assumption (Davies

et al., 2016; Savage et al., 2018; Zhao et al., 2019). Several research

groups tried to use the GWAS method to explore the potential loci

that are associated with WM or WM-related activation. Unfortu-

nately, there were no loci that survived under the stringent GWAS

threshold (p < 5e–8; Blokland et al., 2017; Cirulli et al., 2010; Need

et al., 2009), except for one GWAS based on 905 individuals reported

five SNPs were significantly associated with N-back performance

which mapped on two genes PAWR and OLFM3(Heck et al., 2014).

Besides, gene set enrichment analysis demonstrated that gene sets

related to voltage-gated cation channel activity and neuronal excit-

ability were robustly linked to WM performance and WM-related

brain activity (Heck et al., 2014). Although these studies have pro-

vided meaningful genetic associations of WM, little attention is paid

to the link among genetic variation, brain structural organization, and

WM performance.

Imaging genetics allows measuring the associations between

genetic variation and intermediate neuroimaging phenotypes and is

becoming an up-and-coming interdisciplinary tool for studying the

biological pathway of genetics on behavior (Xu et al., 2020). As the

world's largest neuroimaging genetic dataset, the UK Biobank (UKB)

study team has collected and released magnetic resonance imaging

(MRI) data from about 40,000 healthy participants (https://open.win.

ox.ac.uk/ukbiobank/big40/; Elliott et al., 2018; Smith et al., 2020).

Another informative database, Human Connectome Project (HCP)

(Van Essen et al., 2013), provides state-of-art high-quality multimodal

MRI data, SNP-array genotyping data, and multiple cognitive data for

about 1,200 healthy young subjects. Early studies had identified many

genetic loci associated with image-derived phenotypes (IDPs) based

on GWAS study (Satizabal et al., 2019; Zhao et al., 2019), and many

morphometric IDPs were associated with the performance of WM

(Ding, Qin, Jiang, Zhang, & Yu, 2012; Owen, McMillan, Laird, &

Bullmore, 2005; Salat, Kaye, & Janowsky, 2002; Yeo et al., 2015).

However, little attention was paid to the mediating pathways

between genetics, brain morphometry, and WM.

In the present study, we tried to elucidate this issue by integrating

the merits of the two imaging genetic datasets (UKB and HCP). We

first carried out association analyses between 2-back WM accuracy

and morphometric IDPs using the HCP dataset. Based on the GWAS

of the HCP dataset and UK Biobank 33 k discovery + validation

GWAS summary statistics, we further tried to figure out SNPs that

were reliably associated with the selected morphometric IDPs. Finally,

we introduced a mediation analysis to explore the potential mediated

relationships among the identified genetic loci, morphometric IDPs,

and WM performance in the HCP dataset. It is worth noting that

because the HCP cohort contains subjects from the same families and

mixed population, we performed the above association and mediation

analyses using a linear mixed model (LMM) to control for the popula-

tion stratification caused by both ancestry differences and cryptic

relatedness (Sul, Martin, & Eskin, 2018). Many studies indicated that

LMM could handle nearly arbitrary genetic relationships between indi-

viduals and is an effective and powerful approach for human associa-

tion studies to control for most forms of population stratification
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(Goodrich et al., 2016; Loh, Kichaev, Gazal, Schoech, & Price, 2018;

Sul et al., 2018; W. Zhou et al., 2020; X. Zhou & Stephens, 2012). We

further repeated the previous steps in only Caucasians of the HCP

samples to validate the reliability of the main findings. The workflow

of the study can be seen in Figure 1.

2 | METHODS

2.1 | Datasets

2.1.1 | HCP dataset

One of the datasets used in the present study is HCP release S1200

(Van Essen et al., 2012). Participants were young adults without signifi-

cant mental or neurological illness. Exclusion criteria included neu-

rodevelopmental, neuropsychiatric, or neurological disorders, as well as

severe health conditions, such as diabetes, multiple sclerosis, and cere-

bral palsy, and premature birth. Detailed information is available on the

HCP website: https://humanconnectome.org/storage/app/media/

documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf.

In the present study, 1,141 participants with genotyping data were ini-

tially enrolled from 454 families (average age = 28.82 ± 3.69 years,

ranging from 22 to 36 years, 54.16% female).

The DNA samples for the HCP dataset were extracted from the

whole blood or saliva sample. All subjects were genotyped using the

Illumina Multi-Ethnic Global Array (MEGA) SNP-array that included chip-

specific content from PsychChip and ImmunoChip and provided extended

coverage of European, East Asian, and South Asian populations. Imputa-

tion was conducted by IMPUTE2 (http://mathgen.stats.ox.ac.uk/impute/

impute_v2.html). The genotyping data for 1,141 subjects were down-

loaded through the dbGAP repository (https://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?study_id=phs001364.v1.p1).

The MRI data for 1,054 HCP subjects were collected using a 3T

Siemens Connectome Skyra scanner (Siemens AG, Erlanger, Germany),

with a customized SC72 gradient insert and a 32-channel head coil.

High-resolution T1-weighted structural images had been acquired

with a resolution of 0.7 mm3 isotropic (field of view = 224 × 240,

matrix = 320 × 320, 256 sagittal slices, repetition time = 2,400 ms,

inversion time = 1,000 ms, and echo time = 2.14 ms). Morphometric

analyses had been carried out using software HCP pipeline (https://

github.com/Washington-University/HCPpipelines) with a standard

preprocessing step (Glasser et al., 2013). Desikan_Killiany atlas had

been used to extract the quantitative cortical volume, surface area,

and thickness (Desikan et al., 2006). A total of 218 IDPs were initially

selected for this study, including 14 IDPs for subcortical volume,

68 for cortical surface area, cortical volume, and cortical thickness,

respectively. All the IDPs were downloaded directly from the website

(https://db.humanconnectome.org/data/projects/HCP_1200).

WM performance was evaluated using a 2-back task paradigm in

which participants were presented with blocks of pictures that con-

sisted of tools or faces. Participants were instructed to press their

right index finger if the current image matches the one presented two

before (2-Back) and press the right middle finger if not. In the present

F IGURE 1 Flowchart of this study. GWAS, genome-wide association study; MRI, magnetic resonance imaging
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study, we used 2-back accuracy to represent WM performance, and

1,025 HCP subjects had valid WM data.

2.1.2 | UK biobank dataset

Another dataset used was the imaging genetic GWAS summary data

from UKB released in early 2020 (https://open.win.ox.ac.uk/ukbiobank/

big40/). We use the most recent release version, which included the

GWAS summary statistics of 22,138 discovery and 11,086 replication

subjects (Alfaro-Almagro et al., 2018; Smith et al., 2020). The process

details of population selection, genotype quality control and imputation,

and GWAS calculation were provided in Elliott's study (Elliott

et al., 2018). For the UKB image data processing, an automated image

processing pipeline was used to eliminate artifacts and to make images

comparable across modalities and participants; it also generated thou-

sands of IDPs. The genome-wide genotype data were collected using

specially designed genotyping arrays that consist of approximately

96 million genetic variants from nearly 500,000 participants. A custom

quality control (QC), staging, and imputation pipeline was developed to

address the challenges specific to the UKB experimental design, scale,

and diversity (Bycroft et al., 2018). We only downloaded the UKB 33 k

discovery + validation GWAS summary statistics with IDPsmatching the

HCP dataset for the latter analysis. Since the UKB GWAS summary data

did not provide the cortical metric for the temporal pole (6 IDPs), we

finally included 212 IDPs for later analysis. This work was approved by

the ethics committee of TianjinMedical University General Hospital.

2.2 | Association analysis between morphometric
IDPs and WM

Wecarried out imaging-WMassociations analysis with 212morphometric

IDPs as the dependent variables and 2-back accuracy as the fixed-effect

independent variable using an LMM python package glimix-core 3.1.11

(https://pypi.org/project/glimix-core/), controlling for the random-effects

confounders kinship matrix and fixed-effect confounders intracranial vol-

ume (ICV), sex, age, and education years. A family-wise error (FWE)

method was used to correct the effective independent comparisons

(Hernandez-Ferrer et al., 2019; Li, Yeung, Cherny, & Sham, 2012) (effec-

tive independent comparisons = 85.476, p < 5.850e−4 was considered

statistically significant). The kinship coefficients matrix between each

individual was computed using the Genome-wide Efficient Mixed

Model Association Analysis (GEMMA) toolbox, version 0.98.1

(X. Zhou & Stephens, 2012; https://github.com/genetics-statistics/

GEMMA/releases/download/0.98.1/gemma-0.98.1-linux-static.gz).

2.3 | GWAS analysis for morphometric IDPs in
HCP dataset

The downloaded genotype data from HCP were first conducted QC

with the same parameters as UKB GWAS: genome referencing using

human genome assembly hg19, excluding SNPs with MAF <1%, geno-

type call rate <95%, info <0.3, and Hardy–Weinberg equilibrium

<1e–7. Finally, 11,061,864 validated SNPs survived under the above

QC steps. Considering the family structure and mixed population in

the HCP samples, an LMM-based GWAS was carried out between the

identified morphometric IDPs and 11,061,864 qualified SNPs using an

LMM-based GWAS toolbox GEMMA 0.98.1 (https://github.com/

genetics-statistics/GEMMA/releases/download/0.98.1/gemma-0.98.

1-linux-static.gz) (Sul et al., 2018; X. Zhou & Stephens, 2012). Pre-

cisely, a kinship coefficients matrix representing each pair of individ-

uals' genetic similarity was calculated using the preprocessed

genotyping data. The additive associations between each SNP and

each IDP were then performed using the LMM, controlling for the

random-effect confounds (kinship coefficients) and 20 fixed-effect

confounds identical with UKB GWAS.

2.4 | Genomic risk loci characterization

Candidate SNPs with congruent effects in both UKB and HCP dataset

were chosen from UKB 33 k discovery + validation GWAS summary

statistics and HCP GWAS statistics based on the following three

criteria: (a) SNPs survived under a threshold of p < 5e−8 in UKB 33 k

GWAS summary statistics; (b) SNPs had nominal P-value lower than

0.05 in HCP GWAS statistical results; and (c) SNPs had the same

effect directions in both HCP and UKB datasets. Besides, we also vali-

date the identified loci on UKB 11 k validation GWAS summary statis-

tics to test if the genotype-morphometric associations are still

significant (p < 5e−8).

Then genomic risk loci were defined by the FUMA online plat-

form version 1.3.6 (http://fuma.ctglab.nl/; Watanabe, Taskesen, van

Bochoven, & Posthuma, 2017). FUMA identified independent signifi-

cant variants with their p values less than a predefined criterion as

shown above, and independent of other significant variants at linkage

disequilibrium (LD) r2 <0.6. These variant LDs refer to the 1,000

Genome phase 3 European population Reference Panel. If the LD

blocks of independently significant variants are close (<250 kb based

on the block's closest boundary variant), they are combined into a sin-

gle genomic locus. The regional views of independent significant vari-

ants of Manhattan plots were plotted in LocusZoom (Pruim

et al., 2010). We also searched for candidate genes whose mRNA

expression is associated with the independent SNPs based on the

GTEx V8 eQTL database (GTEx, 2015).

2.5 | Pathway analyses among genetic variants,
morphometry and WM

An LMM-based mediation analysis was introduced to explore the

potential causal relationships among the identified genetic loci, mor-

phometric IDPs, and WM performance. The LMM-based mediation

method is a modification from the classical equation

(VanderWeele, 2016):
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Y = ;+ cX + βC + kZ ð1Þ

M= ;+ aX + βC + kZ ð2Þ

Y = ;+ c0X + bM+ βC + kZ ð3Þ

In which Y represents the outcome variable, X is the exposure variable,M is

the mediator variable, C is the fixed-effect covariates, Z is the random-

effect covariates, ; is an intercept, c is the total effect, c0 is the direct effect,
k and β represent coefficients for random- and fixed-effects, respectively.

The indirect effect (IE), or named mediation effect, is defined

according to the production method as following (VanderWeele, 2016):

IE = ab ð4Þ

To precisely estimate the significance of the IE, a bias-corrected and accel-

erated (BCa) bootstrap interval was used, which can correct for bias and

skewness in the distribution of bootstrap estimates (Bonett & Seier, 2006).

Before mediation analysis, we carried out association analyses

between the identified independent SNPs and 2-back accuracy using the

LMM model to identify which variants were associated with the WM

performance (p < .05, uncorrected) after controlling confounders asmen-

tioned in imaging-WM association analysis. During mediation analysis,

the identified independent SNPs associated with the WM were consid-

ered the exposure variables; the identified morphometric IDP was

defined as a mediator; two-back accuracy was defined as the outcome

variable. Besides, sex, age, ICV, and education were regarded as the

fixed-effect confounders, and kinship coefficients were determined as

random-effect confounders. The Bootstrap method with 1,000

resampling was used to estimate the bias-correction parameter, and the

jackknife method was used to calculate the acceleration (skewness)

parameter for the BCa interval. IEs that fall within 95% confidence inter-

val (IC) was considered statistically significant. The mediation analysis

was carried out using a customized package based onMediationToolbox

(https://github.com/canlab/MediationToolbox) and glimix-core 3.1.11

(https://pypi.org/project/glimix-core/).

2.6 | Validation on the Caucasian population in the
HCP dataset

To test whether population stratification caused by races would influ-

ence our findings, we repeated the above association and mediation

analyses on a subset of 753 Caucasians of the HCP samples with the

same configurations.

3 | RESULTS

3.1 | Morphometry—WM association results

The association results between 2-back accuracy and 212 morphometric

IDPs were shown in Figure 2. We found a significantly positive correlation

between the left cuneus volume and 2-back accuracy (T = 3.615, p = 3.150e

−4, Cohen's d = 0.226, corrected using FWE method), indicating greater

gray volumeof the left cuneus cortex predicts higherWMperformance.

3.2 | Morphometry—genome association results

The Manhattan and quantile-quantile (QQ) graphs of left cuneus vol-

ume of UKB 33 k discovery+validation GWAS summary statistics

were Figure S1. The LMM-based GWAS plots of the HCP dataset

with full samples and Caucasian samples were also shown in

Figures S2 and S3. QQ plot demonstrated that the HCP GWAS results

based on GEMMA showed no evidence of inflation in both full sam-

ples and Caucasian sub-samples of the HCP dataset, indicating the

efficiency of GEMMA in controlling the population stratification.

We screened 1,521 SNPs significantly associatedwith the identified

left cuneus volume (p < 5e−8) based on the UKBB 33 k discovery+vali-

dation GWAS summary statistics. Furthermore, 108 candidate SNPs

with congruent effects in both UKBB and HCP dataset were chosen

based on the following three criteria: (a) SNPs survived under a threshold

of p < 5e−8 in UKBB 33 k GWAS summary statistics; (b) SNPs had nomi-

nal P-value lower than 0.05 in HCP GWAS statistical results; and

(c) SNPs had the same effect directions in bothHCP andUKBB datasets.

3.3 | Independent SNPs identification

Eight significant independent variants of 108 SNPswith congruent effects

in both the UKB and HCP were identified using FUMA (Table 1). One

independent SNP was located on Chromosome 6 (rs74580701) and the

other seven were located on Chromosome 14 (rs55633651, rs17095711,

rs9323338, rs55643369, rs11158249, rs76119478, and rs140400396).

3.4 | Genetic variants, morphometry, and WM
pathway findings

LMM regression found a negative correlation between the

rs76119478 polymorphism and 2-back accuracy accuracy

(T = −2.045, p = .041, Cohen's d = −.129; Table S1). Thus, an LMM-

based medication analysis was used to explore the potential pathway

among rs76119478 polymorphism (exposure variable), left cuneus

volume (mediator), and 2-back accuracy (outcome variable). We found

a significant effect of the left cuneus volume in mediating the regula-

tion of locus rs76119478 (14q23.1) on 2-back accuracy (IE = −0.007,

95% BCa CI = [−0.045, −0.003]; Figure 3b).

3.5 | Validation base on Caucasian sub-samples of
the HCP dataset

Association based on 753 Caucasian sub-samples of the HCP dataset

demonstrated that the left cuneus volume was still positively
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associated with the 2-back accuracy (T = 3.218, p = 1.345e−3,

Cohen's d = 0.235; Figure 4a), whose effect size (Cohen's d) was com-

parable with the results using the full HCP samples (T = 3.615,

p = 3.150e−4, Cohen's d = 0.226). On the association between imag-

ing morphometry and genotypes, we also found a significantly nega-

tive association between the left cuneus volume and rs76119478

polymorphism in the Caucasians subset (T = −2.396, p = .017, Cohen's

d = −0.175), whose effect size (Cohen's d) was also comparable with

the results using the full HCP dataset (T = −2.232, p = .026, Cohen's

d = −0.139). On the genotype -WM association, we only found a mar-

ginal negative association between rs76119478 polymorphism and

2-back accuracy in the Caucasians subset (T = −1.322, p = .187,

Cohen's d = −0.097), whose effect size was lower than the findings

based on full HCP samples (T = −2.045, p = .041, Cohen's

d = −0.129). Finally, the mediation analysis was repeated in the Cau-

casian population, and we also found a significant effect of left cuneus

volume in mediating rs76119478 polymorphism on the 2-back accu-

racy (IE = −0.009, 95% BCa CI = [−0.057, −0.003]; Figure 4b).

3.6 | Fine mapping of independent SNPs

In the previous steps, we found that rs76119478 may regulate WM

via the left cuneus volume. We then used LocusZoom (Pruim

F IGURE 2 Associations between brain morphometry and working memory performance. A linear mixed model (LMM) was used to test the
associations between 212 morphological imaging-derived phenotypes (IDP) and 2-back accuracy. A family-wise error (FWE) method was used to
correct the effective independent comparisons. (a) Identified left cuneus volume that is positively correlated with the 2-back accuracy. (b) The x-
axis and y-axis represent 212 phenotypes and -log10P of imaging-working memory associations, respectively. The dashed horizontal line
indicates the FWE threshold (p = 5.85e−4)

TABLE 1 Identified independent
significant SNPs that are associated with
the left cuneus volume

SNP CHR BP A1/A2 UKB_beta UKB_P HCP_beta HCP_P

rs74580701 6 127000881 G/A −0.113 5.37e−9 −0.198 0.048

rs17095711 14 59580311 A/G −0.158 9.48e−23 −0.149 0.040

rs9323338 14 59588471 C/A −0.048 3.99e−9 −0.100 0.014

rs11158249 14 59605315 C/G −0.055 7.76e−9 −0.100 0.033

rs140400396 14 59864362 T/C −0.150 4.68e−19 −0.190 0.035

rs76119478 14 59622767 C/A −0.188 6.44e−24 −0.236 0.026

rs55633651 14 59551357 A/G −0.079 7.31e−14 −0.107 0.040

rs55643369 14 59595245 C/T −0.138 1.05e−34 −0.160 0.008

Abbreviations: BP, base pair; CHR, chromosome; HCP, Human Connectome Project; SNP, single-

nucleotide polymorphism; UKB, UK biobank.
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et al., 2010) to locate the related gene based on the hg19 UCSC

Genome Browser assembly and found its mapped gene within a

±250-kilobase genomic region was a noncoding gene CTD-

2315A10.2 (ENSG00000258685), an intergene (or pseudogene) of

AKR1B. Its nearest functional gene is DAAM1 (physical distance:

37524 bp; Figure 3a). We further searched for candidate genes whose

mRNA expression is associated with the identified rs76119478 using

the GTEx V8 eQTL database. We found this variant was significantly

associated with the mRNA expression of gene L3HYPDH in the cere-

bellum (normalized effect size = −0.66, p = 9.5e−5; Figure S4).

4 | DISCUSSION

In the present study, we aimed to explore the potential associations

and pathways among genetic variants, brain morphometry and N-back

WM performance. We found that the left cuneus volume was signifi-

cantly associated with 2-back accuracy in the HCP samples. Based on

the genome-imaging GWAS, we identified eight independent SNPs

congruently associated with left cuneus volume in both UKB and HCP

datasets. Within the eight SNPs, we found a negative correlation

between the rs76119478 polymorphism and 2-back accuracy. Finally,

mediation analysis elucidated a significant effect of left cuneus volume

in mediating rs76119478 polymorphism on the 2-back accuracy. These

results were also replicated in Caucasian sub-samples of HCP datasets.

Our study provided a potential neurobiological pathway for WM.

The present study showed that left cuneus gray volume is signifi-

cantly associated with WM performance. This morphometric pheno-

type was positively associated with 2-back accuracy using a strict

FWE correction method among the 212 morphometric phenotypes.

The association was still replicated in a sub-sample of the Caucasian

population. Early studies have indicated that cuneus is the dorsal

visual stream that participants in visual–spatial processing (Qin, Xuan,

Liu, Jiang, & Yu, 2015), which is also a core hub of WM processing

system named visual–spatial sketchpad (Baddeley, 2012; Chai

et al., 2018). Our findings were consistent with two recent reports:

one study reported that the activation of left cuneus was associated

with both encoding and recall phases of a WM capacity task (reading

span) (Bomyea, Taylor, Spadoni, & Simmons, 2018); and a second

study reported a close association between the gray matter volume of

left cuneus and 2-back accuracy (Owens, Duda, Sweet, &

MacKillop, 2018). The positive correlation between morphometry of

the left cuneus and 2-back accuracy implies a larger volume of this

region contributes to better WM performance.

In the present study, we also found the left cuneus volume was

congruently associated with eight independent SNPs in both UKB and

F IGURE 3 The mediation pathways
among rs76119478, cuneus
morphometry, and working memory.
(a) Regional Manhattan plots of genome-
wide association study of left cuneus
volume in UKB GWAS summary statistics
are generated based on website http://
locuszoom.org/ with linkage
disequilibrium from 1000 Genomes

Project Phase 3 EUR subjects. The
identified variant rs76119478 is located
at the intergene region and is nearest to
the DAMM1 gene. (b) A linear mixed
model-based mediation analysis is used to
test the mediation pathways from
rs76119478 polymorphism, left cuneus
volume, and 2-back accuracy. A bias-
corrected and accelerated (BCa) bootstrap
confidence interval (CI) is used to
represent the statistical significance.
Values in parentheses indicate the 95%
BCa CI. Black values indicate significance
under 95% BCa CI
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HCP cohorts. This finding was consistent with early reports (Elliott

et al., 2018; Hibar et al., 2015; Stein et al., 2012). Furthermore, among

the eight independent SNPs, we found a new SNP, rs76119478, was

significantly negatively associated with 2-back accuracy, suggesting

that this locus's mutation contributes to poor WM performance.

Genome fine mapping demonstrated that this SNP is mapped on a

nonencoding gene CTD-2315A10.2, a pseudogene for AKR1B gene,

whose functions are still unknown. An early study provided some

indicative association of this gene with WM (Martins-de-Souza

et al., 2012), which reported that AKR1B was differentially expressed

in the occipital lobe in frontotemporal degeneration patients, whose

WM performance are generally impaired (Libon et al., 2009; Stopford,

Thompson, Neary, Richardson, & Snowden, 2012). The nearest

protein-encoding gene of rs76119478 is DAAM1. A recent study

reported that this gene was significantly associated with the surface

area of the cuneus (Grasby et al., 2020). DAMM1 had been indicated

to be associated with synapse loss (Sellers et al., 2018). According to

the GTEx database, we found that SNP rs76119478 is one trans-

eQTL of gene L3HYPDH in the brain tissue (Visser, Verhoeven-Duif, &

de Koning, 2012). The protein encoded by this gene is a dehydratase

that converts trans-3-hydroxy-L-proline to delta (1)-pyrroline-2-car-

boxylate. This enzyme may function to degrade dietary proteins con-

taining trans-3-hydroxy-L-proline and other proteins such as collagen

IV, which is involved in Arginine and proline metabolism (Kanehisa,

Furumichi, Tanabe, Sato, & Morishima, 2017). A recent study reported

that this gene was differentially methylated in the mitochondrial of

autism spectrum disorder associated with Glutaryl-CoA degradation

(Stathopoulos et al., 2020). Although the functional indications of

rs76119478 were sporadically reported, its exact molecular and cellu-

lar biological pathways on WM are still known.

The common genomic and WM association of left cuneus volume

suggested this phenotype may bridge genetics and WM, which was

supported by mediation pathway analysis. We reported a significant

effect of left cuneus volume in mediating the regulation of

rs76119478 polymorphism on 2-back accuracy, and this medication

effect can be validated in the Caucasian sub-population in the HCP

dataset. It should be noted that the direct pathway of rs76119478 on

WM is not significant in the mediation analysis. Thus, rs76119478

may indirectly regulate the WM by exerting influence on the left

cuneus volume. Specifically, the rs76119478 mutation might cause a

reduction in left cuneus volume, and gray matter reduction in this

region may lead to poorer WM accuracy.

Several metrological considerations strengthened the findings of

the present studies. First, the identified IDPs and SNPs can be replica-

ble in both UKB and HCP dataset with consensus effect direction and

significance; second, the application of LMM in associations and medi-

cations can effectively control population stratification caused by

both ancestry differences and cryptic relatedness (Sul et al., 2018;

X. Zhou & Stephens, 2012), which thus made the statistics more pow-

erful on HCP dataset. However, several limitations should not be

neglected: The first issue is about the relatively small sample size of

the HCP samples. HCP only contains 1,000+ genotyping imaging and

cognition data; thus, it is difficult to identify significant genome-WM

and genome-morphometric associations at a GWAS level directly. In

the present study, we tried to increase the reliability of genome-

morphometric association by combining the UKB GWAS summary

statistics with the HCP GWAS results. However, the genome-WM

association of rs76119478 is relatively weak and has not yet been

replicated by large-sample studies. Future studies with larger datasets

are needed to test the genome-imaging-WM pathways. Second, it is

unknown if racial differences exist on the associations among

genome, brain morphometry, and WM. Thus, future studies based on

larger race-specific neuroimaging genetic datasets are promising. For-

tunately, there are several big open-shared neuroimaging genetic pro-

jects such as UK biobank (Bycroft et al., 2018), ENIGMA (Thompson

et al., 2014), and CHIMGEN (Xu et al., 2020) that may reach this goal.

Finally, although we found a potential statistical link among

rs76119478, cuneus morphometry, and WM, the molecular and cellu-

lar experiments are necessary to elucidate and validate the biological

pathways on WM.

5 | CONCLUSIONS

In summary, this study not only validated previous studies on the rele-

vance of brain morphology to genetics and WM, but also identified a

F IGURE 4 Association and mediation analysis based on
Caucasian sub-population of HCP dataset. (a) The scatter plot of the
association between 2-back accuracy and left cuneus volume using a
linear mixed model (LMM). (b) LMM-based mediation analysis is used
to test the pathways among rs76119478 polymorphism, left cuneus
volume, and working memory performance. A bias-corrected and
accelerated (BCa) bootstrap confidence interval (CI) is used to test the
significance. Values in parentheses indicate the 95% BCa CI. Black
values indicate significance under 95% BCa CI
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new variant, rs76119478, which may indirectly modulate WM by

exerting an effect on the morphology of the left cuneus.
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