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ABSTRACT Crimean-Congo hemorrhagic fever (CCHF), caused by Crimean-Congo hemor-
rhagic fever virus (CCHFV), is on the World Health Organizations’ list of prioritized diseases
and pathogens. With global distribution, high fatality rate, and no approved vaccine or
effective treatment, CCHF constitutes a threat against global health. In the current study, we
demonstrate that vaccination with nucleoside-modified mRNA-lipid nanoparticles (mRNA-
LNP), encoding for the CCHFV nucleoprotein (N) or glycoproteins (GcGn) protect IFNAR™/~
mice against lethal CCHFV infection. In addition, we found that both mRNA-LNP induced
strong humoral and cellular immune responses in IFNAR™/~ and immunocompetent mice
and that neutralizing antibodies are not necessary for protection. When evaluating immune
responses induced by immunization including CCHFV Gc and Gn antigens, we found the
Gc protein to be more immunogenic compared with the Gn protein. Hepatic injury is prev-
alent in CCHF and contributes to the severity and mortality of the disease in humans. Thus,
to understand the immune response in the liver after infection and the potential effect of
the vaccine, we performed a proteomic analysis on liver samples from vaccinated and con-
trol mice after CCHFV infection. Similar to observations in humans, vaccination affected the
metabolic pathways. In conclusion, this study shows that a CCHFV mRNA-LNP vaccine,
based on viral nucleo- or glycoproteins, mediate protection against CCHFV induced disease.
Consequently, genetic immunization is an attractive approach to prevent disease caused by
CCHFV and we believe we have necessary evidence to bring this vaccine platform to the
next step in the development of a vaccine against CCHFV infection.

IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is a zoonotic pathogen
causing Crimean-Congo hemorrhagic fever (CCHF), a severe fever disease. CCHFV has
a wide distribution and is endemic in several areas around the world. Cases of CCHF
are also being reported in new areas, indicating an expansion of the disease, which is
of high concern. Dispersion of the disease, high fatality rate, and no approved vaccine
makes CCHF a threat to global health. The development of a vaccine is thus of great
importance. Here we show 100% protection against lethal CCHFV infection in mice
immunized with mRNA-LNP encoding for different CCHFV proteins. The vaccination
showed both robust humoral and cellular immunity. mRNA-LNP vaccines combine the
ability to induce an effective immune response, the safety of a transient carrier, and
the flexibility of genetic vaccines. This and our results from the current study support
the development of a mRNA-LNP based vaccine against CCHFV.

KEYWORDS Crimean-Congo hemorrhagic fever virus, Gn, G¢, N, IFNAR mice, T-cell
immunity, mRNA vaccine, neutralizing antibodies
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rimean-Congo hemorrhagic fever orthonairovirus (CCHFV), a single-stranded, nega-

tive sense RNA virus belonging to the family Nairoviridae, is the causative agent of
Crimean-Congo hemorrhagic fever (CCHF). Occurrence of the virus coincides with the
distribution of its primary vector and reservoir, Hyalomma ticks. Thus, CCHF is geo-
graphically widespread and present in Asia, Africa, the Middle East and Southeast
Europe (1). Recently, Spain has reported cases of CCHF (2) and in 2018, Hyalomma ticks
were found as far north as Sweden (3). Global climate changes may be a cause for the
introduction of the Hyalomma tick to new areas and consequently, spreading of the
disease.

Mode of transmission of the virus and hence the disease is tick bites; handling of
infected livestock and/or care of CCHFV infected patients. In humans, CCHFV causes a
febrile-illness with a wide span of symptoms and severity of the disease. Some cases
are mild with fever and muscle pain, while in others the infection causes severe disease
with hemorrhagic manifestations. The global fatality rate for CCHF is approximately
32.2% (4) and currently there are no effective treatments or approved vaccines against
CCHF. The extensive spread of the virus, mode of transmission, and severity of the dis-
ease make CCHF a significant threat to global health.

In recent years, nucleoside-modified mMRNA have emerged as a promising therapeu-
tic modality due to significant advances in the engineering of mRNA sequences, pro-
gress of rapid and large-scale cGMP production, and development of efficient and safe
mRNA vaccine delivery materials (5), with ionizable lipid-containing nanoparticles
(LNP) being the most widely used (6). Multiple vaccine studies have successfully used
the nucleoside-modified mRNA-LNP platform against numerous infectious pathogens
(7-16), and recently the advantage of this vaccine concept has been demonstrated
during the development of a vaccine against SARS-CoV-2 (17-25). Compared with
other vaccination methods, nucleoside-modified mRNA-LNP has several advantages,
including that it is nonintegrating, noninfectious, it can express protein with high effi-
ciency, and small doses are efficient to induce a robust, protective immune response.
Moreover, this delivery system, and the nucleoside modification of the RNA, increases
the intracellular stability and dampens innate immune reactions.

Even though nucleoside-modified mMRNA-LNP-based vaccine candidates have been
used in vaccine studies against several infectious diseases (7-16), it has not been eval-
uated against CCHFV infection. However, naked mRNA, based on the S-segment of
CCHFV (Ank-2 strain), has previously been used to immunize IFNAR™/~ mice prior to
CCHFV challenge (26), with a difference in success based on the immunization
schedule.

In the current study, we assessed two different CCHFV immunogens in nucleoside-
modified mRNA-LNP vaccines in both immunocompromised and immunocompetent
mice. We demonstrated protective efficacy and characterized the humoral and cellular
immune responses induced by our vaccine candidates. In addition, we conducted pro-
teomic analysis on liver samples from control and vaccinated CCHFV-infected mice. To
our knowledge, this is the first time a nucleoside-modified mMRNA-LNP vaccine has
been evaluated for protection against CCHFV infection and where the effect of the vac-
cination has been measured by large-scale protein analyses.

RESULTS

Design of nucleoside modified RNA vaccine against CCHFV. We have previously
shown that our experimental DNA vaccine platform expressing either the glycopro-
teins or nucleoprotein genes of CCHFV elicits protective immunity against CCHFV
infection when given in combination (27). However, to further explore the best and
most efficient CCHFV vaccine, based on both antigen and vaccine platform, we
designed and generated two nucleoside-modified mRNA-LNP vaccines encoding dif-
ferent antigens, either CCHFV 1bAr10200 glycoproteins (Gc and Gn) or nucleoprotein
(N). The modified mRNA was synthesized enzymatically with 1-methylpseudouridine
(m1Y¥), an enzymatic cap1, and a 101-nucleotide long poly(A) tail and packaged into
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FIG 1 Survival and viral RNA in mRNA-LNP CCHFV-infected IFNAR™/~ mice. Schematic drawing illustrating the
immunization schedule for (a) A129 IFNAR™~ mice and (b) immunocompetent 12952 mice. Each mouse received two
immunizations with 3 weeks between. The mice received 10 ug of each specified mRNA-LNP administered through
intradermal injections. Five weeks post last immunization, all immunocompetent mice were euthanized, while the
IFNAR™~ mice were challenged with CCHFV IbAr10200 via intraperitoneal injection and followed for 2 weeks. (c)
Kaphlan-Meire graph showing survival of vaccinated and control IFNAR™/~ mice after CCHFV challenge (GcGn, N,
GcGn+N, and control). At the time of euthanasia, viral RNA in (d) serum, (e) spleen, and (f) liver was measured using
gRT-PCR. For serum, data is shown as mean CT values * geometric standard deviation. Dashed line indicate limit of
detection. For spleen and liver, the graphs display fold change * geometric standard deviation relative to the control
group. ****P < 0.0001. P values calculated with one-way ANOVA with Dunnett’'s multiple comparison test.

lipid nanoparticles for vaccination. Transfection of HEK 293T cells with the two modi-
fied mRNA-LNP resulted in efficient protein expression as analyzed using Western blot
(data not shown).

Nucleoside-modified mRNA-LNP vaccinated IFNAR-"- mice survive CCHFV infection.
Twenty-four female A129 IFNAR™/~ mice, divided into four groups (n = 6), received
immunizations at two different time points (Fig. 1a). Each mouse was given intradermal
injections with 10 g of each specified mRNA-LNP. The number of immunizations and
dose of mRNA-LNP was based on previous studies and experience with mRNA-LNP vac-
cination (8, 10). Group 1 received 10 ©g mRNA-LNP encoding for CCHFV glycoproteins
(GeGn), group 2 were immunized with 10 g mRNA-LNP encoding for the viral nucleo-
protein (N), group 3 was given both 10 ug GcGn and 10 ug N mRNA-LNP, and group 4
were immunized with 10 ug control mMRNA-LNP containing poly(C) RNA. The injection
was divided over four points on the back of the mice and each injection created a
small elevation of the skin, which disappeared within 5 min after immunization. No
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other noticeable clinical signs were observed due to immunization. Five weeks after
the second immunization (at an age of 14 to 16 weeks), all animals were challenged
with a lethal dose of CCHFV IbAr10200 and monitored for 14 days. The health status of
the animals was checked daily and evaluated based on several parameters, including
general condition, piloerection, as well as movement and posture. While the control
animals all showed signs of severe disease and reached the humane endpoint 4 days
postinfection, none of the vaccinated animals showed any clinical symptoms and all
survived until the end of the study (Fig. 1¢). At the time of euthanization, the control
mice had lost an average of 13.4 % = 2.0% of their body weight compared with the
day of challenge. In contrast, animals in the GcGn, GcGn+N, and N vaccine groups had
gained an average of 0.8% * 1.7%, 0.8% * 0.5%, and 4.2% =* 2.5% body weight,
respectively, at the end of the study compared with the day of challenge. The slightly
higher weight gain observed in the N-group was mostly due to two mice gaining 1.2 g
and 1.9 g, respectively, compared with the day of challenge. This increase in weight
deviated some from the rest of the surviving mice whose average weight gain was 0.3
g = 0.3 g. Viral RNA in serum, liver, and spleen were measured using quantitative real-
time PCR (gRT-PCR). All mice in the control group clearly had detectable CCHFV RNA in
all tissues tested (Fig. 1d to f). In contrast, most animals in the vaccinated groups had
undetectable levels of viral RNA in serum (Fig. 1d) and very low, but measurable levels,
in spleen and liver (Fig. 1e and f). With an average cycle threshold (CT) value in serum
of 26.85 for control animals compared with undetectable (CT = 40.00) in the GcGn-,
37.98 in the N-, and 39.09 in the GcGn+N group (only three and two out of six mice in
the N- and the GcGn+N groups, respectively, had detectable viral RNA in serum), there
were significantly (P < 0.0001) lower CCHFV RNA levels in serum from all three immu-
nized groups compared with the control group. Similarly, when analyzing spleen and
liver, there were significantly lower levels of viral RNA in both the spleen (P > 0.0001)
and liver (P > 0.0001) of CCHFV mRNA-LNP-vaccinated animals compared with the
control group (Fig. 1e and f). These results show that immunized IFNAR~/~ mice sur-
vive and are able to control the infection, but that the vaccination does not lead to
sterilizing immunity.

Immunization with nucleoside-modified mRNA-LNP elicits a strong humoral
immune response. To examine if immunization induces antibody production against
N and GcGn, antigen-specific antibody titers were measured using a commercial ELISA.
For each immunization group and time point, serum was pooled and 2-fold serially
diluted starting at 1:10,000. No antibodies were detected in preimmunization sera (T0)
or sera from control animals at any time point tested (data not shown). In contrast,
high levels were observed in the groups immunized with either N or GcGn+N mRNA-
LNP after both one (T1) and two (T2) immunizations, with an increase in antibody lev-
els after the second immunization (Fig. 2a). The antibody titer was 80,000 and 320,000
in both the N and the GcGn+N group after the first and second immunization,
respectively.

Surprisingly, we could not detect antibodies in animals vaccinated with only GeGn
mMRNA-LNP using the commercial ELISA. To further investigate this observation, serum
from mice in the GcGn group were pooled and analyzed using an in-house, indirect
immunofluorescences assay (IFA) based on CCHFV-infected Vero cells. The staining
(data not shown) showed that immunization with GcGn mRNA-LNPs induced antibod-
ies. Due to this finding, and to distinguish between antibodies against the Gc- and Gn
protein, we developed an in-house ELISA based on CCHFV recombinant Gc or Gn pro-
tein. As shown in Fig. 2b, just one immunization with GcGn mRNA-LNPs induced anti-
bodies against CCHFV Gc with a titer of 5,000. After the second immunization, the titer
increased to 100,000. In contrast, anti-Gn antibodies were only detected after the sec-
ond immunization (Fig. 2c) at a 200 times lower titer (500) compared with anti-Gc
antibodies.

Next, we assessed if the CCHFV-specific antibodies had neutralizing capacity by using a
microneutralization assay. As shown in Fig. 2d, we found that mice immunized with GcGn
or GcGn+N mRNA-LNP developed neutralizing antibodies, while N mRNA-LNP-vaccinated
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FIG 2 Antibody response in IFNAR™~ mice due to mRNA-LNP vaccination. (a) Antibody titer in pooled, diluted serum
from IFNAR™/~ mice immunized with N or GcGn+N mRNA-LNP after the first (T1) and second (T2) immunization measured
with VectorBest ELISA. (b) Titers of antibodies against CCHFV Gc or (c) Gn in pooled, diluted serum from IFNAR™/~ mice
immunized with GcGn mRNA-LNP measured with in-house ELISAs coated with CCHFV Gc or Gn protein, respectively. Data
is shown as mean = standard deviation of two technical replicates. Dotted lines indicate limit of detection. (d) Pooled,
diluted serum from IFNAR™/~ mice for each vaccine group after two immunization (T2) were evaluated for neutralization
capacity. Data is shown as percent inhibition compared with control animals for each dilution. T1 is represented by white
symbols: N, GcGn+N, GcGn, control. T2 is represented by black symbols: N, GcGn+N, GcGn, and control. OD, optical

density.

animals did not. Together these findings show that both GcGn and N mRNA-LNP immuni-
zation induces antibody production. While antibodies against G¢, and to some extent Gn,
most likely contribute to protection against CCHFV infection by neutralization of the virus,
protection induced by N mRNA-LNP immunization is mediated through another mecha-
nism(s).

CCHFV nucleoside-modified mRNA-LNP vaccination induces robust immune
responses in immunocompetent mice. Many innate immune receptors recognizes
RNA and induce immune responses (28). Activation of pattern recognition receptors
(PRR) due to RNA sensing leads to release of type 1 interferon, which can prompt inhi-
bition of translation. Because the IFNAR™~ mice lack type 1 interferon receptors, these
mice do not respond to a potential IFN-a/8 release and thus, translation is not
blocked. Hence, to broaden the investigation regarding CCHFV mRNA-LNP-induced
immune responses and to verify that the vaccine stimulates the same immune
responses in immunocompetent mice as observed in IFNAR™/~ mice, 24 immunocom-
petent (12952) mice were divided into four vaccination groups (n = 6) and immunized
as shown in Fig. 1b. Antibody responses and neutralizing capacity were evaluated
using the same methods as described above.

Similar to the knockout mice, immunocompetent mice immunized with either N
mMRNA-LNP alone or in combination with GcGn mRNA-LNP showed high levels of
CCHFV-specific antibodies after one immunization (titer of 80,000), with an increase after
the second immunization (titer of 320,000) (Fig. 3a). With the in-house ELISA, anti-Gc and
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FIG 3 Antibody response in immunocompetent mice due to mRNA-LNP vaccination. (a) Antibody titer in pooled, diluted
serum from immunocompetent mice immunized with N or GcGn+N mRNA-LNP after the first (T1) and second (T2)
immunization measured with VectorBest ELISA. (b) Titers of antibodies against CCHFV Gc or (c) Gn in pooled, diluted
serum from immunocompetent mice immunized with GcGn mRNA-LNP measured with in-house ELISAs coated with CCHFV
Gc or Gn protein, respectively. Data is show as mean = standard deviation of twp technical replicates. Dotted lines
indicate limit of detection. (d) Pooled, diluted serum from immunocompetent mice for each vaccine group after two
immunization (T2) were evaluated for neutralization capacity. Data is shown as percent inhibition compared with control
animals for each dilution. T1 is represented by white symbols: N, GcGn+N, GcGn, control. T2 is represented by black
symbols: N, GcGn+N, GcGn, and control. OD, optical density.

anti-Gn antibodies were detected in serum from GcGn MmRNA-LNP immunized mice
(Fig. 3b and ). A high titer (10,000) of anti-Gc antibodies was measured after just one im-
munization with a 10-fold increase after the second immunization (Fig. 3b). In contrast
to the IFNAR™/~ mice, low levels of anti-Gn antibodies were detected in the immuno-
competent mice after one immunization with an increase after the boost (Fig. 3c).
However, the anti-Gn titer was 200 times lower compared with anti-Gc antibodies.

Just as in the IFNAR~/~ mice, serum from GcGn and GcGn+N immunized immuno-
competent mice showed neutralizing capacity (Fig. 3d). Serum from the N mRNA-LNP
immunized group had no significant neutralizing effect.

To further characterize the different vaccine candidates, we analyzed T-cell responses
against CCHFV using IFN-y ELISpot. Five weeks after the last immunization, fresh spleno-
cytes from the immunocompetent mice in each vaccination group were pooled and incu-
bated with peptides based on CCHFV IbAr10200 N, Gc, or Gn proteins. All groups showed
activation of CCHFV-specific IFN-y producing T-cells to peptide pools spanning the immu-
nogens used (Fig. 4a to c), while control immunization did not induce cellular response
(Fig. 4d). Immunization with GcGn mRNA-LNP generated a strong T-cell response to the
Gc peptides (ranging from 118 to 2,802 SFCs/10° splenocytes) and specifically to peptide
pool #2 (amino acids 1121 to 1210, NP_950235) (Fig. 4a). Interestingly, no significant
response to any of the Gn peptides was observed. Splenocytes from N mRNA-LNP-immu-
nized mice reacted to all pools of N peptides and produced IFN-y ranging from 363 to
2,922 SFCs/106 splenocytes (Fig. 4b). In the GcGn+N-immunized group, T-cell responses to
both N and Gc peptides was observed, but again, no T-cell activation due to incubation
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FIG 4 mRNA-LNP immunization induces CCHFV-specific cellular response. Fresh splenocytes from the immunocompetent mice after two immunizations
were stimulated with pooled, overlapping peptides based on the CCHFV Gc, Gn, or N protein. ELISpot was used to determine the number of IFN-y SFCs per
10° splenocytes in (a) GeGn,(b) N, () GeGn+N, and (d) control vaccinated mice. Each peptide pool for N and Gc contained eight peptides, while Gn-
peptide pools contained seven peptides. Each pool was performed in triplicate and data is shown as geometric mean *= geometric standard deviation. As
control antigens OVA-CTL, OVA-Th, ConA, and medium alone were used and cut-off was set at 50 SFCs/10° splenocytes. Amino acid position (aa#) is based
on CCHFV nucleoprotein, NCBI accession number NP_950237 and CCHFV glycoprotein precursor, NCBI accession number NP_950235.

with Gn peptides (Fig. 4c). Control animals showed no response to either N, G¢c, or Gn
derived peptides (Fig. 4d). These results show clear generation of CCHFV specific cellular
immune response by immunization with either N, GcGn, or N+GcGn mRNA-LNP, which
could contribute to protection against infection.

High throughput quantitative proteomics identified distinct proteomic vaccine
signature linked to metabolism. High throughput technologies have contributed to
identification of early immune responses to vaccination and their role in protection
against infection (29-32). Therefore, to identify and better understand more large-scale
potential differences between the two vaccine candidates and, in addition, compare
with control after CCHFV infection, we conducted a quantitative proteomic study. Liver
samples from GcGn- or N mRNA-LNP-immunized, infected animals, as well as the con-
trol mice were included.

Principal component analysis (PCA) showed a clear separation between GcGn-vacci-
nated, infected mice and control-vaccinated, infected mice (Fig. 5a), and differential
protein abundance analysis identified 1,288 proteins with higher abundances and
1,079 proteins with lower abundance between the two groups (Fig. 5b, Data Set S1).
Protein set enrichment analysis (PSEA) using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) linked most of the high abundance proteins in the GcGn-vaccinated
mice to eight pathways (adjusted P < 0.05), while the low abundance proteins
belonged to two pathways (adjusted P < 0.05). Most of the effected proteins where
connected to, “metabolic pathways,” which even though not significantly changed,
indicate a shift in metabolism due to GcGn mRNA-LNP vaccination (Fig. 5¢). Thus, PSEA
was performed only on pathways from the KEGG map pathway “Metabolism” in order
to identify additional mechanism shifts in GcGn-vaccinated mice (Fig. 5d). Top path-
ways differing between GcGn and control mice were oxidative phosphorylation, propa-
noate metabolism, and valine, leucine, and isoleucine degradation.
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FIG 5 Proteomic analysis of GcGn-vaccinated versus control mice. (a) PCA trajectory score plots labeled for GeGn-vaccinated and control mice. (b) Volcano
plots of proteins with differential abundance between GcGn-vaccinated and control mice. Upregulated proteins are represented in red, while proteins
downregulated are represented in green. FDR < 0.05. (c) Cytoscape network of KEGG pathways enriched in proteins differing between GcGn-vaccinated
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Similar analysis was performed comparing N-vaccinated, infected mice to control-vac-
cinated, infected mice, and PCA plots identified separate clustering of N-vaccinated mice
verses control (Fig. 6a). When comparing N-vaccinated mice to control mice, differential
protein abundance analysis identified 1,218 proteins with high abundance and 988 pro-
teins with low abundance (Fig. 6b, Data Set S1). With PSEA, 12 pathways (adjusted
P < 0.05) with high abundance proteins and two pathways (adjusted P < 0.05) with low
abundance proteins were identified in N-vaccinated mice compared with controls. As in
previous comparison with GcGn-vaccinated mice, most proteins were associated with
“metabolic pathways” (Fig. 6¢c). PSEA on the KEGG “metabolism” map pathway revealed
that the most significant mechanisms differing between N-vaccinated and control mice
were changes in the amino acid metabolism (Fig. 6d). Specifically, valine, leucine, and
isoleucine degradation, as well as carbon and propanoate metabolism.

When comparing the two different vaccine candidates, we identified 1,993 proteins
to be differently regulated in vaccinated mice (both GcGn and N) compared with control
mice (Fig. 6e). These 1,993 proteins were submitted to PSEA and the top 10 pathways
were extracted (Fig. 6f, Data Set S2). The top pathways were oxidative phosphorylation,
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FIG 6 Proteomics analysis of N-vaccinated versus control mice. (a) PCA trajectory score plots labeled

for N-vaccinated and control mice. (b) Volcano plots

of proteins with differential abundance between N-vaccinated and control mice. (c) Cytoscape network of KEGG pathways enriched in proteins differing
between control and GcGn. (d) Bubble plot representing KEGG pathways from the “Metabolism” pathway map enriched in the protein with higher intensity
in N-vaccinated mice compared with control. () Venn diagram of protein with differential abundance between control, GcGn-, and N-vaccinated mice. (f)
Barplot of the top 10 biological KEGG pathways enriched in proteins differing between control and, respectively, GcGn- and N-vaccinated groups of mice.
Pathways were ordered by adjusted P value. Upregulated pathways are represented in red and downregulated pathways in green. Number of proteins

associated with each pathway is indicated on the bar.

valine, leucine, and isoleucine degradation, propanoate metabolism, and carbon metab-
olism where the proteins were highly abundant in vaccinated mice, confirming the pair-
wise analysis. The pathways where most of the proteins were low abundance belongs to
the protein processing in endoplasmic reticulum and complement and coagulation cas-
cades. No proteins differed between GcGn- and N-vaccinated mice indicating minimal
changes in the protein abundance in the two vaccination strategies.

DISCUSSION

In this study, using the nucleoside-modified mMRNA-LNP vaccine platform, which
have shown powerful and very promising results in the development of a vaccine
against COVID-19 (17-25), we demonstrate 100% protection of IFNAR™~ mice against
lethal CCHFYV infection. The mice received immunization with mRNA-LNP encoding for
either CCHFV glycoproteins or the nucleoprotein, and protection against death and
disease was seen with both. In addition, we show induction of robust humoral and cel-
lular immune responses in both IFNAR™/~ and immunocompetent mice due to immu-
nization. Also, to our knowledge, this is the first time large-scale analysis of CCHFV vac-
cine-induced effects, in combination with infection, on the protein profile have been
conducted using proteomics. The results indicate a metabolic sparing in the liver of
vaccinated mice with no significant difference between animals immunized with N or
GcGn MRNA-LNP.

In a previous study, Aligholipour Farzani et al. assessed immunogenicity and protec-
tion against CCHFV of a naked mRNA vaccine encoding the viral nucleoprotein after
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one or two immunizations. They report 100% protection with a booster strategy, while
with one immunization the mice developed severe symptoms and only 50% survived.
Despite survival, their data show weight loss postinfection in both vaccine groups in
the range similar to that observed in the control group. In our study, the control group
showed signs of disease and were euthanized 4 days postinfection with an average
weight loss of 13.4% =+ 2.0%. While developing a vaccine that prevents death is a suc-
cess, our aim is to develop a vaccine that also protects from severe disease. While we
observed an increase in antibody titer with a second immunization, Aligholipour
Farzani et al. did not. This dissimilarity might be due to differences in the vaccine plat-
forms used. We used nucleoside-modified mRNA encapsulated in lipid-containing
nanoparticles, while Aligholipour Farzani et al. used naked mRNA, which are more
quickly degraded by extracellular RNases and thus might lead to a weaker immune
response.

Even though immunization in the current study, independent of CCHFV vaccine
candidate, protected from disease, it did not induce sterilizing immunity as viral RNA
was detected in some of the immunized mice (Fig. 1d to f). However, it is not deter-
mined if the RNA represent infectious virus and the level was at least 3-fold lower than
control mice (Fig. 1f). Interestingly, we found that mice immunized with GcGn mRNA-
LNP had no viral RNA in serum, indicating efficient levels of neutralizing antibodies
and/or other immune factors to clear the virus from the blood in these mice. One ca-
veat with our study is that samples for PCR from the vaccinated mice was not collected
at the same time as for the control group. The purpose of the study was to investigate
protection from disease and thus, the vaccinated mice had to be observed for a longer
time to rule out the possibility that vaccination prolonged the incubation period of the
disease. It is possible that viral levels were higher in the vaccinated mice early in infec-
tion. Unfortunately, the regulations regarding what we can do with infected mice in
our BSL-4 laboratory is limited and, therefore, we were not able to collect blood from
living mice inside of the BSL-4.

Independent of vaccine candidate, all immunized mice, (both IFNAR~/~ and immuno-
competent), showed strong antibody production after only one immunization (Fig. 2a to
c and 3a to ¢), with an increase after the boost. By conducting ELISAs detecting antibod-
ies against Gc and Gn separately, we showed that GcGn vaccination induced much
higher titer of anti-Gc antibodies compared with anti-Gn antibodies (Fig. 2b to ¢ and 3b
to ¢). This is consistent with previous studies showing CCHFV Gc to be more immuno-
genic compared with Gn (33). However, even though the Gn protein does not induce a
strong immune response, it is most likely necessary to include in a vaccine against
CCHFV. Several proteins derived from the CCHFV M polyprotein, including the Gc pro-
tein, depend on the Gn protein for correct localization, folding, and transport (34).

Furthermore, we have studied T-cell response due to the mRNA-LNP immunization
in detail and showed that both N and GcGn mRNA-LNP induced priming of T-cells
against CCHFV (Fig. 4a to c). Because interaction with all pools of N-based peptides
lead to IFNy production, the result suggests that a large part of the N protein can act
as an antigen. In contrast, for the glycoprotein, four out of eight Gc-peptide pools
induced IFN-y production, with pool #2 (amino acids 1121 to 1210 of NCBI accession
number NP_950235), inducing the highest number of IFN-y SFCs/10° cells. Peptides
based on the Gn protein did not activate T-cells, further demonstrating Gn to be less
immunogenic than Gc. Similar results were observed in a previous study investigating
long-lived T-cell responses due to CCHFV infection in humans (35). T-cells from CCHF
survivors were activated by interaction with CCHFV peptides, with the reactive pep-
tides predominantly located in the nucleoprotein. Only one survivor reacted to epi-
topes from the Gc protein and no reaction to the Gn protein was observed. Thus, our
immunization candidates induce a similar T-cell response as prompted by natural
CCHFV infection.

There is currently no data available on the effect of immunization on the proteomic
profile in mice recovering from CCHFV infection. Here, when comparing the proteomic
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profile of mice immunized with either GcGn or N mRNA-LNP, no significant difference
was observed. On the other hand, when comparing vaccinated and control mice after
CCHFV infection, a distinct metabolic shift toward a loss in oxidative phosphorylation;
valine, leucine, and isoleucine degradation; and propanoate and carbon metabolism
was identified in control mice. These pathways are often impaired in viral infection
(36-38). Interestingly, proteins related to the complement and coagulation cascade
were upregulated in control mice compared with vaccinated animals.

The results from the current study showing survival of mice immunized with only N
mRNA-LNP strongly indicates that neutralizing antibodies are not necessary for protec-
tion against CCHF. This supports previous results from our group presenting no correla-
tion between protection and neutralizing antibody titer (27). Immunization with a DNA
plasmid encoding the CCHFV glyco- and nucleoprotein fully protected IFNAR™/~ mice
against CCHF, while immunization with transcriptionally competent virus-like particles
(tc-VLPs) only led to 40% survival despite induction of higher titer of neutralizing anti-
bodies compared with the DNA vaccine. Similar, Kortekaas et al. showed production of
neutralizing antibodies in STAT1 knockout mice with a CCHFV glycoprotein based vac-
cine, but no protection against infection (33). Recently, we published a study showing
protection against CCHF in Cynomolgus macaques immunized with a DNA vaccine
based on the CCHFV glyco- and nucleoprotein (39). Similar to the current study, vaccina-
tion led to induction of both CCHFV specific antibodies and T-cells. However, the anti-
bodies were mainly against the N protein and, thus, lacked neutralizing capacity.

Even though no neutralizing antibodies, but a strong T-cell response, was detected in
immunocompetent N mRNA-LNP immunized mice, we cannot conclude that only a cel-
lular immune response results in an efficient protection against CCHFV infection because
T-cell responses were not evaluated in the IFNAR™/~ mice. To determine if N mRNA-LNP-
mediated cellular immunity is enough to prevent CCHFV infection, T- and B-cell deple-
tion or serum transfer studies have to be conducted in the IFNAR~/~ model.

In conclusion, we show that immunization with nucleoside-modified mRNA-LNP
encoding for CCHFV nucleoprotein or glycoproteins both effectively protect IFNAR™/~
mice from lethal infection of CCHFV, thus the question regarding the best vaccine can-
didate remains. Even though vaccination with GcGn alone protected mice from dis-
ease, and induced both CCHFV neutralizing antibodies and primed T-cells, a vaccine
including the nucleoprotein might still be preferred, due to the immunogenicity of the
N protein, but also because of its more conserved sequence between different CCHFV
strains compared with the glycoprotein (1). Thus, including the nucleoprotein in the
vaccine could increase the chance of protection against infection with different CCHFV
strains. Based on the current study and additional successful studies against other in-
fectious diseases, not least the development of a vaccine against SARS-CoV-2, using
the mRNA-LNP platform, we believe we have necessary evidence to bring this vaccine
platform to the next step in development of a vaccine against CCHFV infection.

MATERIALS AND METHODS

Ethical statement. In the current study, we used female A129 IFNAR™/~ mice (Marshall
Bioresources, Hull, UK) and 12952 immunocompetent mice (Envigo, Venray, the Netherlands) at an age
of 6 to 8 weeks at the time of the first immunization. The animals were housed according to Karolinska
Institute ethical rules and observed daily. Stockholm Ethical Committee for animal research approved
the research.

Production of mRNA lipid-nanoparticles. mRNAs were produced as previously described (40)
using T7 RNA polymerase on linearized plasmids (pUC-TEV-CCHFV GcGn-A101, pUC-TEV-CCHFV N-A101)
encoding codon-optimized CCHFV glycoproteins and the nucleoprotein protein from the 1bAr10200
CCHFV strain. mRNAs were transcribed to contain 101 nucleotide-long poly(A) tails. Instead of UTP, 1-
methylpseudouridine-5'-triphosphate (TriLink) was used to generate modified nucleoside-containing
mRNAs. mRNAs were capped using the m7G capping kit with 2-O-methyltransferase to obtain cap1 and
were purified by cellulose purification, as described earlier (41). mRNAs were analyzed by agarose gel
electrophoresis and stored frozen at —20°C.

Cellulose-purified mRNAs and poly(C) RNA (Sigma-Aldrich, St. Louis, MO) were encapsulated in LNP
using a self-assembly process in which an aqueous solution of mRNA at pH 4.0 is rapidly mixed with a
solution of lipids dissolved in ethanol (42). LNP used in this study were similar in composition to those
described previously (42, 43), which contain an ionizable cationic lipid (proprietary to Acuitas). The
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proprietary lipid and LNP composition are described in U.S. patent US10221127. They had a diameter of
~80 nm as measured by dynamic light scattering using a Zetasizer Nano ZS (Malvern Instruments Ltd,
Malvern, UK) instrument.

mRNA transfection and protein analysis. The in vitro synthesized and purified mRNA was trans-
fected into HEK293T cells using TransIT-mRNA (MirusBio, Madison, WI) as described previously (7).
Briefly, 6 x 10* cells were transiently transfected with 0.3 ug of RNA in combination with 0.34 ul
TransIT-mRNA reagent and 0.22 uL boost reagent in 17 ulL of serum-free medium. At 16-h posttransfec-
tion, cells were lysed in 100 uL of 1x cell lysis buffer (20 mM Tris-HCI (pH 7.5), 150 mM NaCl, 1% Triton)
with complete protease inhibitor cocktail. Whole cell lysates from the transfected cells were separated
on a 4% to 12% Bis-Tris polyacrylamide gel in MOPS electrophoresis buffer (Life Technologies, Carlsbad,
CA) and blotted to nitrocellulose membranes using the iBlot2 Dry Blotting System (Life Technologies).
The membranes were washed with 1x Tris-buffered saline (TBS) and blocked in TBS buffer containing
5% nonfat, dry milk and 0.5% Tween 20. Primary polyclonal antibodies against CCHFV Gn, Gc, and N pro-
teins were diluted in 1x Tris-buffered saline with 0.1% Tween 20 (TBST) and membranes incubated at
room temperature (RT) overnight with agitation. Recombinant anti-vinculin antibody or anti-alpha tubu-
lin antibody (Abcam, Cambridge, UK) were used as loading controls. After the final washing, expression
of CCHFV Gn (37 kDa), Gc (75 kDa), and N (55 kDa) proteins were visualized using LI-COR C-DiGit Blot
Scanner.

Virus. The titer of CCHFV strain Nigerian IbAr10200 (number of passages not known) (44) was deter-
mined on Vero cells. The virus was serially diluted 10-fold and then added to Vero cells in a 96-well plate.
Twenty-four-h postinfection, cells were fixed with ice-cold acetone-methanol (1:1) and incubated for at
least 30 min. Thereafter, the cells were stained with a primary antibody (1:150) made in rabbits against
the CCHFV nucleoprotein for 30 min at 37°C followed by staining with secondary antibodies anti-rabbit
Alexa Fluor 488 (Thermo Fisher Scientific, Waltham, MA) and DAPI (Roche, Mannheim, Germany)
(1:1,000). The number of fluorescent foci in each well was counted, and the titer determined.

Immunizations and challenge. The IFNAR™/~ mice were divided into four groups (n = 6) and immu-
nization was performed twice with a 3-week interval. Mice receiving only N, GcGn, or the control (PolyC)
MRNA-LNP were injected intradermally at four different points on their back with a total of 10 ug
MRNA-LNP in 120 uL calcium and magnesium-free phosphate-buffered saline (PBS), while mice immu-
nized with both N and GcGn received a total of 20 g mRNA-LNP in 120 uL PBS. Blood samples were
collected 2 days prior to the first immunization, right before the second immunization and before viral
challenge. In addition, at the time of euthanasia, blood, liver, and spleen were collected from each
mouse. The blood samples were collected in serum-separation tubes, centrifuged, and serum, spleen,
and liver were frozen until use. Five weeks post the last immunization, all IFNAR™/~ mice were chal-
lenged with 400 focus forming units (ffu) of the CCHFV strain Nigerian IbAr10200 (titer of 1 x 10* ffu/ml)
in 100 L by intraperitoneal injection. After infection, the animals were monitored up to 14 days with
respect to clinical signs of disease, their overall well-being, and survival. Furthermore, 24 immunocom-
petent mice (12952) were immunized as the IFNAR™~ mice described above. Blood samples were col-
lected before and prior to both immunizations. Five weeks after the last immunization, animals were eu-
thanized and blood and spleen collected.

Viral RNA detection. To inactivate virus in serum, TRIzol was added to the samples (1:3). For liver
and spleen, PBS was added to each sample and pestles were used to crush the organs. Thereafter, the
samples were centrifuged (5 min at 7,000 rpm) and 100 to 200 uL of each liver or spleen sample was
added to TRIzol (1:3). RNA was extracted using the Direct-zol RNA Miniprep kit (Zymo Research, Irvine,
CA) according to the manufacturer’s instructions. Viral RNA was measured by quantitative real-time PCR
(gRT-PCR) using TagMan Fast Virus 1-Step Master Mix (Thermo Fisher Scientific) with primers and probe
specific for the CCHFV L gene:

Forward, 5'- GCCAACTGTGACKGTKTTCTAYATGCT-3',

Reverse 1, 5'- CGGAAAGCCTATAAAACCTACCTTC-3,

Reverse 2, 5'-CGGAAAGCCTATAAAACCTGCCYTC-3" and

Reverse 3, 5'-CGGAAAGCCTAAAAAATCTGCCTTC-3’, and

Probe, FAM-CTGACAAGYTCAGCAAC-MGB.

For liver and spleen samples, mouse ACTB mix (Thermo Fisher Scientific) was used as endogenous
control. The cycling reactions was performed using a capillary Roche LightCycler 2.0 system.

VectorBest and in-house enzyme-linked immunosorbent assay. Antibodies against CCHFV were
measured using either a commercial ELISA (VectorBest, Novosibirsk, Russia) or an in-house ELISA based
on the CCHFV Gc or Gn proteins. For the VectorBest ELISA, the manufacturer’s protocol was followed
with minor modifications. Dilution buffer from the ELISA kit and a murine monoclonal CCHFV antibody
against the nucleoprotein were used as negative and positive control, respectively, and included on ev-
ery plate. As a secondary antibody, horseradish peroxidase conjugated polyclonal rabbit anti-mouse im-
munoglobulin (Agilent, Santa Clara, CA) was used at a dilution of 1:8,000. For the in-house ELISA,
maxiSorp 96-well plates were coated with either recombinant CCHFV Gc or Gn protein (The
NativeAntigen Company, Oxford, UK). The proteins were diluted to 1 wg/mL in sodium carbonate buffer
and 100 uL was added to each well before incubation overnight at RT. Plates were then blocked (PBS
with 1% BSA) for 2 h at RT and thereafter washed (PBS with 0.05% Tween 20). Serum samples were
diluted in PBS with 1% BSA and 0.05% Tween 20, 100 uL added to each well and plates incubated at RT
for 1 h. Thereafter, plates were washed and the same secondary antibody as used for the VectorBest
ELISA was added at the same dilution. After washing, 100 uL of 3,3',5,5'-tetramethylbenzidine (TMB)
substrate was added to each well and the reaction was stopped after 4 min with 100-uL TMB stop rea-
gent. Both the VectorBest and in-house ELISA was measured at 450 nm using a Multiskan FC Microplate
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Photometer. Cut-off for positive samples were based on serum before immunization (time point 0) and
set to the average optical density value of all samples + 2 standard deviations measured for each ELISA.

Immunofluorescent staining. Serum from before or after two immunizations (T2) of the GcGn
mRNA-LNP immunized IFNAR™/~ mice was pooled and diluted 1:20. Thereafter, the diluted serum was
added to CCHFV IbAr10200-infected Vero cells on glass slides and incubated in 37°C for 1 h. Serum was
then decanted and slides washed in PBS three times for 5 min each before staining with Alexa 488 Goat
anti-mouse antibody (1:1,000) (Thermo Fischer Scientific) and DAPI (1:1,000) (Roche). Slides were incu-
bated for 30 min in 37°C before being analyzed by florescent microscopy (Nikon Eclipse TE300). Pictures
were taken at 40 times magnification with an ORCA-spark Digital CMOS camera.

Neutralization assay. The titer of CCHFV-neutralizing antibodies in the serum of vaccinated IFNAR™/~
or immunocompetent mice was determined by microneutralization assay. Serum from all animals in
each group were pooled and heat inactivated for 30 min at 56°C. Serial 2-fold dilutions of serum were
mixed with approximately 120 CCHFV IbAr10200 particles and incubated at 37°C for 1 h. Thereafter,
100 uL of the serum-virus mix was added in duplicate to Vero cells on a 96-well plate (1.5 x 10* cells/
well). After 1-h incubation at 37°C, the inoculum was removed, cells were washed three times with
Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 2% FBS before 100 uL DMEM supple-
mented with 2% FBS was added and the cells were incubated 48 h at 37°C, 5% CO,. Cells were fixed
with ice-cold acetone-methanol (1:1) in 4°C overnight and stained for CCHFV nucleoprotein for enumer-
ation of fluorescent foci. Total numbers of infected cells in each well were counted and the results were
expressed as percent neutralization compared with infection in wells with serum from the control
group for each dilution.

Peptides. A total of 129, 20-amino-acid-long peptides with 10-amino-acid-overlap covering the
CCHFV IbAr10200 N, Gc, and Gn sequences used for the different vaccine candidates (28 based on Gn,
64 based on Gc, and 48 based on N) were purchased from Sigma-Aldrich, Sweden. Peptides representing
each viral protein was pooled, with N- and Gc- pools containing eight peptides, while Gn-peptide pools
contained seven peptides.

IFN-y ELISpot. Splenocytes from immunized immunocompetent mice were pooled based on each
immunization group and tested for the presence of CCHFV specific T-cells by evaluating production of
IFN-y using Enzyme-linked ImmunoSpot (ELISpot). The assay is described previously (45), but briefly,
ELISpot plates (Mabtech AB, Stockholm, Sweden) were pre-wet with 50 uL 70% ethanol for 1T min before
washing with PBS and coated with 10 wg/mL of anti-mouse IFN-y (Mabtech AB) in 100 uL per well. After
overnight incubation at 4°C, plates were washed with PBS and blocked with complete medium (RPMI
1640 supplemented with 10% FBS, 1% GlutaMAX-l, 1% HEPES, 1% nonessential amino acids, 1%
Penicillin-Streptomycin, and 0.0001% 2-mercaptoethanol) for 2 h at 37°C. Thereafter, 100 uL of each
pool of specific peptides (total concentration 80 ug/mL) was added to designated wells and mixed with
200,000 fresh splenocytes in 100 L complete RPMI 1640 medium. Plates were incubated for 48 h at
37°C, 5% CO,, washed, and 100 uL biotinylated anti-IFN-y antibody (Mabtech AB) at a concentration of
2 png/mL was added to each well. After incubation for 2 h at 37°C, the plates were washed thoroughly
with PBS and incubated 1 h in RT with 100 uL per well of streptavidin-ALP (1:1,000). Thereafter, plates
were washed again and 100 ulL of AP conjugate substrate was added to each well and incubated for
10 min. Plates were rinsed with tap water and left to dry before measuring IFN-y producing cells using
the AID iSpot (EliSpot/FluoroSpot) reader system (Autoimmun Diagnostica GmbH, StraBberg, Germany).
Concanavalin-A (1 wg/mL) was used as a positive control, ovalbumin-CTL peptide (1 wg/mL) and ovalbu-
min-Th peptide (1 wg/ml) as peptide controls, while RPMI 1640 medium was used as negative control.
Spot counts were calculated as a mean number of spot forming cells (SFCs)/10° cells and a mean num-
ber of IFN-y-producing cells >50 SFC/10° cells was considered as a positive result.

Proteomics. Parts of the liver from all infected IFNAR™/~ mice were crushed in 150 ulL lysis buffer
(10 mM Tris, 150 mM NaCl, 10% SDS, and protease inhibitor) using pestles. Then, samples were incu-
bated at 4°C for 30 min and centrifuged at 13,000 rpm at 4°C for 20 min. Supernatant was collected,
NuPAGE™ LDS sample buffer with 2-mercaptoethanol added and the samples boiled at 99°C for 10 min.
Protein concentration for each sample was determined using Pierce™ 660 nm protein assay (Thermo
Fisher Scientific). Tandem mass tag (TMTpro™, Thermo Fisher Scientific) based quantitative deep pro-
teomic analysis, using nano-flow liquid chromatography hyphened to tandem mass spectrometry (LC-
MS/MS), was performed in Proteomics Biomedicum, Karolinska Institute as described previously (46).

Bioinformatics analysis. Protein raw data abundance was first filtered for empty rows with an in-
house script resulting in 5,168 proteins and normalized with R package NormalizerDE. Normalization
with quantile was selected based on NormalizerDE report. In order to identify proteins changing with
vaccination, differential abundance analysis was performed using R package LIMMA between control,
GcGn, and N groups. Pairwise comparisons were extracted and Benjamini-Hochberg (BH) adjustment
were applied on P values. Proteins with adjusted P values < 0.05 were selected. Results of the differential
protein abundance were represented using Venn diagram from interactivenn (http://www.interactivenn
.net/). The volcano plots to show the differently abundant proteins were performed using R package
ggplot2. Up- and down-regulated proteins were submitted separately to gene set enrichment analysis
(GSEA) using python module gseapy v0.9.17. Two manually curated KEGG libraries from the KEGG
mouse 2019 (https://www.kegg.jp) were used, first where pathway maps “Human Diseases” and “Drug
Development” were removed and then the pathway map “Metabolism” was conserved. Results were
represented respectively as a network using Cytoscape ver 3.6.1 (https://cytoscape.org/) and bubble
plot using ggplot2.
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Data availability. The mass spectrometry proteomics data have been deposited in the ProteomeXchange
Consortium via the PRIDE (47) partner repository with the data set identifier PXD023300 (https://www.ebi.ac.uk/
pride/archive/projects/PXD023300).
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